
On using database techniques for generating
ontology mappings

Carlos R. Rivero
University of Sevilla, Spain

carlosrivero@us.es

Inma Hernández
University of Sevilla, Spain

inmahernandez@us.es

David Ruiz
University of Sevilla, Spain

druiz@us.es

Rafael Corchuelo
University of Sevilla, Spain

corchu@us.es

Abstract—In the Semantic Web, there are a variety of ontolo-
gies, which motivates the need for integrating them. Integration
tasks rely on the use of relationships amongst the integrated
ontologies, known as mappings. The literature reports on a
number of techniques to automatically generate such mappings,
unfortunately, the results are not suitable to perform integration
tasks since they can produce incoherent data. The database
community has devised techniques that automatically generate
integration-enabling mappings, however, these techniques are
not directly applicable to the semantic web context due to the
inherent differences between ontologies and database models. In
this paper, we present the differences between semantic web on-
tologies (RDF, RDFS and OWL) and nested relational schemata,
which argue to develop new techniques to generate integration-
enabling mappings. Furthermore, we analise the requirements
to generate integration-enabling mappings in the context of the
Semantic Web.

Index Terms—Database technologies for semantic web; Ontol-
ogy mediation.

I. INTRODUCTION

Ontologies are suitable to solve semantic heterogeneity
problems that can arise when two or more user communities
share their knowledge [37]. However, in a distributed, evolving
and open-world environment such as the Semantic Web, there
are a variety of ontologies. This implies that using ontologies
per se does not avoid semantic heterogeneity problems since
they appear again when user communities share their different
ontologies [12]. In this paper, we focus on semantic web
ontologies, i.e., ontologies that are specified using RDF, RDFS
or OWL [3].

As a result, the Semantic Web comprises heterogeneous and
distributed ontologies, and there is a need to integrating them
[4], [25]. Without an exception, integration tasks rely on the
use of mappings, which are formulae represented in some
logical formalism that relate the integrated ontologies [12].
Integration tasks include data translation and data integration.
On the one hand, the data translation task is the process of
moving the data that is stored at a number of source ontologies
to a target ontology [9], [13], [14], [32]. On the other hand, the
data integration task is the process of answering a query over a
target ontology using only the data stored at the sources [17],

Supported by the European Commission (FEDER), the Spanish and the An-
dalusian R&D&I programmes (grants TIN2007-64119, P07-TIC-2602, P08-
TIC-4100, TIN2008-04718-E, TIN2010-21744, TIN2010-09809-E, TIN2010-
10811-E, and TIN2010-09988-E).

[28], [40], [42]. In this paper, we focus on the data translation
task.

Specifying hand-crafted mappings is tedious and error-prone
since it leads the user to a frustrating trial-and-error loop:
the user specifies the mappings and tests if their behaviour
is correct; otherwise, the user has to rewrite the mappings and
starts the loop again [30]. Note also that the costs of main-
taining hand-crafted mappings are very high [43]. Therefore,
automatic mapping generation relieves users from the burden
of specifying hand-crafted mappings and reduces integration
costs [23], [43]. There exists a large amount of literature
that study how to generate these mappings automatically [8],
[12], [20], [34]. Unfortunately, the mappings these techniques
generate are not suitable to perform integration tasks since they
can produce incoherent target data when considered in isola-
tion or restrictions are not taken into account [23], [14], [32].
To solve these problems, the database community has devised
techniques that automatically generate integration-enabling
mappings based on correspondences, which are simple rela-
tionships amongst elements in the integrated database models
[14], [32]. Note that our research focuses on nested relational
schemata, which is a common abstraction for relational, XML
and other hierarchical, set-oriented models [14]. Furthermore,
nested relational techniques cannot be directly applied to the
ontologies due to the inherent differences between ontologies
and database models [16], [24], [26], [41].

