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Abstract- Bimodal gene is one of the common phenomena 

frequently observed in gene expression data for certain 

types of studies including cancer studies and drug/therapy 

effect studies. There have been several algorithms proposed 

to predict bimodal genes with success. However, occasion-

ally their performance is not very satisfied. We propose a 

new algorithm to detect bimodal genes. The new algorithm 

is based on the assumption that the bimodality is related 

with the gap between two consecutive expressions. We show 

that this new algorithm demonstrates better performance 

compared with several benchmark algorithms using both 

real and simulated data sets. 

Keywords: bimodal distribution, non-parametric analysis, 

differential genes, heterogeneity. 

 

1 Introduction 

      Microarray experiments have benefitted the discovery of 

genetic differentiation pattern for interpreting the observed 

phenotypic differentiation for a decade [1]. The success is 

due to high-throughput and genome-wide examination. The 

discovery of differential genes in relation to phenotypic dif-

ferentiation can be implemented using standard student t test 

if data satisfy the assumption. However biological diversity 

makes this difficult because a large number of genes appear 

to have bimodal or multi-modal distribution [2]. Fig 1 shows 

such a typical bimodal distribution of samples in the same 

category (such as cancer samples) of a gene.  

        

  

Figure 1: Histograms for ERBB2 gene. The gene has bimodal distribution 
with the dashed vertical line representing the classification threshold between 

the two modes [3]. 

 

      Khalil et al have explained that cancer is a complex dis-

ease [4] because it has many subtypes . The existence of bi-

modal genes may be related to important subtypes of a dis-

ease. In medical science, bimodal genes can be the product of 

somatic mutations as the amplification of the receptor tyro-

sine kinase proto-oncogene "erbB2" during the development 

of cancer [5]. Another cause for the  bimodality in cancers is 

germ cell mutations such as SNPs [6]. It has been noticed  

 

that the majority of cancer data demonstrate this kind of het-

erogeneous pattern [7-9]. Genetic translocations are com-

monly occurred in cancer cell which is a result of the rear-

rangement of parts between non-homologous chromosomes 

[10]. However, these mutations play main role in cancer cell 

progression or, more generally, diseases development. Fur-

thermore, the genomic lesions may affect some samples but 

not all leading to the occurrence of bimodality. An example 

of recurrent fusion was observed by Tomlins and others in 

prostate cancer datasets where they found ERG and ETV1 

genes over expressed in some of the samples in multiple 

datasets [9]. A study has showed that oncogene HER2 is 

over-expressed in 15–20% of breast tumors compared with 

normal breast tissues [11]. In addition the bimodality appears 

in biological systems as noticed by Mason and his group 

[12]. It is observed that the expression levels for some genes 

showed a distinct bimodal distribution in human skeletal 

muscle tissue. Also bimodal distribution were studied in 

blood glucose samples [13, 14]. The bimodality can occur in 

humongous tissue as reported in these references [12, 15]. 

 

      This heterogeneity demonstrated that the fully under-

standing to both genotype and phenotypes is the critical key 

for drug design [8]. The researchers have made a great effort 

to study the complexity of cancer disease aiming to under-

stand the molecular characteristics [16, 17]. Cancer patients 

with similar tumour characteristics are likely not to response 

for the same treatment [18]. In breast cancer, for example, 

variant responses were found to drug such as Tamoxifen and 

Herceptin giving evidence of the heterogeneity in pathologi-

cal factors such as estrogen receptor (ER) and HER2 status 

[19]. Large number of patients gained from using Tamoxifen 

for hormone receptor-positive but the same drug failed in 

subgroup of patients who carry specific variants in the cyto-

chrome gene P450 2D6 (CYP2D6) [20, 21]. Trastuzumab, as 

a first drug approved by FDA for this purpose, has been a 

beneficial therapy, either alone or in combination with che-

motherapy, in about 25% of patients with positive HRE2 

cancer patients [22-25]. This raised an issue of an accurate 

grouping of HRE2-positive patients [21]. Gefitinib (Iressa) 

has been approved by FDA, which suppress the ATP binding 

function of EGFR, and has been of partially remission re-

gression for 10-30% of patients with non-small cell lung can-

cer [26-30].  It has been noticed, that genetic alterations are 

associated with drug response as proven in their study [31].  

