
Towards an UML Based Modeling Language
to Design Adaptive Web Services

Chiraz EL Hog, Raoudha Ben Djemaa, and Ikram Amous
MIRACL, ISIMS, Cité El Ons, Route de Tunis Km 10,

Sakiet Ezziet 3021, Sfax, Tunisia

Abstract— The diversity of Internet users together with the
explosive growth of the Web Services, has raised the need for
Web Services adaptation. However, existing Web Services are
not adapted to the final user profile i.e offered services do not
take into account the users diversity and mobility. Therefore,
profile adaptation must be suitably managed on the Web
Service life cycle. In this paper, we propose a solution for
profile adaptation at the design step and introduce an UML
profile for Adaptive Web Service that we called AWS-UML
(Adaptive Web Service UML). It increases the expressivity of
UML by adding labels, graphic, stereotypes and constraints
which make it possible the model Adaptive Web Services. We
also present a case study to exemplify the application of our
UML profile.

Keywords: Adaptive Web Service, profile, design, meta model,
AWS-UML.

1. Introduction
Web Services have emerged as a major technology for

deploying automated interactions between heterogeneous
systems. They are autonomous software components widely
used in various service oriented applications according to
their platform-independent nature (e.g., stock quotes, search
engine queries, auction monitoring). The Web Services
technology allows different applications to be exposed as
services via the network and interact with each other through
standardized XML-based techniques. These techniques are
structured around three major standards: SOAP (Simple
Object Access Protocol), WSDL (Web Services Description
Language), and UDDI (Universal Description, Discovery,
and Integration). These standards provide the building blocks
on the Web Service life cycle such as description, publica-
tion, discovery, and interaction.

The increasing interest on Web Service technology, the
growing number of published Web Services and of users
profiles have raised new issues in service use. For instance,a
Web Service should be able to deliver to the user an adequate
service that fulfills each specific user’s needs and take into
consideration his context. In fact, users can access to these
Web Services from various and heterogeneous profiles due
to their different interests and preferences. However, a Web
Service can be accessed from different locations, through a
diversity of devices (laptops, mobile devices, PDA, etc) and

network characteristics (Wi-Fi, bandwidth, ...). Users, also
want to be able to satisfy their preferences (desired content,
layout,...) and interests. According to these heterogeneous,
mobile and changing profiles, adaptation is becoming a
major requirement which must be taken into account earlier
in the Web Service life cycle. This leads to the fact that
there is a higher need to automate, at least partially, the
design process of Web Services.

Our idea is to provide a generic solution for modeling
Adaptive Web Service based on the Unified Modeling Lan-
guage, UML. In fact, UML is considered as the industry
actual standard for modeling software systems. In UML,
the structural aspects of software systems are defined as
classes, each one formalizes a set of objects with common
methods, properties, and behavior. UML can also serve
as a foundation for building domain specific languages
by specifying stereotypes, which introduce new language
primitives by sub typing UML core types, and tagged values,
that represent new properties of these primitives. Model
elements are assigned to such types by labeling them with
the corresponding stereotypes. In addition, UML can also be
used as meta modeling language, where UML diagrams are
used to formalize the abstract syntax of another modeling
language as the work presented in [5] to design adaptive
Web Application. Using this opportunity, we aim to define
our modeling solution named Adaptive Web Service Unified
Modeling Language (AWS-UML).
The rest of the paper is organized as follows. Section
2 reviews literature on adaptive Web Services. Section 3
presents the Use Case diagram of AWS-UML. Section 4
describes the class diagram. Section 5 defines sequence
diagram. Section 6 concludes the article and gives some
directions for future works.

2. Related works
In this section, we take a look at some research works

interested in the possibilities of applying the context adap-
tation on Web Services life cycle. We provide an overview
of some of these works.

El Asri and al.[3] propose a model driven approach for
the modeling of user-aware Web Services on the basis of
the multiview component concept. The multiview component
is a class modeling entity that allows the capture of the



various needs of service clients by separating their functional
concerns. This work takes into account the profile of the
user and his right access to the Web Service functionality.
Despite that, the user preferences, device capacity, network
characteristic, localization ... are not taken into account.

Sheng and Benatallah[6] present a modeling language
for the model-driven development of context-aware Web
Services based on the Unified Modeling Language (UML).
Although, this work propose a meta model for modeling
service context, it don’t care about the actors neither about
modeling diagrams.

A number of research efforts have studied Web Services
discovery and selection adaptation. Sellami and al.[2] are
interested in Web Services discovery in a distributed registry
environment. They propose a semantic model to describe
Web Services registries (WSRD). This semantic description
is functionality driven and is benefit to discover the appropri-
ate service that best fits requester needs. However, it doesn’t
take into account the user’s context.

Benaboud and al.[1] have developed a framework for
Web Services discovery and selection based on intelligent
software agents and ontologies. Ontologies are used to
describe Web Services, QOS, customer’s preferences and
experiences. But, the proposed framework did not take into
account mobile devices with limited capabilities neither
network characteristic. Also they have not discussed the
impact on Web Services composition.

Balke and Wagner[10] have presented an algorithm for the
subsequent selection of appropriate services. This algorithm
features an expansion of the service request by user-specific
demands and wishes. Services not matching a certain profile
are discarded on the fly and equally useful results of alterna-
tive services can be compared with respect to user provided
strategies. They have not deal with different client devices,
using several types of networks (wireless, local, etc.) various
networks characteristics, user location...

Soukkarieh and Sedes[4] have proposed a new architecture
of Web Services, supporting the adaptation process to the
user context and returning to the user a list of Web Services
adapted to his context. They extend the architecture of
AHA combining it with the classical architecture of Web
Service and adding to these architectures an adaptation
layer containing various components dedicated to context
adaptation.