In this paper, our goal is to support that techniques to
generate integration-enabling mappings for nested relational
schemata are not directly applicable to the semantic web
case, due to inherent differences between database models and
ontologies. As a result, we present a number of requirements
for generating integration-enabling mappings in the semantic
web context, and we analise them based on the inherent
differences.

The paper is structured as follows: Section II describes
the related work. Section III presents preliminaries regarding
nested relational schemata and ontologies. In Section IV, we
describe a number of inherent differences between nested rela-
tional schemata and semantic web ontologies. In Section V, we
present a motivating example to discuss about why mapping
generation techniques for nested relational are not directly
applicable to semantic web ontologies, and the requirements
for generating integration-enabling mappings in the context of
the Sematic Web. Finally, Section VI summarises our main

conclusions.

II. RELATED WORK

In the database context, correspondences are represented
in multiple ways [32], [34]. Correspondences relate the most
simple entities in the source and target models, e.g., a column
in the relational model or an attribute in the nested relational
model [34]. Furthermore, correspondences can relate one or
more entities in the source with one or more entities in the
target, so, they are of four types, namely: 1:1, n:1, 1:n, n:m.

Popa et al. [32] used one of the most simple form of
correspondences: a logic equality between an attribute in the
source and an attribute in the target (1:1 correspondences).
The mapping system developed by Mecca et al. [21] handled
a more general form of correspondences: they relate a number
of source attributes with a target attribute via a transformation
function (n:1 correspondences). Their mapping system also
allows to restrict the way the correspondences must be com-
bined. Raffio et al. [33] proposed correspondences not only
between attributes but also between nodes.

Integration-enabling mapping generation techniques for
nested relational schemata produce three different types of
mappings, namely: basic, nested and laconic/core. The tech-
nique devised by Popa et al. [32] generates basic mappings,
and it combines logically related correspondences in which
referential integrity constraints and nesting are made explicit.
Fuxman et al. [14] proposed to use nested mappings to
improve the results of basic mappings, which have a number
of problems such as the inefficiency in their execution or
the redundancy in their specification. They generate basic
mappings and compose nested mappings by rewriting them;
this is more efficient since they factor out common expressions
and reduce the number of basic mappings used to translate the
data. Basic and nested mappings can produce redundant target
instances, which motivated the research on the generation
of laconic/core mappings that produce target instances with
no redundancy [21], [38]. These techniques generate basic
mappings and rewrite them to produce laconic/core mappings.

Basic, nested and laconic/core mappings are translated into
a suitable query language, and the resulting mappings are
known as query mappings. The data translation task consists
of executing the query mappings over the source to produce
instances of the target. The benefits of using query mappings
are that the data translation process is simplified, making it
more efficient and flexible: instead of relying on complex,
ad-hoc programs that are difficult to create and maintain,
thanks to query mappings, the database management system is
used as the transformation engine [23]. Furthermore, database
management systems incorporate a vast knowledge on query
manipulation, from which it is derived that query mappings
can be automatically optimised and paralelised so that data
translation can perform as good as possible.

Finally, Alexe et al. [2] developed a benchmark for com-
paring and evaluating mapping generation techniques. The
evaluation criteria include the scalability of the generated
query mappings and the support of various typical scenarios.

Regarding ontologies, there are a number of proposals to
represent the correspondences that are based on ontologies
and rules. Ontology-based proposals describe them by means
of a populated ontology [10], [19], e.g., the Semantic Bridge
Ontology [19] allows to relate classes, properties, and individ-
uals. Rule-based approaches describe the correspondences as
bridge rules in a specific-purpose language [5], [27], e.g., C-
OWL [5] allows bridge rules that relate classes in five ways:
equivalent, into, onto, incompatible or compatible.