 

     Due to the often observed heterogeneity in gene expres-

sion data,the conventional t test and correlation analysis may 

not be able to well detect partial differentiation. The kurtosis 

analysis [32], the likelihood ratio test [33] and the bimodality 

index [34] have been proposed to examine the bimodality 



among genes. PACK (Profile Analysis using Clustering and 

Kurtosis) [32] clusters samples first and then uses kurtosis to 

find relevant classifiers. It was reported that about 80%-20% 

bimodal genes were missed using PACK [34]. The likelihood 

ratio test (LRT) [33, 35] examines the likelihood of bimodal 

over unimodal [13, 14]. Ertel and Tozeren used the 
2  test 

with six degree of freedoms. They set 0.001 as the signifi-

cance level to predict bimodal genes. Bessarabova and col-

leagues developed a τ indicator for detecting bimodality [36]. 

They combined a statistical method based around t test like 

statistic for direct comparison of gene expression from dif-

ferent platforms to identify bimodal genes based on the rela-

tive difference average between each peak of gene expres-

sion value in breast cancer. The Bimodality Index [34] used a 

mixture of two homogeneous Gaussians to model bimodality 

and outweighed the high-expressed samples. 

 

      Have applied these algorithms to our data, we have found 

that they often show dissatisfied performance. Some often 

over-predict bimodal genes and some do not provide a statis-

tical significance value for analysis. In this paper we present 

a novel algorithm further. The basic principle is to detect the 

maximum gaps between two clusters. This therefore avoids 

the parametric function to be used. We have evaluated this 

algorithm in comparison with several benchmark algorithms 

and demonstrate in this paper that this new algorithm pro-

vides another way to acquire insightful interpretation to bi-

modality among genes.  

 

      In the following sections, we discuss the implementation 

of hBI and evaluate its performance in comparison to some 

benchmark algorithms using real and simulated data. 

2     Methods 

     Our algorithm is a revision of Bimodal Index - BI [34], 

which is defined as: 

iii  )1(BIi   (1) 

where i  is the proportion of samples and i  is the distance 

between the two subgroups of the i
th
  genes. The use of this 

definition implies a homogeneous variance for two clusters 

of samples.  A one-side t statistics of the i
th
 gene can be de-

fined as 
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is the variance of highly expressed samples, 
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nL,i  is the num-

ber of lowly expressed samples, 



nH ,i  is the number of highly 

expressed samples, 



L,i  is the mean of lowly expressed 

samples, and 
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H ,i  is the mean of highly expressed samples 

of the i
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where 



 H ,i is the proportion of highly expressed samples of 

the i
th
 gene. If the sample size is fixed for all genes,  



ti  i
1  H,i (1  H,i)  (4) 

      It can be seen that if homogeneous exists across sub-

groups and genes, BI is equivalent to one side t statistic. 

However this can hardly be true in real applications. We 

therefore revise BI employing heterogeneous variance. In the 

one side t statistic, we use percentile estimations to replace 

parametric estimation of means and variances shown below 
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Here 



qH
25

 is the 25th percentile of highly expressed samples, 



qL
75

 is the 75th percentile of lowly expressed samples and 

the variances are calculated using 

34896.1

IQR
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      We assume that the separation between lowly expressed 

samples and highly expressed samples occurs at one of the 

largest gaps between consecutive sorted samples. Therefore 

we introduce the gap between lowly expressed samples and 

highly expressed samples to enhance the bimodality test. Our 

heterogeneous bimodal index (hBI) is defined below 

  iiLiH tMm )1(hBI ,,i    (7) 

where 



mH ,i  is the minimum of highly expressed samples, 



M L,i  is the maximum of lowly expressed samples of the i
th

 

gene and 



  0  is a trade-off between the gap effect and t 

statistic. In this paper, 



  0.75.  

