
Developing Service-Oriented Applications: a method
engineering based approach

Alfredo Garro, Wilma Russo, and Andrea Tundis

Department of Electronics, Computer and System Sciences (DEIS), University of Calabria, via P. Bucci 41C,
87036 Rende (CS), Italy

{alfredo.garro, wrusso, andrea.tundis}@unical.it

Abstract - The Service-Oriented paradigm, which conceives
software resources as discoverable services available on a
network, is proving an effective approach for providing
business solutions in distributed and heterogeneous
computing environments. However, due to the different and
numerous issues to face, it is witnessing a growing interest in
the use of methodologies suitable for supporting the
development of service-oriented applications. The paper
proposes an approach, centered on the Method Engineering
paradigm, which enables the definition of new methodologies
tailored to address specific issues arising in developing of
service-oriented applications through the exploitation of
fragments of methodologies existing and experimented. In
particular, it is shown how to obtain, through composition of
method fragments, a complete process which covers from
requirements specification to testing of service-oriented
applications. The complete definition of a method fragment
(MF-Web Services Builder) and a related CASE tool are also
presented along with a case study showing their exploitation
for building a real service.

Keywords: Service-Oriented Applications; Web Services;
Method Engineering; Service Component Architecture;
Component-Based Development

1 Introduction
 The service-oriented approach promotes the reuse of
existing assets in the development of new services and
represents an effective interoperability solution in distributed
and heterogeneous environments [6, 20]. In particular, the
availability of wide adopted Web Services standards (WSDL,
SOAP, UDDI, etc.) [20] for the description, communication,
and discovery of services enables the jointly exploitation of
services independently from the specific implementation
technologies. Despite these advantages, the development of a
service-oriented application faces several challenges
concerning: the requirement specification, the application
definition, the discovery, deployment, composition, and
integration of services, and, finally, the application testing. To
address these topics, several software engineering
methodologies and related tools have been proposed in the
service-oriented domain [18], some of these cover the whole
application lifecycle (from requirements to testing) [16, 2],
whereas others address specific aspects [9, 11, 3, 13].

However, existing methodologies often cannot be used “as
they are” because of the specific characteristics of the
application to develop. In these cases, significant efforts are
required which are focused or on customization of existing
methodologies or on definition of new ones without any
fruitful reuse of those existing [18].
 A solution, which makes it possible defining
methodologies that fit specific necessities without losing the
advantages coming from the exploitation of existing and
experimented ones, can be represented by the adoption of the
Method Engineering paradigm [4, 5] which has already
proved its effectiveness in both the object-oriented and agent-
oriented software engineering communities [12]. According to
this paradigm, a methodology is obtained by assembling
pieces of methodologies (method fragments), ex-novo defined
or obtained from those existing and available in a repository
(Method Base) [7].
 In this context, this paper aims to bring the benefits
arising from the Method Engineering paradigm in the service-
oriented domain. In particular, it is shown how a complete
development process, which covers from requirements
specification to application testing, can be obtained by
composing method fragments addressing some specific and
recurrent aspects in the service-oriented domain. The
complete definition of a method fragment (MF-Web Services
Builder) which addresses a specific aspect concerning the
development of Web Services is also provided according to
the IEEE FIPA Specifications [8]. Moreover, a CASE tool
related to MF-Web Services Builder is presented along with a
case study showing its exploitation for building a real service.
 The paper is organized as follows: Section 2 introduces
fundamentals of the Method Engineering paradigm and
exemplifies its exploitation in the development of service-
oriented applications; a method fragment (MF-Web Services
Builder) is completely defined in Section 3, and the related
CASE tool along with a case study showing its exploitation is
shown in Section 4; finally, conclusions are drawn and future
works delineated.