Maedche et al. [19] described a number of dimensions
(aspects) for correspondences in the ontology context, namely:
entity, cardinality, constraint, transformation and structural.
The entity dimension establishes which entities are related,
e.g., concepts, relations or attributes. The cardinality dimen-
sion covers how many entities are related ranging from 1:1
to n:m, however, the authors have found that 1:n and n:1
correspondences are sufficient in most general cases. The
constraint dimension are conditions that must hold to perform
an ontology data translation. The transformation dimension
specifies how the values have to be translated during an
ontology data translation. Finally, the structural dimension
deals with how the correspondences are combined; these
combinations include specialisation, abstraction, composition
and alternative.

Regarding ontology mapping generation techniques, Choi
et al. and Euzenat and Shvaiko [8], [12] surveyed a number
of approaches to automatically generate ontology mappings.
However, these ontology mappings are not suitable to perform
integration tasks since they do not incorporate the model
restrictions (e.g., domain or range or cardinality of properties)
and do not combine logically related mappings. Early attempts
that work with ontology mappings are Observer and Momis
[7], [22], however, these systems focus on integration tasks
and assume that mappings are available beforehand.

Regarding ontology data translation, current proposals rely
on the use of ad-hoc techniques [19], reasoners [9], [36]
or SPARQL query mappings [11], [29]. Regarding ad-hoc
techniques, Maedche et al. [19], [18] built an execution engine
in which the instances of the Semantic Bridge Ontology are
evaluated to perform the data translation process. This engine
is their first step towards developing a general translation
technique for instances of the Semantic Bridge Ontology.

Regarding proposals based on reasoners, Dou et al. [9]
perform data translation by means of a reasoner that needs
a merged ontology that covers the source and target models.
In this approach, the user specifies the mappings by using
a first-order logic language and the reasoner is a first-order
theorem prover that has been optimised for the data translation
task. Serafini and Tamilin [36] work with correspondences
between two classes, and their data translation process consists
of reclassifying source instances into the target.

Regarding SPARQL queries, Euzenat et al. [11] presented
preliminary ideas on the use of SPARQL queries to per-
form the data translation process. They focus on the lacks
of SPARQL to work as a mapping query language [31].
Parreiras et al. [29] proposed a model-driven framework to

���� ����� ��� � 	��
� ��
�������
�� �������� ����� �
�� � 	��
� ��
��������
��� 	��
� ��
���������� � ���� ����� ��� � 	��
� ��
���������
� ���
��� 	��
� ��
���������� ������ ! "#�$!%
c1: Universities.city = TUniversities.city
c2: Persons.name = Professors.name
r1: Persons.id → UniAffiliations.id

m1: ∀ u · u ∈ Universities ⇒
∃ tu · tu ∈ TUniversities ∧ tu.city = u.city

m2: ∀ p, u, ua · p ∈ Persons ∧ u ∈ Universities ∧
ua ∈ u.UniAffiliations ∧ ua.id = p.id ⇒

∃ tu, prof · tu ∈ TUniversities ∧
prof ∈ tu.Professors ∧
tu.city = u.city ∧ prof.name = p.name

qm1: <TUniversities>
{

for $u in $doc/Universities
return

<University>
<id>generateId($u/city)</id>
<city>$u/city</city>

</University>
}
</TUniversities>

qm2: for $p in $doc/Persons,
. . .

Fig. 1. Examples of integration-enabling mappings in nested relational
schemata

solve the automatic generation of query mappings: their pilot
implementation translates hand-crafted mappings specified in
OCL into SPARQL query mappings.

III. PRELIMINARIES

In this section, we provide an example of nested relational
schemata and semantic web ontologies. Furthermore, we pro-
vide examples of the concepts that we use throughout this
paper.

In Figure 1, we present an example of two nested relational
schemata, correspondences and mappings. The source schema
comprises three nodes: Universities, UniAffiliations and
Persons. These nodes have a number of attributes, e.g.,
city of Universities or name in Persons. Note that
UniAffiliations is nested into the Universities node, fur-
thermore, r1 is a referential integrity constraint that relates the
id of Persons and UniAffiliations. The target schema has
TUniversities and Professors nodes, and Professors is
nested into TUniversities.