 

      BI uses an arbitrary threshold to make decision based of 

the indexes, we employ the sequential Monte Carlo approach 

[37] (Besag and Clifford 1996) to deliver significance analy-

sis. The procedure of our algorithm is shown below 

Step 1. BI calculation for each gene 

1.1. to sort expressions 



1.2. to calculate the distance between every con-

secutive expressions and record them as a 

gap list 

1.3. to sort the gap list 

1.4. to calculate the revised BI for the top ten gaps 

and record them in a bimodality list 

1.5. to maximise the bimodality list 

Step 2. Apply BC algorithm to obtain p values 

 

      To evaluate our algorithm in comparison with likelihood 

test, Kurtosis test and BI test, we calculate sensitivity (Sen), 

specificity (Spe), total accuracy (Auc) and use receiver op-

erative characteristic (ROC) [38] analysis. The sensitivity is 

the ratio of correctly predicted bimodal genes. The specificity 

is the ratio of correctly predicted non-bimodal genes. The 

total accuracy is the ratio of corrected identified unimodal 

and bimodal genes. Specially, we calculate the area under 

ROC curve (AUC) for comparison.  

3     Results and discussions 

3.1 Simulated Data    

   For all five scenarios, 950 genes were designed as unimo-

dal and 50 genes were designed as bimodal. Each gene has 

40 replicates. Thirty replicates were designed of low expres-

sions. Ten replicates were designed of high expressions. Each 

simulation was repeated for ten times. 

Scenario 1- Samples of unimodal genes were drawn from a 

normal distribution of mean ten and standard deviation one. 

Lowly expressed samples of a bimodal gene were drawn 

from a normal distribution of mean ten and standard devia-

tion one. Highly expressed samples of a bimodal gene were 

drawn from a normal distribution of mean 12 with variable 

standard deviation drawn from a uniform distribution be-

tween one and five. Table 1 shows the comparison based on 

the mean values among ten simulations for four algorithms 

using specificity, sensitivity and AUC. It can be seen that hBI 

and Kurtosis have similar performance and hBI slightly out-

performs Kurtosis analysis. Likelihood test shows the worst 

performance with the sensitivity as 0.06 although its specific-

ity is 1. 

 

Table 1: The averaged measurements for scenario 1 

 LR K BI hBI 

Spe 1 0.983 0.975 0.992 

Sen 0.062 0.858 0.532 0.84 

Auc 0.995 0.964 0.852 0.992 

 

Scenario 2- Samples of unimodal genes were drawn from a 

normal distribution of mean ten and standard deviation one. 

Lowly expressed samples of a bimodal gene were drawn 

from a normal distribution of mean ten and standard devia-

tion one. Highly expressed replicates of a bimodal gene fol-

low a uniform distribution in the interval between zero and 

five in addition to maximum of low expressions. The aver-

aged measurements are shown in Table 2. In this scenario 

kurtosis has shown the worst accuracy (36%) while the other 

relatively similar and higher, 99.9%. Also the result has 

shown that the likelihood test has very low sensitivity while 

BI and hBI perform equally well.  

 

Table 2: The averaged measurements for scenario 2 

 LR K BI hBI 

Spe 1 0.986 0.997 0.9963 

Sen 0.058 0 0.954 0.924 

Auc 0.999 0.36 0.999 0.9985 

 

Scenario 3 - Samples of unimodal genes were drawn from a 

uniform distribution in the interval between ten and 12. 