2 Method Engineering and
development of Service-Oriented
applications

 In this Section, an approach centered on the Method
Engineering paradigm which enables, as well as in others

software engineering domains, the exploitation of fragments
of existing and experimented methodologies in defining new
ones, is presented. In particular, Section 2.1 introduces
fundamentals of the Method Engineering (ME) paradigm
whose exploitation in the service-oriented domain is
exemplified in Section 2.2 through a process which is
obtained by composing method fragments and covers from
requirements specification to testing of a service-oriented
application.

2.1 The Method Engineering paradigm

 ME allows for obtaining Software Engineering
Processes (SEPs) by defining and combining method
fragments able to support specific phases of a development
process and/or to address specific issues or application
aspects. Method fragments which can be either defined ex-
novo or obtained by fragmentizing existing methodologies,
are auto-consistent and reusable methodological chunks
stored in a repository, called Method Base, from which they
can be retrieved and assembled during the construction of a
SEP.
 According to the IEEE FIPA Specifications [8], a
method fragment defines a process which receives a set of
input work-products and produces a set of output work-
products by possibly managing intermediate work-products. A
fragment is further characterized by application guidelines
that illustrate how to use the fragment and the related best
practices, a glossary of the exploited terms, composition
guidelines which describe the issues addressed by the
fragment, and dependency relationships which give
information about others possible related fragments. These
meta-data constitute the fragment description which can be
codified and stored in the Method Base for facilitating
fragment retrieval, adaptation and composition [8].
The definition of a SEP according to the Method Engineering
paradigm requires the following main steps (see Figure 1):

1. definition of the characteristics of the SEP and the
activities to be carried out (SEP Lifecycle Definition);

2. selection of the methodological fragments from the
Method Base (if available) on the basis of the activities
defined in step 1 (Method Fragments Selection);

3. definition of new fragments to cover process activities
that are not supported by fragments available in the
Method Base (Method Fragments Definition);

4. adaptation and composition of the (selected and/or ex-
novo created) method fragments to obtain the SEP
(Method Fragments Adaptation and Composition).

With reference to step 4, the fragments can be easily
integrated through a work-product driven approach (input
work-products of a fragment should be derived from output
work-products of other fragments, possibly adapted) [7, 10,
17].

Figure 1. Definition of a SEP according to the ME paradigm

2.2 Exploiting Method Engineering in the
service-oriented domain

 According to the ME paradigm the development of a
specific service-oriented application can be addressed by the
composition of method fragments either retrieved from a
Method Base and possibly adapted or defined ex-novo. In
particular, the following method fragments can be identified:

1. Requirements Specification, which formalizes the
application requirements as output work-product.

2. Application Definition, which, starting from application
requirements, makes available a choreography of an
application.

3. Service Discovery, which discovers, on a given research
domain, the set of services able to cover the roles of a
given choreography of an application.

4. Service Development, which builds and makes available
a service adhering to a specific service contract.

5. Service Composition, which specifies the interactions of
a set of services selected to cover the roles of an
application choreography.

6. Service Integration, which implements the
communication infrastructure among the services
constituting an application.

7. Application Testing, which aims at validating and
evaluating an application.

An example of composition of method fragments for
obtaining a complete process for the development of service-
oriented applications, which covers from requirements
specification to application testing, is showed in Figure 2.

Figure 2. An example of method fragments composition

The process adheres to a typical iterative-incremental lifecycle
and the involved fragments are integrated through a work-
product driven approach (input and output work-products are
reported in Table 1)

TABLE I. Method fragments and related work-products

Method Fragment Input Work-
Products

Output Work-Products

Requirements
Specification

- Application
Description

- Application
Requirements

Application
Definition

- Application
Requirements

- Services Choreography

Services Discovery - Services
Choreography

- Research Domain

- Role-Service Mapping

Service
Development

- Service Structure
- Service

Specification

- Service Contract
- Service

Implementation
Services
Composition

- Services
Choreography

- Role-Service
Mapping

- Services Orchestration

Services
Integration

- Services
Orchestration

- Communication
Infrastructure

Application Testing - Services
Orchestration

- Communication
Infrastructure

- Application Testing
Results

It is worth noting that: (i) starting from a process definition,
the availability of method fragments for the service-oriented

domain would allow covering the different process phases
and/or addressing the different development issues in
different and specific ways depending on the chosen
fragments; as an example, the availability of different
fragments for Service Discovery would allow to address this
aspect with different approaches and techniques [11]; (ii)
specific SEPs can be defined by composing the method
fragments selected on the basis of the desired software
development lifecycle; as an example, if the services that
constitute the application are all available and their
interactions have been already defined, a light process which
covers only Service Integration and Testing could be defined
and related fragments selected and composed.