The relationships established between the source and the
target schemata can be of three conceptual levels [15], namely:

����������	�
���� ���������� �������� ��� ��������� ���� !"!�#$%&' (��) ���� * ���+!, -.' $,,' ./#
��0 ���1 (��) ���� *�# �2�3 4�����2�3 5��� 6����6���+��7 �89� :�� *"!;$, <= �����
Fig. 2. Example of semantic web ontologies

• Correspondences are simple relationships amongst ele-
ments in the source and the target [32]. For example, in
Figure 1, c1 and c2 are two correspondences relating city
and name attributes in the source and target schemata.
Correspondences can be given by means of an automatic
matching tool [12], [34], by the user with the help of a
graphical tool [1], [33], or using patterns [35].

• Integration-enabling mappings are formulae represented
in some logical formalism, which combine logically
related correspondences in which the inherent restrictions
entailed by the modelling language are made explicit
[15]. For example, in Figure 1, r1 is a referential in-
tegrity restriction of the model and m1 and m2 are two
integration-enabling mappings, which are created based
on correspondences c1 and c2, and restriction r1.

• Query mappings are the translation of integration-
enabling mappings into a suitable query language such
as SQL, XQuery or SPARQL [11], [14], [43]. Examples
of query mappings include qm1 and qm2 in Figure 1.

In Figure 2, we present two semantic web ontologies that are
intended to represent the same concepts as the nested relational
schemata shown in Figure 1. Languages to describe semantic
web ontologies allow to specify classes and properties that
relate them. In our example, the classes are represented as
oval shapes, e.g., in Figure 2, Person or Organisation are
classes of the source ontology. The classes are similar in spirit
to nodes in nested relational schemata.

Regarding properties, they have a domain and a range: the
domain consists of a set of classes (possibly one), and the
range can be either a set of classes (possibly one) or a basic
data type. OWL distinguishes two types of properties: object
and data properties. Object properties relate two classes, e.g.,
in the source ontology in Figure 2, affiliatedTo means that a
Person (domain) is affiliated to one or more Organisations
(range). Data properties relate a class with a constant of a
simple type, e.g., in the source ontology in Figure 2, pname
is the name of the Person (domain), which is a String (range)
but we omit it for the sake of simplicity.

Note that, when a semantic web ontology is populated, the
data does not reflect all the implicit implications entailed by
the modelling language. For instance, in the source ontology
in Figure 2, if an instance of University exists, this instance
has implicitly the Organisation type. Reasoners are used
to make this knowledge explicit for a populated ontology
[39]. This task is mandatory for some applications, e.g, when
SPARQL is used to query an ontology, it is mandatory to
make the knowledge explicit (in the query or in the model)

because SPARQL only deals with RDF and does not imple-
ment RDFS/OWL semantics. However, there are other query
languages that implement RDFS/OWL semantics, e.g., SeRQL
[6].

IV. NESTED RELATIONAL SCHEMATA VERSUS SEMANTIC
WEB ONTOLOGIES

In this section, we present the inherent differences we have
found between the nested relational schemata and semantic
web ontologies, namely:

D1 Structure and data: data, in nested relational
schemata, cannot exist before a model is devised for
this data, e.g., in the source schema in Figure 1, it
is not possible to have an instance of Universities
without the schema. However, in the Semantic Web,
data exists before it is modeled since data in this
context amounts to pre-existing web resources, e.g.,
it is possible to have an URI that represents a
person, but this data has no type until it is explicitly
modeled to be of type Person in the source ontology
in Figure 2. Furthermore, several (even conflicting)
models can exist for the same data.

