
A new approach for storing RDF triples based on
ontology modularization

Meisam Booshehri 1, Kamran Zamanifar 2and Shahdad Shariatmadari 3

1,2 Department of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
3 Department of Computer Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran.

Abstract - Managing RDF data in an effective manner is
one of significant factors in realizing semantic web vision.
Currently, there are two general approaches for storing RDF
data which are column-oriented and row-oriented and each
one has advantages and disadvantages. These two approaches
are used in relational DBMSs. After reviewing different
approaches and methods for storing RDF triples, we put
forward a suitable bridging idea of ontology modularization
that makes RDF data management systems outperform. The
proposed approach will divide an ontology into several
modules in order to reduce the size of information sets that we
are working with in a specific moment at run time. We
propose two new storing methods (which are table per
ontology module method and vertically partitioned module
method). We will analyze the effects of applying these methods
on standard RDF repositories and figure out some directions
that should be considered in designing the RDF repositories.

Keywords- RDF repository, Ontology Modularization, RDF
Triples, Column-oriented Approach, Row-oriented Approach.

1. Introduction

The content of annotation consists of some rich semantic
information. These annotations are consumed both by human
agents and software agents [1, 2, and 3]. Tim Burners Lee, the
inventor of web, has presented a data model called “RDF
Model” used for recourse annotation [1, 2, and 3]. This model
covers three concepts including: resources, properties and
statements. A resource is a thing you talk about it (can
reference it).
1He is a Master Student in department of Computer Engineering, Najaf Abad Branch, Islamic Azad

University, Najaf Abad, Iran. (email: m_booshehri@sco.iaun.ac.ir)

2He is an assistant professor in department of computer engineering, Najafabaad branch, Islamic Azad
University, Najafabad, Iran. (email: Zamanifar@eng.ui.ac.ir)

3He is faculty member in department of computer engineering, shiraz branch, Islamic Azad University,
Shiraz Iran. Also, he is PhD candidate in department of computer science and information technology,
University Putra Malaysia. (email: shariatmadari@iaushiraz.ac.ir)

Every resource has a URI. RDF definitions are itself
Resources [1, 2, and 3]. Properties, defines relationship to
other resources or atomic values. Statements consist of
resources, properties and values [3, 4]. Values can be
resources or atomic XML data [3, 4].Using RDF Model is a
common method for resource annotation. Using relational
databases is one of common techniques for storing
annotations. To date two types of DBMSs (row- oriented and
column-oriented) have been constructed [10, 11, 12] for this
purpose. And each type uses various approaches to form data
tables.

In this paper, we propose two new storing methods based on
the idea of ontology modularization. Ontology modularization
[18] is used in ontology engineering as a way to structure
ontologies, meaning that the construction of a large ontology
should be based on the combination of self-contained,
independent and reusable knowledge components.
In this paper we propose a new approach for storing RDF
triples in relational databases based on ontology
modularization.

The remainder of paper is organized as follows. In section 2
we talk about related work in which we review the most
important existing storage methods. In section 3 we propose
our new storage methods. In section 4 we discuss the new
methods and compare them with corresponding methods. And
in section 5 we conclude and talk about future work.

2. Related Work

It is important to select the best solution for storing and
retrieving RDF information. [13] classifies state-of-the-art
RDF storage and indexing schemes in two subcategories. First
subcategory includes relational schemes that use RDBMSs for
storing RDF data and the second subcategory includes native
schemes that build RDF-specific stores and indexes from
scratch. Although native schemes perform well because of
their suitable design, relational schemes are preferred to use as
a solution for RDF data management and this is because of the
maturity, generality and scalability of relational databases
[13]. In this context we must put forward a question. “How the
table design should be for storing RDF triples?” By now some

mailto:m_booshehri@sco.iaun.ac.ir)
mailto:Zamanifar@eng.ui.ac.ir)
mailto:shariatmadari@iaushiraz.ac.ir)

standard storage methods for row-oriented database systems
has been proposed including Horizontal Table [5], Vertical
Table [7, 10], Horizontal Class [8], Table per Property [8] and
Hybrid approach [8]. Also with the birth of column-oriented
database systems some other techniques have been proposed
including vertically partitioned method [14] and sextuple
indexing technique [13 , 15] etc. In the following sections we
survey these methods.