3 Component-Based Development of
Web Services

 In the development of a service-oriented application, a
central issue as that concerning the implementation of new
services can be addressed through a specific method fragment
(see Section 2). In the following, the complete definition of a
method fragment for (Web)Services Development (MF-Web
Services Builder) is provided. This fragment, once available
in a Method Base, could be exploited, as is or after suitable
adaptation, in the composition of specific processes that
require development of services, processes that can be both
complete as that exemplified in Section 2.2 or cover only
some phases of the application lifecycle. According to the
IEEE FIPA Specifications [8], the description of the process
defined by the fragment as well as that of other meta-data
concerning the features and the use of the fragment are
described in Sections 3.1 and 3.2 respectively.

3.1 Process definition

 MF-Web Services Builder conceives and structures a
Web Service as a set of interconnected and jointly working
components built using the same or different technologies and
executed on the same machine or across a network [14].
 The concrete model exploited by MF-Web Services
Builder for defining Web Services following this component-
based approach adheres to SCA Specifications [14], and, in
particular to the SCA Assembly Model [14] which models a
service-oriented application as a SCA domain consisting of a
set of Services called composite which are in turn structured
in components. Each component offers a set of business
functions (or services) to other components and can have
settable properties which influence the execution of business
functions; moreover, dependencies of each component on
services provided by other components are called references.
The configuration of a component requires both to set values
for its properties and to wire its references to services
provided by other components. In a composite a component is
responsible to make available and exploitable the services
provided by the composite (the focus component). A
composite has settable properties which are related to those of
its components and references to other composites. A service

contract, which can be codified by a WSDL file, gathers the
services provided by a composite.

Figure 3. The process provided by MF-Web Services Builder

The adoption of the above described SCA Assembly Model
allows defining a complete process for the development of a
Web Service conceived as a SCA composite. In Figure 3 the
process, which constitutes the core element of the MF-Web
Services Builder method fragment, is showed. In particular,
the process starts with the Service Definition activity which
deals with the analysis of the input work-products (Service
Specification and Service Structure) described in Section 3.2.
The result of this activity is a clear definition of the Service
requirements which is also captured in a refined version of the
input work-products. Then, a component-based structure of
the composite implementing the Service is obtained and the
capabilities and role of each component are specified
(Component Definition activity). For each component its
properties which capture the component state are introduced
in the Property Definition activity. One of the components is
selected as an interface with the environment (Focus
Component Definition activity). After selecting the Focus
Component, the URI and the contract of the Service are
defined. At this point of the process, the references (and
wires) among the Service components (Component
Relationship Definition activity) and the interfaces and classes
which constitute each component are defined. The concrete
implementation of Service components if not available should
be also provided. During these activities, an Internal Service
Description which contains a description of the components,
their relationships and properties, is constantly updated (see
the support work-products in Section 3.2).
 The described process can be iterated until the service
requirements are met. Finally, the Service Contract is
generated along with the Service Implementation (Code
Generation activity) which can be refined by adding functions

and methods on the basis of both the Service business logic
and the chosen implementation (see the output work-products
in Section 3.2).

3.2 Meta-data

 The IEEE FIPA meta-data related to MF-Web Services
Builder are the following:

• Fragment Prerequisites: the specifications of the Service
to be developed must be available and formalized in the
input work-products (Service Specification and Service
Structure).