D2 Weak existential relations: in nested relational
schemata, the semantics of an attribute is that if
a node instance exists, then there must exist an
attribute instance for each attribute in the schema; if
the value is not known, then it is null. However, in
semantic web ontologies, data properties are similar
to attributes but, due to the weak existential relations,
if the value of a data property instance is unknown,
then the data property instance does not exist. For
instance, attribute city of node Universities in
the source schema in Figure 1 has to exist and,
if its value is unknown, then it is null. However,
in the source ontology in Figure 2, an instance of
data property oname that is related to an instance
of Organisation only exists if the data property
instance has a known value.
Furthermore, in nested relational schemata, ref-
erential integrity constraints and nesting are the
mechanisms to relate nodes, which implies re-
lated nodes must exist. For example, in the source
schema in Figure 1, the nesting of UniAffiliations
in Universities implies that an instance of
UniAffiliations exists if and only if and in-
stance of Universities exists (but not conversely).
A similar behaviour occurs with the referential
integrity constraint r1, which implies that, if an
instance of Persons exists, then an instance of
UniAffiliations must exist (but not conversely).
In the semantic web context, object properties can
be modelled as referential integrity constraints or
nesting but, due to the weak existential relations,
instances of object properties do not enforces the
mandatory existence of instances of their domains
or ranges. For example, we cannot assume that an

instance of Person and an instance of University
in the source ontology in Figure 2 are related by
property isProfessorAt, since isolated instances of
Person and University are allowed without no
object properties instances involved.

D3 Subclasses and subproperties: in semantic web on-
tologies, when a class is specialised into a subclass,
an instance of the subclass has also the type of the
superclass, i.e., the final instance has both the type of
the class and the subclass. In the source ontology in
Figure 2, the specialisation of classes is represented
as a white triangle with a line connecting the sub-
class, e.g., University is subclass of Organisation,
which means that any instance of University is also
an instance of Organisation.
When a property is specialised into a subproperty,
the domain and range classes of the property are
implicitly added to the domain and the range of
the subproperty. In the instance level, two instances
related by the subproperty are automatically related
by the superproperty. In the source ontology in Fig-
ure 2, the specialisation of properties is represented
with a white triangle that relates two properties, e.g.,
isProfessorAt is a subproperty of affiliatedTo.
If an instance of Person and an instance of
University are related by isProfessorAt, they are
also related by the affiliatedTo property. Further-
more, affiliatedTo has Person as its domain, and
its range is Organisation and University.
Note that, in nested relational schemata, there is
no equivalent to subclasses and subproperties. There
are a number of extensions to database models that
take classes and subclasses into account. However,
none of them deals with subproperties or multi-type
instances (see below).

D4 Instances of multiple types: in semantic web ontolo-
gies, one instance can be of multiple types without a
relationship amongst them, e.g., the source ontology
in Figure 2 can be populated with an instance that is
both a Person and University. Note that this is not
a mistake since a type is a classifier for an existing
web resource. For instance, http://en.wikipedia.org/
wiki/Edsger W. Dijkstra can be classified as both a
Person resource and University resource.
In nested relational schemata, an instance is a set
of attribute values that specify a concrete node in
the schema, e.g., in the source schema in Figure 1,
Universities is specified by the values of id, city
and contact attributes. Therefore, in nested relational
schemata, it is impossible to have multiple types
since the concept of multiple types is not supported.

D5 Properties are globally defined: in semantic web on-
tologies, properties are not local to a certain class but
they are global to the whole ontology, e.g., assume
that in the source ontology in Figure 2, we change the
pname and oname properties by a new one called

name, this entails that data property instances of
name can have instances of Person, Organisation
or both as domain.
In nested relational schemata, attributes are local to
each node, e.g., in the source schema in Figure 1,
each instance of Persons has an attribute id, and
each instance of Universities has another attribute
id but they are totally different, without any relation
between them.

D6 URIs: in semantic web ontologies, every class, prop-
erty or instance is identified by an URI, i.e., a
Uniform Resource Identifier, which can be an URL
(web address) or some other type of unique identifier.
In nested relational schemata, unique identifiers have
to be made explicit by means of primary keys. For
example, in the source schema in Figure 1, the id
attributes in Universities, UniAffiliations and
Persons are different.