2.1. Row-oriented database systems storage
methods

Here we introduce storage methods which have been used in
row-oriented RDBMSs and discuss the benefits and
drawbacks of these methods.

2.1.1. Horizontal Table method

This storing method uses a universal table in the database for
all existing ontologies [5]. Fields of this table includes
instances’ IDs, instance types and values of instance
properties. You can see a representation [8] for horizontal
table in Fig. 1. The domain of all columns in the table except
the column “type” could be both URIs and literals.

Property_n…Property_2Property_1TypeInstance’s
ID

Value_c…Value_bValue_aClass_A…#1
Value_f…Value_eValue_dClass_B..#2

 The advantages of this method come below:

1- Subject and predicate are stored once [5, 8].

2- Short query run time [5, 8].

3- Its structure is simple because every instance has one
entry in the table [5, 8].

On the other hand we can mention five cases as disadvantages
of this method which come below:

1- Abundance of columns: considering the size of
knowledge-base and number of properties, we can say that
the relational database system would be limited with
number of columns [5, 8].

2- Limitation of property values (lack of support in the
case of multi-valued properties): the said structure forces
every property to have only one value; however, a large
number of properties are naturally multi-valued [8].

3- Sparseness: it is obvious that every property has a
corresponding field in the table despite the fact that many

records might have no values for filling fields. Therefore
many fields in the database may have null values [5, 8].

4- Difficulty of maintenance: whenever a new ontology is
being incorporated into a system or a system changes an
existing ontology, the said table needs to be reorganized. If
the table is huge, such changes could be so expensive [5,
8].

5- Decrease in performance: this approach results in a
large-size database. Also load time in this approach is
longer in comparison to other ones [6, 8].

Another type of this approach is using a table for each
ontology. It is obvious that this solution decreases the number
of columns and cost of changes in every table, however, in the
case of this type of horizontal table still limitations of
properties exists and tables in this method have larger number
of columns in comparison to other methods and there exists
sparseness problem yet.

2.1.2. Vertical Table Method

In this method, we have a universal table [7]. The table has
only three fields including subject, predicate and object. In
predicate field we can store both property names and the string
“type” which indicates that the current record defines the type
of a resource. In subject field we can store the URI of
resources and in object field we can store class names and
values of properties. You can see a representation [8] for
vertical table in Figure 2. Some benefits of this method are its
simple structure, ease of maintenance and fixed number of
columns. This method is the most straightforward relational
method [13].

ObjectSubjectPredicate
Class_A…#1Type
Value_a…#1Property_1
Value_b…#1Property_2

………

It is very general that is every type of data could be stored in
this format [13]. Also some disadvantages of this method are
as follows:

1- High query run time [7, 8].

2- As mentioned in [8] “This design means that any query
has to search the whole database and queries that involve
joins will be especially expensive. In particular, queries
about the members of a class will be particularly difficult,
because there is no explicit treatment of the class
hierarchy”.

Figure 1. A representation for horizontal table

Figure 2. A representation for vertical table

3-we have to save values in string format.

2.1.3. Horizontal class method

This method is similar to horizontal table method but with
smaller tables. In this method we have a separable table for
every class in ontology. A representation [8] for horizontal
class table has been shown in Figure 3.

Property_n…Property_2Property_1ID
Value_c…Value_bValue_a…#1

The advantages of this method are as follows:

1- Less sparseness in comparison to horizontal table
method [8].

2- the most important benefit of this method is that the
query on the property of an instance or a set of instances is
done effectively [8].

3- Lower query run time in comparison to horizontal table
method [8].

One of the disadvantages of this method is that the properties
which have no explicit domain should be repeated in all the
tables [8].

2.1.4. Table per property method

This method was first used in row-oriented RDBMSs but it is
more suitable for column-oriented RDBMSs. In this method
every property has a corresponding table [5]. A representation
of such tables has been shown in Figure 5. Instances of all
classes are saved in a table named “Type” in which every
record relates an instance to a class.