Lowly expressed replicates of a bimodal gene were drawn 

from the same low expression distribution as bimodal genes 

and highly expressed replicates of a bimodal gene were 

drawn from a normal distribution with two units added to the 

maximum of the low expressions. Table 3 shows the sum-

mary of the simulations for this scenario. This scenario has 

shown that Kurtosis failed again to have a sensible accuracy 

(14%). hBI shows the highest AUC (0.999) similar to LR 

(0.996) and BI (0.993). hBI outweighs LR and BI in term of 

sensitivity, the sensitivities of BI and LR are 0.81 and 0.77, 

respectively while hBI's sensitivity is 0.94.  

 

Table 3: The averaged measurements for scenario 3 

 LR K BI hBI 

Spe 0.997 0.9519 0.9898 0.996 

Sen 0.774 0 0.812 0.94 

Auc 0.996 0.1413 0.9933 0.999 

 

Scenario 4 - Samples of unimodal genes were drawn from a 

normal distribution of mean ten and standard deviation one. 

Lowly expressed replicates of a bimodal gene were drawn 

from a mixture of a normal distribution of mean ten and a 

normal distribution of mean 12. The standard deviation of the 

former was designed as one and that of the latter was de-

signed as three. Highly expressed replicates of a bimodal 

gene were drawn from the low expressions plus white noise 

with two units above the maximum low expression. Table 4 

shows the summary of ten simulations on random samples 

for this scenario. All perform very well in terms of AUC. 

This means there are some suitable statistical significance 

levels by which perfect separation between unimodal and 

bimodal genes can be found. 

 

 



Table 4 The averaged measurements for scenario 4 

 LR K BI hBI 

Spe 1 0.9861 0.9963 0.997 

Sen 0.468 0 0.93 0.952 

Auc 0.998 0.9572 0.9984 0.9988 

Scenario 5 - Samples of unimodal genes were drawn from a 

normal distribution of mean ten and standard deviation one. 

We organised lowly expressed replicates of a bimodal gene 

as a mixture of three normal distributions with mean values 

as ten, 11 and 12 as well as standard deviation values as 

three, two and one. Highly expressed replicates of a bimodal 

gene were drawn in the same way as scenario 4. Based on ten 

random simulations for this scenario, we have observed that 

although LR and BI show reasonably good values of AUC, 

their sensitivities are not acceptable. This shows that these 

two algorithms have the same problem encountered in sce-

nario 4 that their p values tend to be large, which leads to the 

difficulty of using command significance levels to make de-

cision. Kurtosis analysis does not work well because its AUC 

value drops to 0.66 not very far away from 0.5, a random 

classification.  In this scenario hBI perform the best in all 

measurements while BI has 69% sensitivity. 

 

Table 5: The averaged measurements for scenario 5 

 LR K BI hBI 

Spe 1 0.9844 0.9845 0.9873 

Sen 0 0 0.698 0.766 

Auc 0.9267 0.6676 0.9593 0.9867 

 

 

3.2  Real data  

     GSE11121 dataset: The data set was downloaded from 

GEO (Gene Expression Omnibus). It contains 200 lymph 

node-negative breast cancer patients who were not treated by 

systemic therapy after surgery. The data was derivation study 

to find prognostic motifs [39]. Gene expression profiling of 

patients was done using the Affymetrix HG-U133A microar-

ray platform compromising 22283 probs. The raw expression 

deposited at the NCBI GEO data repository under the acces-

sion number GSE11121. We have transformed the expression 

using base two logarithm before analysis. We used three sig-

nificance levels (0.001, 0.01 and 0.05) to predict bimodal 

genes. Table 6 shows the predicted bimodal genes using 

these three significance levels. The likelihood test predicted 

from 0.3% to 2.3% bimodal genes, BI predicted from 0.01% 

to 5% bimodal genes and hBI predicted bimodal genes from 

0.01% to 5% as well. However Kurtosis analysis ends up 

with too many predictions up to 54.7%, which is unreason-

able. Even for the significance level 0.001, it still predicts 

36.3% bimodal genes, which is far more than a realistic level. 