V. DISCUSSION

In this section, we argue that existing techniques to generate
integration-enabling mappings for nested relational schemata
are not applicable to the semantic web context. Furthermore,
we present the requirements that such a technique should
fulfill.

Assume that we use the ontologies in Figure 2 as a data
translation scenario. Regarding weak existential relations, as-
sume that we establish two correspondences that relate the
source and the target of the type data property to data property
(data to data), which are similar to attribute correspondences
in database models:

dd1 (data to data): pname = profName
dd2 (data to data): city = ucity

We argue that data to data correspondences are not suffi-
cient to generate ontology mappings. Recall that integration-
enabling mapping generation techniques for nested relational
models are based on correspondences between attributes and
the inherent restrictions of these models, i.e., referential in-
tegrity constraints and nesting (cf. Figure 1). However, ontol-
ogy languages do not impose any inherent restrictions since
ontology properties are weak existential relations. Therefore, if
a mapping generation technique for nested relational schemata
is applied to our example in Figure 2 with dd1 and dd2
correspondences, then, mappings that include object properties
isProfessorAt and at will not be generated since the exis-
tence of instances of these object properties is not mandatory.

To solve this problem, Maedche et al. [19] introduced
two new types of correspondences: object property to object
property and class to class. What follows is an example of
these correspondences:

oo1 (object to object): isProfessorAt = at
cc1 (class to class): Person = Professor

Another solution is to restrict the cardinality of the prop-
erties, which can be seen as enforcing the existence of
an instance property. For example, if we establish that the

cardinality of property isProfessorAt in our source ontol-
ogy is exactly one (by means of the “cardinality” construct
in the OWL language), this implies that every instance of
Person is associated with one instance of University by
isProfessorAt.

Note that cardinality restrictions are only allowed by the
OWL language but not by the RDFS language. This motivates
the need to explicitly indicate that a property in an RDFS
ontology is mandatory, i.e., the existence of an instance
of the property is mandatory only when an instance of its
domain or range exists. In our example, we make property
isProfessorAt mandatory by enforcing the existence of
an instance of University, i.e., we only consider instances
of Person that are related to one or more instances of
University by isProfessorAt.

Regarding subclasses and subproperties and the instances of
multiple types, nested relational models do not support neither
of them, therefore, it is not possible to apply mapping genera-
tion techniques over ontologies with subclasses, subproperties
or instances of multiple types.

After this discussion, we identify a number of requirements
for the generation of integration-enabling mappings, namely:

R1 New types of correspondences: data property to data
property correspondences are not sufficient to gener-
ate integration-enabling mappings because properties
are weak existential relations (cf. difference D2). It
is necessary at least three types of correspondences:
class to class, data property to data property, and
object property to object property.

R2 Explicit mandatory properties: in semantic web on-
tologies, properties are optional if cardinality is not
restricted (cf. difference D2). However, in a concrete
scenario, we may wish to have into account a prop-
erty as mandatory.

R3 Subclasses and subproperties: every class and prop-
erty can be specialised into a subclass or a sub-
property (cf. difference D3). An integration-enabling
mapping generation technique must deal with these
specialisations.

R4 Multiple types, domains and ranges: instances can
be of multiple types (cf. difference D4). It is also
possible that the properties are multi-domain and/or
-range, which is related to the global definition of
the properties (cf. differences D5).

VI. CONCLUSIONS

In the bibliography, there are several techniques to automat-
ically generate ontology mappings, which relieves users from
the burden of specifying hand-crafted mappings and helps
reduce integration costs. However, these resulting mappings
are not suitable to perform data translation since they can
lead to incoherent data. Mappings that are suitable to perform
integration tasks are known as integration-enabling mappings.