• Input work-products: a text document (Service
Specification) with an informal description of the service
to be developed and an UML class diagram (Service
Structure) representing a high-level view of the service
structure should be provided.

• Output work-products: the fragment produces an
implementation of the Service (Service Implementation)
and a WSDL file (Service Contract) that describes the
offered services and how to structure messages and data
for their exploitation.

• Support work-products: a SCDL (Service Component
Description Language) file (Internal Service
Description), which describes the Service components,
their relationships and properties, is constantly updates
during the development process.

• Application Guidelines: a set of best practices, examples
and case studies which show when and how to
effectively exploit MF-Web Services Builder, are
provided with the fragment documentation.

• Glossary of terms: to avoid misunderstanding and an
uncorrected use of the fragment, a glossary which
reports the definition of the main terms used for the
fragment definition is delivered. In particular, a
definition of the terms related to the SCA Assembly
Model [14] is provided.

• Composition Guidelines: useful information for guiding
the work-product based composition of MF-Web
Services Builder with other fragments is provided (see
Section 2).

• Dependency Relationships: the input work-products for
MF-Web Services Builder should be provided by those
method fragments addressing the identification of Web
Services (e.g. the Application Definition method
described in Section 2.2); the output work-products of
MF-Web Services Builder can represent input for others
method fragments as the Services Composition fragment
(see Section 2.2).

4 MF-Web Services Builder CASE Tool
 To allow a concrete exploitation of the methodological
approach to Web Services development provided by MF-Web

Services Builder, a CASE tool (MF-Web Services Builder
CASE Tool) has been implemented; its architecture and
provided functionalities are presented in Section 4.1, whereas
a case study showing its effectiveness for building a real
service is reported in Section 4.2. The fragment
documentation along with the source code of the CASE Tool
is available on the OpenKnowTech Project web site [15].

4.1 An overview of the CASE tool

 MF-Web Services Builder CASE Tool, which supports
the execution of the process defined by MF-Web Services
Builder (see Figure 3), has been designed and implemented as
a plugin for the Eclipse platform and according to the SCA
specifications by exploiting, in particular, the SCA Composite
Designer which is part of the Eclipse STP/SCA project [19]
and allows a Model-Driven and component-based service
development. The CASE Tool is able to:

• support the execution of the process activities through a
wizard-based visual interface;

• create and constantly update the SCDL XML file
containing the description of the service components,
their relationships and properties;

• automatically generate the Service Implementation
(currently in Java) and the Service Contract as a WSDL
file;

• deploy the developed service in a SCA runtime
environment for making it available at a specified URI.

An overview of the MF-Web Services Builder CASE Tool
architecture is reported in Figure 4.

Figure 4. The architecture of the MF-Web Services Builder
CASE Tool

In particular: (i) internal data structures (Data Structures) map
the basic concepts of the SCA Assembly Model; (ii) the visual
user interface has been obtained by defining a set of wizards
(User Interface) through the Eclipse PDE (Plug-in
Development Environment); (iii) the generation of the WSDL
service contract and the service deployment are obtained by
using the Tuscany Apache framework [1] (Code Generation)

and the Tuscany SCA runtime environment (Apache Tuscany)
respectively, choosing Tuscany among the implementations of
the SCA Specifications [14] as it is complete, well-
documented and widely adopted.

5.a

5.b

Figure 5. Component (5.a) and Property Definition (5.b)
wizards

4.2 Exploiting the CASE Tool

 The feasibility of MF-Web Services Builder and its
supporting CASE tool in the development of Web Services,
and, in particular, the significant reduction of programming
and implementation efforts are demonstrated through a simple
but real case study concerning the development of the
FinePayment Service, a Web Service for the online payment
of fines by the Local Police.
 According to the process provided by MF-Web Services
Builder (see Figure 3), on the basis on the analysis and
definition of the service requirements (Service Definition
activity) the Component Definition activity has identified the
following three components:

• Payment, which manages data to perform fine payment;

• Data Access, which allows retrieving fine data and
storing payments;

• Data Acquisition, which temporarily stores the fine data
and exploits the functionalities provided by the other
service components.