ObjectSubject
Class_A…#1
Class_B…#1

Figure 4. A representation for the
table “Type”

ObjectSubject
Value_a…#1

Value_d…#2

Figure 5. A representation for the
table of a property

A representation[8] for the table “Type” has been shown in
Figure 4. Some advantages of this method are short time for
simple queries and decrease in size of tables [8] .Some
disadvantages of this method includes increase in number of
tables and high run time for complicated queries due to lots of
join operations that must be done [8].

2.1.5 Hybrid method

This method combines different storing methods therefore in
comparison to other methods performance increases. Also
there is less limitations and totally less drawbacks in
comparison to the state in which we use every storing method
independently [9]. This method has been used in many data
repositories [8].

2.2. Column-oriented database systems storage
methods

Here we talk about methods which are naturally suitable for
and have been used in column-oriented RDBMSs. We discuss
the advantages and disadvantages of these methods as well.

2.2.1. Vertically partitioned method

Property tables method did not fit well with the semi-
structured nature of RDF data and SPARQL queries with
unbound variables in the property positions. Thus to solve
such limitations Abadi et. al. [22] proposed the vertically
partitioned method. This method is the same table per property
method with the difference that Abadi et. al. have integrated
this method with a column-oriented RDBMS and some side
techniques such as data compression have been used to
improve the performance of this technique. Some advantages
of this method are:

1- Support for multi-valued attributes [22].

2- Support for heterogeneous records [22].

3- Only those properties accessed by a query need to be
read [22].

4- No clustering algorithms are needed [22].

Also one of the disadvantages of this method is that “if the
property in a query is bound to a variable, then the rows
returned from each property table must be union-ed. In the
case where the property is not part of the result, then the union
operator must also perform a duplicate elimination. Finally,
since the data is not clustered on objects, a query which joins
on objects, will not allow the use of a fast (linear) merge join”
[15, 21]. However Abadi et. al. in [22] have mentioned that
“although the vertically partitioned approach require more
joins relative to the property table approach, properties are
joined using simple, fast (linear) merge joins”.

2.2.2. Sextuple indexing technique

The idea of sextuple indexing has been proposed in [15] for
the first time. This technique points to the fact that a RDF
triple is a three-dimensional entity and could be indexed in six
ways. Thus using this approach allows fast merge-joins for
any pair of two triple patterns [13, 15]. In spite of this fact

Figure 3. A representation for horizontal class
table

neither Hexastore nor RDF-3X (as native schemes for storing
RDF data) doesn’t point to the ways that realize sextuple
indexing technique in relational database systems[15, 23].
Therefore Xin Wang et al. in [13] propose a novel storage
technique for RDF data in which sextuple indexing is applied
to column-oriented RDBMSs. As mentioned in [13] “The
experimental results shows that this method outperforms the
row-oriented RDBMS approach by upto an order of
magnitude, and is competitive to the best native RDF store
RDF-3X”. Also in our point of view applying sextuple
indexing technique could be effective as we mention in the
next sections.

3. Proposed approach

In our proposed method we try to reduce the size of
information domain which we are working with in a specific
moment at run time.

3.1. Ontology Modularization

Nowadays big size of existing ontologies is a crucial problem.
Maintaining these ontologies which might have more than one
hundred thousand concepts is difficult [16]. Also reusing the
whole ontology is time-consuming and costly [17]. A solution
to solve this problem is to divide ontology into some parts
with a special subject. These parts are ontology modules and
this process is called ontology modularization. There are
various definitions for an ontology module. [18] defines
ontology module as follows: “An ontology module is a
reusable component of a larger or more complex ontology,
which is self-contained but bears a definite association to
other ontology modules, including the original ontology”.
Also as mentioned in [17] we say a module is self-contained
while special reasoning tasks such as inclusion relation or
query answering within a module are possible with no need to
access other modules.

By now different approaches for ontology modularization
have been proposed[24,25,26,27,28,29,30,31], including
logic-based approaches[28,31] and Graph theory-based
approaches[28] etc. We think that all these approaches could
be useful in different places. But in this paper we don’t use a
specific approach or a special partitioning algorithm for the
ontology modularization step in our proposed RDF storage
approach.