The database community has devised several techniques to
automatically generate integration-enabling mappings, which,
as far as we know, have not been studied yet in the semantic

web context. Furthermore, database techniques to generate
integration-enabling mappings are not directly applicable to
the semantic web context due to the inherent differences
between database models and ontologies.

In this paper, we argue that more research on the gen-
eration of integration-enabling mappings is required in the
semantic web context. We analise a number of differences
between nested relational schemata and semantic web ontolo-
gies. Finally, we present a number of requirements to generate
integration-enabling mappings.

REFERENCES

[1] B. Alexe, L. Chiticariu, R. J. Miller, D. Pepper, and W. C. Tan. Muse:
a system for understanding and designing mappings. In SIGMOD
Conference, pages 1281–1284, 2008.

[2] B. Alexe, W. C. Tan, and Y. Velegrakis. STBenchmark: towards a
benchmark for mapping systems. PVLDB, 1(1):230–244, 2008.

[3] G. Antoniou and F. van Harmelen. A Semantic Web Primer, 2nd Edition.
The MIT Press, 2008.

[4] P. A. Bernstein and L. M. Haas. Information integration in the enterprise.
Commun. ACM, 51(9):72–79, 2008.

[5] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuck-
enschmidt. Contextualizing ontologies. J. Web Sem., 1(4):325–343,
2004.

[6] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic
architecture for storing and querying RDF and RDF Schema. In
International Semantic Web Conference, pages 54–68, 2002.

[7] G. Cabri, F. Guerra, M. Vincini, S. Bergamaschi, L. Leonardi, and
F. Zambonelli. Momis: Exploiting agents to support information
integration. Int. J. Cooperative Inf. Syst., 11(3):293–314, 2002.

[8] N. Choi, I.-Y. Song, and H. Han. A survey on ontology mapping.
SIGMOD Record, 35(3):34–41, 2006.

[9] D. Dou, D. V. McDermott, and P. Qi. Ontology translation on the
Semantic Web. J. Data Semantics, 2:35–57, 2005.

[10] J. Euzenat. An API for ontology alignment. In International Semantic
Web Conference, pages 698–712, 2004.

[11] J. Euzenat, A. Polleres, and F. Scharffe. Processing ontology alignments
with SPARQL. In CISIS, pages 913–917, 2008.

[12] J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag, 2007.
[13] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange:

semantics and query answering. Theor. Comput. Sci., 336(1):89–124,
2005.

[14] A. Fuxman, M. A. Hernández, C. T. H. Ho, R. J. Miller, L. Popa, and
P. Papotti. Nested mappings: Schema mapping reloaded. In VLDB,
pages 67–78, 2006.

[15] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth. Clio grows
up: from research prototype to industrial tool. In SIGMOD Conference,
pages 805–810, 2005.

[16] G. Karvounarakis, A. Magkanaraki, M. Scholl, D. Plexousakis, S. Alex-
aki, V. Christophides, and K. Tolle. Querying the Semantic Web with
RQL. Computer Networks, 42(5):617–640, 2003.

[17] M. Lenzerini. Data integration: A theoretical perspective. In PODS,
pages 233–246, 2002.

[18] A. Maedche, B. Motik, and L. Stojanovic. Managing multiple and
distributed ontologies on the Semantic Web. VLDB J., 12(4):286–302,
2003.

[19] A. Maedche, B. Motik, R. Volz, and N. Silva. Mafra: A mapping
framework for distributed ontologies. In EKAW, pages 235–250, 2002.

[20] M. Mao, Y. Peng, and M. Spring. An adaptive ontology mapping
approach with neural network based constraint satisfaction. J. Web Sem.,
2010.

[21] G. Mecca, P. Papotti, and S. Raunich. Core schema mappings. In
SIGMOD Conference, pages 655–668, 2009.

[22] E. Mena, A. Illarramendi, V. Kashyap, and A. P. Sheth. Observer: An
approach for query processing in global information systems based on
interoperation across pre-existing ontologies. Distributed and Parallel
Databases, 8(2):223–271, 2000.