In the Property Definition activity the following component
properties were defined: (i) amount of fine, interest on late
payment, and total amount (Payment properties); (ii) data base
connection settings (Data Access properties); (iii) fine ID,
vehicle plate number, driver name, and bank account for the
payment (Data Acquisition).
 In Figure 5 the definition of the Payment component and
its properties through the wizards provided by MF-Web
Services Builder CASE Tool are reported.
 In the Focus Component Definition activity, the Data
Acquisition component was promoted as Focus and the URL
and the port number to identify the Service on the network
was specified (see Figure 6.a). In the Component Relationship
Definition activity the references among components were
introduced (see Figure 6.b).

6.a

6.b

Figure 6. Focus Component Definition (6.a) and Relationship
Defintion (6.b) wizards

In the Class and Interface Definition activity classes and
interfaces (available or defined ex-novo) were associated to
each component for implementing its functionalities, and,
finally, the Service Implementation and its Contract were
automatically generated (see Figures 7.a and 7.b).
 Figure 8 shows the high level architecture of the real
system for the management of fines in which the FinePayment
service has been deployed. This system is currently
distributed by a European software vendor and used by some
public administrations.

7.a

7.b

Figure 7. Class and Interface Definition (7.a) and Code
Generation (7.b) wizards

Figure 8. Execution environment of the FinePayment service

5 Conclusions and future work
 The variety of contexts in which to develop service-
oriented applications actually makes it rather difficult to use a
unique methodology and flexible enough to effectively
support the development of any application regardless of the
specific context in which the application relates. Therefore,
due to the heavy and time-consuming efforts required to adapt
an existing methodology, when it is necessary to address
specific issues arising in developing a specific service-
oriented application, often make it more profitable to define a
new methodology without any fruitful reuse of the existing
ones. This paper has proposed the exploitation of the Method
Engineering (ME) paradigm in the service-oriented domain
which allows defining methodologies which fit specific needs

through the composition of method fragments, extracted from
existing methodologies or defined ex-novo. In particular, a set
of method fragments able to address recurrent challenges in
the development of service-oriented applications has been
individuated and composed through a work-product driven
composition so obtaining a complete development process.
An example of the complete definition of a method fragment
(MF-Web Services Builder) concerning the central issue of
service development along with the implementation and
experimentation of a related CASE tool have been provided.
MF-Web Services Builder adopts as the reference logical and
architectural service model that defined by the SCA
Specifications; moreover, its definition conforms to the IEEE
FIPA Specifications so enabling fragment storage in any FIPA
compliant Method Base and composition with FIPA
compliant method fragments in a specific service-oriented
development process.
 The ongoing experimentation aims at evaluating the
benefits that could arise from the exploitation of the ME
paradigm in the service-oriented domain and, in particular,
from the availability of method fragments and related CASE
tools to exploit or possibly adapt in the definition of
development processes of service-oriented applications.
Currently, main efforts are geared to: (i) define method
fragments covering central issues in the development of
service-oriented applications; currently a fragment for
supporting the composition of Web Services is under
definition; (ii) obtain new and more complete development
processes through the composition of the defined method
fragments; currently the integration of MF-Web Services
Builder with a method fragment for testing the quality of Web
Services is under consideration; (iii) define design patterns
able to easily drive the execution of the component-based
developed process provided by MF-Web Services Builder.