The proposed approach in this paper will divide an ontology
into several modules in order to reduce the size of information
sets that we are working with in a specific moment at run
time. So here we consider a two-column table named
“Module_Class_Table” in which every record relates a class
to the ontology module that the class belongs to. A
representation of such table has been showed in the figure 6.

Module_IDClass_Name

…#10Class_A

…#2Class_B

In spite of previous storing methods which work on the whole
ontology, our approach emphasizes on ontology modules as
the base of designing database tables. Based on this new
approach, we suggest two new methods w.r.t. the viewpoint of
both row-oriented RDBMSs and column-oriented RDBMSs.

Before explaining these two methods we define two types of
properties: intra-module properties and inter-module
properties. Intra-module properties are those which are only
related to concepts among an ontology module. And inter-
module properties are those which connect couples of
concepts from different modules. It is obvious that we may
have both of these two types of properties within an ontology.
Also with respect to this classification we can categorize
queries into two subcategories which are intra-module queries
and inter-module queries. An intra-module query work only
on the information and concepts within a specific module
(tables extracted from a specific ontology module), however,
an inter-module query may work on the information and
concepts within a specific ontology (especially among
modules). Of course an inter-module query could be a
combination of some intra-module queries and some inter-
module queries.

Considering the classifications mentioned above, when a
query is applied to a database system based on our approach,
at first it must be recognized if the query is inter-module or
intra-module. Such decision can be made by a simple query on
the Module_Class_Table. Therefore for supporting our new
approach, we think that a preprocessing unit should be
embedded in RDF data repositories such as Jena and SW-store
in which queries are analyzed to determine if a query is inter-
module or intra-module.

3.2. Proposed method for row-oriented RDBMSs
(Table per ontology method)

In this method every ontology module is stored into a
separable table. Also in this method we use a universal
vertical table which contains RDF triples that describe the
inter-relations between concepts of ontology modules.

3.3. Proposed method for column-oriented
RDBMSs (vertically partitioned module method)

 Here we propose a new method named “vertically partitioned
module method”. In this method each intra-module property
has a corresponding two-column property table. However,

Figure 6. A representation for Module_Class_Table

inter-module properties are mentioned in a universal vertical
table which contains RDF triples that describe the inter-
relations between concepts of ontology modules. Also intra-
module property tables could be indexed by sextuple indexing
technique and combined with other side techniques such as
data compression techniques.

4. Discussion

As mentioned in [13] the most straightforward relational
method for storing RDF triples is vertical table method. This
method is very general that is every existing data type could
be stored in this format [13]. The basic problem of this method
is the problem of expensive self-joins over this vertical triples
table which is possibly large [13]. These self-joins is because
of SPARQL queries with multiple triple patterns [13]. Here
we quit this method because of its basic problem and won’t
compare it with other methods.

Here we introduce a useful factor named “Working
Information Set” or WIS. WIS is the smallest subset of
information in a domain to which access probability is more
than other subsets of information in the same domain in
different time intervals. We use this relative concept to
compare the performance of our methods with the others.

Another concept that we need it in this discussion is data
fragmentation which is a topic discussed in distributed
databases. It is classified into three subcategories: horizontal
fragmentation, vertical fragmentation and hybrid
fragmentation [19, 20].

Our approach emphasizes on ontology modules as the
database design basis. It is obvious that the number of
extracted tables from an ontology module is less than the
number of extracted tables from the whole ontology.
Moreover, existing data in the tables of a module is less than
existing data in the corresponding tables of the whole
ontology. It means that focusing on modules instead of the
whole ontology, results in decrease in the size of WIS. And
this subject causes lower load time and more performance. In
our point of view this is one of the benefits that ontology
modularization brings to column-oriented databases as well as
row-oriented databases.

If we consider horizontal table as a reference table, horizontal
class tables and property tables are produced by hybrid
fragmentation of horizontal table. Also using ontology
modules (as database design basis) instead of considering
whole ontology is similar to data fragmentation techniques
which we call it logical data fragmentation.