 

 

Table 6: Number of predicted bimodal genes for three significance 

levels for data set GDS11121 

Significance levels LHR K BI hBI 

0.001 72 8087 22 23 

0.01 182 10065 227 221 

0.05 523 12193 1112 1112 

          Fig 2 (a) shows the overlap analysis between four al-

gorithms based on the significance level 0.001 values using 

VennDiagram [40]. We have found that hBI is most similar to 

BI. The overlap percentage between these two algorithms is 

31.8%, i.e. 100*7/(7+14+1). The overlap degree between 

LHR and hBI is 20.2%. The overlap degree between LHR 

and BI is 5.6%. 91.3% of predicted bimodal genes of hBI are 

predicted by Kurtosis as well. This percentage drops to 

69.6% between hBI and LHR as well as 30% between hBI 

and BI. Also the overlap percentage between BI and hBI is 

27.7% for significance level 0.01 and  the overlap degree  is 

34.3% between the hBI and LHR and 7.9% between BI and 

LHR - Fig 2 (b). 90.9% of predicted bimodal genes of hBI is 

predicted by Kurtosis as well. This percentage drops to 

46.6% between hBI and LHR as well as 24% between hBI 

and BI. For significance level 0.05, we found the overlap 

between hBI and BI is 36.2% and the overlap degree be-

tween hBI and LHR is 28.2%  and 7.07% between BI and 

LHR - Fig 2 (c). In addition, 83.3% (32.3%, 36.2%) of hBI’s 

predictions are consistent with Kurtosis (LHR, BI).  

 

(a) (b) (c)  

Fig 2: Venn diagram illustrates the overlapped between the methods for 

GSE11121 with the significance levels 0.001(a),0.01(b) and 0.05(c). 

 

     Fig 3 shows top five bimodal genes predicted based on 

the significance level 0.001, where (a-d) predicted by all and 

(e) was predicted by hBI only. It can be seen that they show 

different types of distributions. Both GOXA1 - Fig 3 (a) - 

and GATA3 - Fig 3 (b) show a pattern that the high expres-

sions form a tight cluster. However the low expressions dem-

onstrate a more flat distribution or form more small clusters. 

TDRD12 - Fig 3 (c) - and GRIA2 - Fig 3 (d) have tight clus-

ters formed by low expressions and their high expressions 

display flat distributions. SH3GL3 shows a different pattern 

from other four. It is composed of two more tightly formed 

clusters, one small and one large. The gap between two clus-

ters is large. The analysis of these patterns proves one impor-

tant concept that the use of restrict assumption of data distri-

bution may not be sufficient for accurate prediction of bi-

modal genes in real applications, where distribution can vary 

in many different formats. 

 

 



(a) (b) (c)  

(d) (e)  
Fig 3: Density analysis of four bimodal genes; (a-d) predicted by all four 

algorithms at the significance level 0.001 and (e) only predicted by hBI at the 
same significance level. The horizontal axes represent log2 expressions and 

the vertical axes represent frequencies. All these genes show typical bimodal 

(or multi-modal) distributions. 

     Table 7 shows the p values of four algorithms for the 

genes uniquely predicted by hBI at the significance level 

0.01. The data shows that for those bimodal genes predicted 

by hBI, their ranks of other algorithms are far behind. For 

instance, the Kurtosis rank of C6orf64 is 18643 and the Kur-

tosis rank of GULP1 is 22101. Fig 4 shows four of them, 

which have gene symbols. They are indeed bimodal genes. 