6 References
[1] Apache Tuscany Framework, documentations and
software, http://tuscany.apache.org
[2] Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T.,
Ganapathy, S., Holley, K.: SOMA: A method for developing
service-oriented solutions. In: IBM Systems Journal, vol. 47,
n. 3, pp. 377--296, IBM Corp. Riverton, NJ, USA (2008).
[3] Baldoni, M., Baroglio, C., Martelli, A., Patti, V.:
Reasoning about interaction protocols for customizing web
service selection and composition. In: The Journal of Logic
and Algebraic Programming, vol. 70, n. 1, pp. 53--73,
Elsevier B.V., Amsterdam, The Netherlands (2007).
[4] Brinkkemper, S.: Method Engineering: engineering of
information systems development methods and tools.
Information and Software Technology, vol. 38, n. 4, pp. 275--
280, Elsevier B. V., Amsterdam, The Netherlands (1996).
[5] Brinkkemper, S., Lyytinen, K., Welke, R.: Method
engineering: principles of method construction and tool
support. Springer-Verlag, Berlin Heidelberg, Germany
(1996).
[6] Bruni, R., Lluch Lafuente, A., Montanari, U., Tuosto,
E.: Service Oriented Architectural Design. In: Proceedings of

the 3rd International Symposium on Trustworthy Global
Computing (TGC’07). LNCS, vol. 4912, pp. 186--203,
Springer, Heidelberg (2008).
[7] Cossentino, M., Fortino, G., Garro, A., Mascillaro, S.,
Russo, W.: PASSIM: a simulation-based process for the
development of multi-agent systems. Int. J. of Agent-Oriented
Software Engineering, vol. 2, n.2, pp. 132--170, Inderscience
Enterprises Ltd., United Kingdom (2008).
[8] Cossentino, M., Gaglio, S., Garro, A., Seidita, V.:
Method fragments for agent design methodologies: from
standardisation to research. Int. J. of Agent-Oriented Software
Engineering, vol. 1, n. 1, pp. 91--121, Inderscience
Enterprises Ltd (2007).
[9] Di Penta, M., Canfora, G., Esposito, G., Mazza, V.,
Bruno, M.: Search-based testing of service level agreements.
In: Proceedings of GECCO 2007, the Genetic and
Evolutionary Computation Conference, London, England, UK
(2007).
[10] Fortino, G., Garro, A., Russo, W.: An integrated
approach for the development and validation of multi-agent
systems. In: Int. J. of Computer Systems Science &
Engineering, vol. 20, n. 4, pp. 259--271, CRL Publishing Ltd,
Leicester, United Kingdom (2005).
[11] Giallonardo, E., Damiano, G., Zimeo, E.: onQoS-QL: A
Query Language for QoS-Based Service Selection and
Ranking. LNCS, vol. 4907, pp. 115--127, Springer,
Heidelberg (2009).
[12] Henderson-Sellers, B.: Method engineering for OO
systems development. Communications of the ACM, vol. 46,
n. 10, pp. 73--78, ACM press (2003).
[13] Koehler, J., Srivastava, B.: Web service composition:
current solutions and open problems, In: Proceeding of
ICAPS 2003 Workshop on Planning for Web Services, pp.
28--35, 2003.
[14] Marino, J., Rowley, M.: Understanding SCA (Service
Component Architecture). Addison-Wesley Professional
(2009).
[15] OpenKnowTech Project, documentations and software
available at http://www.openknowtech.it
[16] Papazoglou, M.P., Van Den Heuvel, W.J.: Service-
oriented design and development methodology. In:
International Journal of Web Engineering and Technology,
vol. 2, n. 4, pp. 412--442, Inderscience Publishers, Geneva,
Switzerland (2006).
[17] Ralyté, J., Rolland, C.: An assembly process model for
method engineering. In: Proceedings of CAISE01, the 13th
Conference on Advanced Information Systems Engineering,
Interlaken, Switzerland (2001).
[18] Ramollari, E., Dranidis, D., Simons, A.J.H.: A survey of
service-oriented development methodologies. In: Proceedings
of the 2nd Young Researchers' Workshop on Service Oriented
Computing, Leicester, UK, pp. 75--80 (2007).
[19] STP/SCA Tools project, components and tools,
http://wiki.eclipse.org/SCA
[20] Sweeney, R.: Achieving Service-Oriented Architecture:
Applying an Enterprise Architecture Approach. Wiley &
Sons, Inc., New Jersey, USA (2010).