In this paper, we consider module extraction as a new type of
data fragmentation in the context of RDF database systems.
The more effective algorithms for module extraction we use

the more suitable logical data fragmentation we have. As a
result we can say that ontology module tables are also
produced by hybrid fragmentation of horizontal table. Also
vertically partitioned module tables are produced by hybrid
fragmentation of each ontology module table.

It seems that separating ontologies into modules is a justifiable
data fragmentation. Increasing the degree of concurrency and
system throughput are two important benefits of data
fragmentation in distributed databases [19, 20]. Therefore
module extraction and use of ontology module (as database
design basis) would make us closer to these two benefits.

On the other hand there are two important disadvantages for
data fragmentation as follows:

1-If we have some requirements which are in conflict with
data fragmentation, the performance would decrease. For
instance it is costly to retrieve several different parts that
must be joined or unioned [20].

2-.During data fragmentation some attributes that is related
to an association relationship may be separated into several
parts and located in distinct sites. This will cause the
problem of difficulty in semantic control of data and
difficulty in integrity control as well [20].

According to the self-contained feature of an ontology
module, we can say that the problems mentioned above are
not serious about ontology modules.

Based on the above discussions, it is better to compare
horizontal table method, horizontal class method and table
per ontology module method with each other because these
three methods are naturally suitable for row-oriented
RDBMSs. On the other hand it is better to compare table per
property method, vertically partitioned method and vertically
partitioned module method with each other since these
methods are naturally suitable for column-oriented RDBMSs.

4.1. Discussion about Table per ontology module
method

Generally this method is a middle method between horizontal
table method and horizontal class method. If the ontology has
only one module, this method is equivalent to horizontal table
method. Also if we consider every ontology class as a module,
this storing method is equivalent to horizontal class method.
But in our point of view, because of strong associative
relationships that some classes might have with each other, it
seems that mapping a class to a module is not suitable.

We consider three general states for ontologies existing in a
domain and then we compare it with previous methods.
Suppose we have extracted ‘n’ ontologies.

State 1- None of ‘n’ ontologies has the capability of
modularization. In this state there are n tables for storing RDF
triples and the new method is exactly similar to the type of
horizontal approach in which every ontology is stored in a
separate table. So the advantages and disadvantages of this
method would be the same as horizontal table method.

State 2- the number of extracted modules from existing
ontologies is abundant and the number of classes of the
modules is few. In this state the advantages and disadvantages
of the new method are very similar to the advantages and
disadvantages of horizontal class method.

State 3 – The existing ontologies have the capability of being
modularized and also the number of extracted modules is
average. It seems that this state is the best state for this
method. In our point of view such state could show itself in
multifaceted ontologies (ontologies that cover different
domains of information). Some features of this method are as
follows:

 This method has less sparseness in comparison to
horizontal table method; however, its sparseness is
more than horizontal class method.
 The number of table columns in this method is fewer
than the number of table columns in horizontal table
method and more than the number of table columns
in horizontal class method.
 Comparing to horizontal table method, this method
has fewer number of tables but in comparison to
horizontal class method it has larger number of
tables.
 Maintenance process in this method is easier than
horizontal table method. Surely it comes from
benefits of modules in software engineering.
 Less load time in comparison to horizontal table
method and longer load time comparing with
horizontal class method.

Performance of this method is related to the ontologies of the
application which we want to design a database for it. If we
have large ontologies that have mostly dependant components,
we can say that this storing method has a better performance
in comparison to other previous storing methods. But if we
have ontologies with coherent components and there is no
capability for transforming them into many modules, we can
say that this storing method won’t have a good performance.

Generally this new method could be useful with respect to
features mentioned above. Composing this new method with
other storing methods seems to be useful too.

4.2. Discussion about Vertically partitioned
module method

Some row-oriented RDBMSs use table per property method
combining with other methods. Actually vertically partitioned
method is the improved version of table per property method.
Also if we compare vertically partitioned method with
vertically partitioned module method, we can see that
superiority of vertically partitioned module method comes
from its smaller WIS. This fact leads to the lower size of
tables, lower load time and possibly higher performance.
Generally we think that vertically partitioned module method
improves the vertically partitioned method from this aspect
.Of course it is obvious that separating ontologies into
modules in a defective manner decreases performance.