[23] R. J. Miller, L. M. Haas, and M. A. Hernández. Schema mapping as
query discovery. In VLDB, pages 77–88, 2000.

[24] B. Motik, I. Horrocks, and U. Sattler. Bridging the gap between OWL
and relational databases. J. Web Sem., 7(2):74–89, 2009.

[25] N. F. Noy. Semantic integration: A survey of ontology-based approaches.
SIGMOD Record, 33(4):65–70, 2004.

[26] N. F. Noy and M. C. A. Klein. Ontology evolution: Not the same as
schema evolution. Knowl. Inf. Syst., 6(4):428–440, 2004.

[27] M. J. O’Connor, H. Knublauch, B. N. Grosof, S. W. Tu, W. E. Grosso,
M. Dean, and M. A. Musen. Supporting rule system interoperability
on the Semantic Web with SWRL. In International Semantic Web
Conference, pages 974–986, 2005.

[28] C. R. Osuna, D. Ruiz, R. Corchuelo, and J. L. Arjona. SPARQL Query
Splitter: query translation between different contexts. In JISBD, pages
320–323, 2009.

[29] F. S. Parreiras, S. Staab, A. Winter, and S. Schenk. Model driven
specification of ontology translations. In ER, pages 484–497, 2008.

[30] M. Petropoulos, A. Deutsch, Y. Papakonstantinou, and Y. Katsis. Ex-
porting and interactively querying web service-accessed sources: The
CLIDE system. ACM Trans. Database Syst., 32(4), 2007.

[31] A. Polleres, F. Scharffe, and R. Schindlauer. SPARQL++ for mapping
between RDF vocabularies. In OTM Conferences (1), pages 878–896,
2007.

[32] L. Popa, Y. Velegrakis, R. J. Miller, R. Fagin, and M. A. Hernández.
Translating web data. In VLDB, pages 598–609, 2002.

[33] A. Raffio, D. Braga, S. Ceri, P. Papotti, and M. A. Hernández. Clip: a
tool for mapping hierarchical schemas. In SIGMOD Conference, pages
1271–1274, 2008.

[34] E. Rahm and P. A. Bernstein. A survey of approaches to automatic
schema matching. VLDB J., 10(4):334–350, 2001.

[35] F. Scharffe, J. Euzenat, and D. Fensel. Towards design patterns for
ontology alignment. In SAC, pages 2321–2325, 2008.

[36] L. Serafini and A. Tamilin. Instance migration in heterogeneous ontology
environments. In ISWC/ASWC, pages 452–465, 2007.

[37] N. Shadbolt, T. Berners-Lee, and W. Hall. The Semantic Web revisited.
IEEE Intelligent Systems, 21(3):96–101, 2006.

[38] B. ten Cate, L. Chiticariu, P. G. Kolaitis, and W. C. Tan. Laconic schema
mappings: Computing the core with sql queries. PVLDB, 2(1):1006–
1017, 2009.

[39] H. J. ter Horst. Completeness, decidability and complexity of entail-
ment for RDF Schema and a semantic extension involving the OWL
vocabulary. J. Web Sem., 3(2-3):79–115, 2005.

[40] S. Thakkar, J. L. Ambite, and C. A. Knoblock. Composing, optimiz-
ing, and executing plans for bioinformatics web services. VLDB J.,
14(3):330–353, 2005.

[41] M. Uschold and M. Grüninger. Ontologies and semantics for seamless
connectivity. SIGMOD Record, 33(4):58–64, 2004.

[42] C. Yu and L. Popa. Constraint-based XML query rewriting for data
integration. In SIGMOD Conference, pages 371–382, 2004.

[43] C. Yu and L. Popa. Semantic adaptation of schema mappings when
schemas evolve. In VLDB, pages 1006–1017, 2005.