However other three algorithms failed to predict them. For 

instance, PSPH was ranked by hBI at the 66th position (p  = 

0.002). Likelihood, Kurtosis and BI ranked it at the 2990th (p 

= 0.2), 13507th (p = 0.1), and the 1293th (p = 0.05) respec-

tively. This gene is highly expressed in African Americans 

comparing to European Americans colorectal cancer patients 

[41]. Also PSPH is expressed at higher level in responding 

patients versus non-responding group, which support its im-

portance as therapeutic target for non-small-cell lung cancer 

[42]. RBBP5 was ranked at the 113
th
 position (p = 0.005), but 

was ranked at the 540
th
 position (p = 0.52), the 17000

th
 posi-

tion (p = 0.36), and the 974
th
 position (p = 0.043) by likeli-

hood, Kurtosis and BI tests. RBBP5 was found to be active 

in only 40% of Pancreatic ductal adenocarcinomas (PDAs) 

[43]. 

Table 7: p values of bimodal genes predicted ONLY by hBI at 

significance level 0.01 for GDS11121 

symbol LH K BI hBI 

PSPH 0.27(2990) 0.1(13507) 0.058(1293) 0.002(66) 

unknown 0.065(652) 0.03(11438) 0.039(864) 0.004(97) 

RBBP9 0.052(540) 0.36(17000) 0.043(974) 0.005(113) 

unknown 0.31(3584) 0.02(11311) 0.012(265) 0.008(195) 

C6orf64 0.07(713) 0.54(18643) 0.018(416) 0.008(199) 

GULP1 0.19(1879) 0.97(22101) 0.026(582) 0.009(226) 

 
Fig 4. Density analysis of two bimodal genes only predicted by hBI at the 
significance level 0.01. The horizontal axes represent log2 expressions and 

vertical axes represent frequencies. All these genes show typical bimodal (or 

multi-modal) distributions. 

4  Conclusion 

     We have proposed a novel bimodal gene prediction algo-

rithm via relaxing the constraints of BimodalIndex algorithm. 

First, the constraint of cross-cluster homogeneous variance 

has been removed. It is unrealistic to assume that two clusters 

of a bimodal gene should have the same variance. The ex-

amination of various data sets has clearly shown that one of 

two clusters, either being of lowly expressed samples or of 

highly expressed samples is very likely to demonstrate a 

comparatively flat distribution while the other shows a tight 

cluster. Second, we deliberately removed the constraint of 

homogeneous variance across genes because this constraint 

is certainly confusing. An obviously evidence is that the vari-

ance of unimodal genes and bimodal genes will not show 

homogeneous variance. In addition to these two revisions, we 

have also emphasised the impact of gaps between consecu-

tive expressions of sorted samples on bimodal formulation. 

This is because we have observed in real data sets that often 

lowly expressed samples demonstrate a tight cluster and 

highly expressed samples show; i) a comparatively large 

variance; and ii) distantly departing from the tight cluster of 

lowly expressed samples or vice versa. In this case the t sta-

tistic, although using percentiles to estimate mean values and 

standard deviations, is still not working well, i.e. the t statis-

tic can be very likely to be small due to the large variance of 

the highly expressed samples. We therefore introduced a gap 

impact onto the prediction of bimodal genes. Doing so, we 

admit that we have introduced a hyper-parameter. In order to 

remove this hyper-parameter, our future work will employ 

the Bayesian learning framework to overcome this difficulty. 

Nevertheless, we have documented our simulations, which 

all show that our new algorithm is better than the benchmark 

algorithms in simulated data sets. In the application to real 

data sets, we show that our new algorithm is partially consis-

tent with benchmark algorithms and does provide some new 

insights to the analysis of bimodal genes. Importantly, most 

of the predicted bimodal genes by our new algorithm do 

show typical bimodality. Particularly, not a small percentage 

of our unique predictions is unfortunately not favoured by 

benchmark algorithms. We therefore look forward to some 

even advanced approach, such as meta-analysis of prediction 



to deliver even robust predictions of bimodal genes. Finally, 

it worth to note that significance analysis is critical to real 

biological/medical application, we therefore have enhanced 

the BimodalIndex for using the Besag’s sequential Monte 

Carlo approach to deliver significance analysis. 
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