5. Conclusion and future work

In this paper we proposed a new approach for storing RDF
triples in relational databases based on ontology
modularization and we presented two new storing methods
which are table per ontology module method and vertically
partitioned module method. The table per ontology module
method seems to be naturally suitable for row-oriented
RDBMSs. In this study, we show that in some cases this
method is an appropriate alternative to horizontal table method
and horizontal class method.

The second method is vertically partitioned module method.
This method can be integrated with some techniques such as
sextuple indexing method [15] to get a better performance.
This method is naturally suitable for column-oriented
RDBMSs.

Our approach is based on ontology modularization in which
we divide an ontology into several modules in order to reduce
the size of WIS.WIS is the smallest subset of information in a
domain to which access probability is more than other subsets
of information in the same domain in different time intervals.
In this paper we have compared the table per ontology module
method with the existing methods which are naturally suitable
for row-oriented RDBMSs. Also we have compared vertically
partitioned module method with the existing methods which
are naturally suitable for column-oriented RDBMSs. Totally
our preliminary study shows that our new methods results in
smaller WIS in comparison to other previous corresponding
methods. It is obvious that Smaller WIS leads to the lower
load time and totally higher performance.

In our point of view ontology modularization is a type of data
fragmentation in the context of RDF database systems.
Therefore our approach results in increasing degree of
concurrency and system throughput in distributed
environments. Also according to the self-contained feature of
an ontology module, we can say that the problems [20] of data
fragmentation are not serious about ontology modules and
totally our storing approach.

As future work we are going to implement our methods which
have been explained in this paper. This is related to designing
a new model for RDF data repositories which enables them to
recognize modules in a specified ontology. It seems that it is
better to consider a new unit in a data repository which
pursues module extraction smartly and automatically. For
designing this model the structure of data repositories must be
examined precisely.

 Also a preprocessing unit for analyzing queries should be
embedded into data repositories to determine if a query is
inter-module or intra-module. Therefore we must design this
unit.

Moreover, we are planning to select and extend a suitable
partitioning algorithm among existing ones [28] that
modularize ontologies in an efficient way.

6. References

[1] The Semantic Web, Scientific American, May 2001, Tim
Berners-Lee, James Hendler and Ora Lassila
[2] Tim Berners-Lee, Eric Miller, Jim Hendler, “Integrating
applications on the Semantic Web”, Journal IEEE Japan,
122(10):676-680, 2002.
[3] “Practical RDF”. (2003) RDF/XML focused but well written and
highly recommended http://www.oreilly.com/catalog/pracrdf/
[4] Michael C. Daconta et al., “The Semantic Web: A Guide to the
Future of XML, Web Services and Knowledge Management”
Complementary alternative
http://www.amazon.co.uk/exec/obidos/ASIN/0471432571/
 [5] R. Agrawal, A. Somani, and Y. Xu. Storage and Querying of E-
Commerce Data. In Proc. of VLDB, 2001.
[6] D. Florescu and D. Kossman. A performance evaluation of
alternative mapping schemes for storing XML data in a relational
database. Technical report, INRIA, France, May 1999.
[7] D. Beckett and J. Grant, Mapping Semantic Web Data with
RDBMSes. 2001,
http://www.w3.org/2001/sw/Europe/reports/scalable_rdbms_mappin
g_report/
[8] Z. Pan and J. Heflin, “DLDB: Extending Relational Databases to
Support Semantic Web Queries”. Technical Report: LU-CSE-04-
2006
[9] S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis
& K.Tolle, “On Storing Voluminous RDF Description: The case of
Web Portal Catalogs”, In Proc. of the 4th International Workshop on
the Web and Databases (WebDB2001) in conjunction with ACM
SIGMOD'01 Conference, 2001.
 [10] Stonebraker et al. . “C-Store: A Column-Oriented DBMS.”
,VLDB, 2005.
[11] Daniel J. Abadi, Samuel Madden, Nabil Hachem, “Column-
stores vs. row-stores: how different are they really?”, In Proc.
SIGMOD Conference, 2008: 967-980
[12] Harizopoulos, Liang, Abadi, Madden . “Performance Tradeoffs
in Read-Optimized Databases”, In proc. VLDB, 2006.
[13] Xin Wang, Shuyi Wang, Pufeng Du and Zhiyong Feng. “Storing
and Indexing RDF Data in a Column-Oriented DBMS”. In proc.
IEEE Conference, 2010.

[14] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach,
“Scalable semantic web data management using vertical
partitioning,” In Proc. VLDB, pp. 411–422, 2007.
[15] C. Weiss, P. Karras, and A. Bernstein, “Hexastore: sextuple
indexing for semantic web data management”, In Proc. VLDB, pp.
1008–1019, 2008.
[16] Schlicht, A, Stuckenschmidt H. . “ A Flexible Partitioning Tool
for Large Ontologies”. In proc. International Conference on Web
Intelligence and Intelligent Agent Technology, IEEE/WIC/ACM ,
2008.
[17]B. Konev, C. Lutz, D. Walther, and F. Wolter, "Logical
Difference and Module Extraction with CEX and MEX", In Proc.
Description Logics, 2008.
[18] Paul Doran, “Ontology reuse via ontology modularization”, In
proc. KnowledgeWeb PhD Symposium, 2006.
[19] A. Silberschatz, et al., “Database System Concepts”, 5th edition,
Mc Graw Hill, 2006.
[20] M. T. Ozsu, et al., “Principles of Distributed Database Systems”,
Prentice Hall, USA, 1999.
[21]Lefteris Sidirourgos, Romulo Goncalves, Martin Kersten, Niels
Nes, Stefan Manegold. “Column Store Support for RDF Data
Management: not all swans are white”. In Proc. VLDB ,2008.
[22] Daniel J. Abadi, Adam Marcus, Samuel Madden, Kate
Hollenbach: “SW-Store: a vertically partitioned DBMS for Semantic
Web data management”. VLDB J. 18(2): 385-406 , 2009.
[23] T. Neumann and G. Weikum, “RDF-3X: a RISC-style engine
for RDF”, In Proc. VLDB, pp. 647–659, 2008.
[24] H. Stuckenschmidt and M.C.A. Klein, "Structure-Based
Partitioning of Large Concept Hierarchies", In Proc. International
Semantic Web Conference, 2004, pp.289-303.
[25] Mathieu d'Aquin, Anne Schlicht, Heiner Stuckenschmidt, Marta
Sabou, “Criteria and Evaluation for Ontology Modularization
Techniques. Modular Ontologies” 2009: 67-89
[26] Jie Bao, Doina Caragea, Vasant Honavar, “Modular Ontologies -
A Formal Investigation of Semantics and Expressivity”, In proc.
Asian Semantic Web Conference, 2006, pp.616-631
[27] Bernardo Cuenca Grau, Bijan Parsia, Evren Sirin, Aditya
Kalyanpur, “Automatic Partitioning of OWL Ontologies Using E-
Connections”, in proc. Description Logics, 2005.
[28] Pathak J, Johnson TM, Chute CG. “A Survey of Modular
Ontology Techniques and their Applications in the Biomedical
Domain. International Journal of Integrated Computer-Aided
Engineering”, Vol. 16(3), 2009; pp. 225-242.
[29] Palmisano, I., Tamma, V., Payne, T. R., Doran, P.. “Task
Oriented Evaluation of Module Extraction Techniques”, In Proc. The
Eighth International Semantic Web Conference (ISWC'09), October
25th-29th 2009.
[30] Julian Seidenberg, Alan Rector. “Web Ontology Segmentation:
Analysis, Classification and Use” In Proc. the 15th international
conference on World Wide Web, 2006, pp. 13-22.
[31] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and
Ulrike Sattler, “Extracting Modules from Ontologies: A Logic-based
Approach”, In Proceedings of OWLED, 2007.

http://www.oreilly.com/catalog/pracrdf/
http://www.amazon.co.uk/exec/obidos/ASIN/0471432571/
http://www.w3.org/2001/sw/Europe/reports/scalable_rdbms_mappin