Other researches have studied Web Services interaction
adaptation.
Pashtan and al.[8] present an information system for tourism
(CATIS) which enables the adaptation of mobile devices in
terms of content and presentation. The application takes into
account the user preferences, his localization and the type
of his terminal.
Keidl and al.[9], present a generic framework to support
the development of context-aware adaptive Web Services.
The transfer of context information is performed through

SOAP message header. Context information can be explicitly
and directly processed by clients or Web Services or be
automatically handled by the context framework. However,
contexts are limited to the information of service requesters.

Most of works previously studied deal separately different
steps of Web Services life cycle. However, some researchers
concern on one particular form of adaptation, like semantic
enrichment of the client request by his context Benaboud and
al.[1]. This request enrichment is not enough to deliver adap-
tive Web Services. It is needed also to integrate Web Service
description the context in which it is adapted. In addition,
contextual information partially covers the user general
context (El Asri and al.[3], Sheng and Benatallah[6]). Other
works have presented specific solutions to a range of use
or type equipment used (proposed platform for the field of
tourism and adaptation only affects mobile devices in the
work of Pashtan and al.[8]). Moreover, proposed works when
adapting execution services, do not bring solutions to all
general types of media used, but trying to provide solutions
to needs very specific.

As we emphasized in the preceding paragraph, in order
to provide the user with the most relevant services to his
context, we must take user’s profile into account earlier on
the Web Service life cycle, essentially on the modeling step.

3. Use Case diagram of AWS-UML
A Use Case diagram is used to describe functionalities

provided by a system in terms of actors, their goals repre-
sented as Use Cases, and any dependencies among those Use
Cases. The UML Use Case diagram meta model, defines
one class to model actors and one for Use Cases. This
definition doesn’t fit well our need to design Adaptive Web
Service. Therefore we propose enriching this meta model
by specifying three kinds of actors that could interact with
our Web Service and three kinds of Use Cases that describe
functionalities according to the variety of actors.

3.1 Actors of AWS-UML
An actor specifies a role played by an external entity

that interacts with the system. Those actors can be humans,
other computers, pieces of hardware, or even other software
systems. The only criterion is that they must be external to
the part of the system being partitioned into Use Cases. They
must supply stimuli to that part of the system, and the must
receive outputs from it.

However, Web Service can be accessed through different
ways and by a variety of profiles: the service supplier, the
service human client and application client. To model this
distinction, we propose three categories of actors:

1) Application Consumer: This actor is used to model a
software that interacts with the Web Service. It could
be:

a) A Composite Web Service: This actor is used
in the case of services composition. It concerns



requests of users that cannot be satisfied by
any available Web Service, whereas a composite
service obtained by combining a set of available
Web Services might be used. In that case, a Web
Service can play the role of a client to another
one.

b) A Web Application: This actor is used to model
a web application that uses a Web Service to
accomplish its functionalities. Through a servlet,
a Web application can connect to a Web Service
using it’s URI and access account.

2) Human Consumer: This actor is used to model a hu-
man requester using a Web Service by a web URL. He
is an Internet user who interacts with service from the
web (weather service, prayer times service, currency
converter...). He can also, express his preferences and
interests to customize service results.

3) Provider: This actor is used to model the Web Ser-
vice provider. He is a person or an organization
that supplies services over service registry. He could
create, update, deploy (add the service to Web Service
registry) or undeploy the Web Service.

The table 1 shows icons used to design these actors.

Table 1: Actors of AWS-UML
Provider Human Application Composite Web

Consumer Consumer Web Service Application

3.2 Use Cases of AWS-UML
The Web Service architecture is based on the interaction

between three components: service provider, service registry
(the broker) for storing service descriptions, and servicere-
quester (the client). These interactions are based on publish,
find, and bind operations. According to these operations and
by the increasing needs of Web Service consumer, their
higher mobility and various interests, we distinguish three
classes of Use Cases as follows:

1) Use Case Service Interaction: Used to model interac-
tion with the Web Service. It includes request sent to
a Web Service, response received from a Web Service,
subscription, specify preferences and interests.

2) Use Case Service Publication: Used to add or remove
Web Service on or from the service registry. It includes
create, modify, describe, deploy (publish Web Service
on the service registry) and undeploy (retrieve service
from the service registry).

3) Use Case Service Search: Used to search and select
an adequate Web Service.

To distinguish graphically between these three Use Cases
we adopt following specific notation on table 2.

Table 2: Use Cases of AWS-UML
Publication Use Case Interaction Use Case Search Use Case

3.3 Meta model of the Use Case diagram of
AWS-UML

The standard UML meta model doesn’t allow to model
the variety of actors and Use Cases presented above. So, we
present a Use Case meta model of AWS-UML depicted in
Figure.1.
By analogy to UML, this meta model is represented by
the two extended concepts: Actor and Use Cases. Actors
(Provider, Human Consumer and Application Consumer)
inherit from theActor class in UML meta model. Use Cases
(Use Case Service Interaction, Use Case Service Publication
and Use Case Service Search) inherit from theUseCaseclass
in UML meta model. AWS-UML extensions are presented
by classes with font color grey.

Fig. 1: Meta model of the Use Case diagram of AWS-UML

To validate our model we propose to add the following
OCL (Object Constraint Language) constraints:

• An actor Provider can have association
with a Use Case UseCaseServiceInteraction,
UseCaseServicePublicationandUseCaseServiceSearch
Context Provider: self.execute → forAll (a |
a.oclIsKindOf (UseCaseServiceInteraction) or
a.oclIsKindOf (UseCaseServicePublication) or
a.oclIsKindOf (UseCaseServiceSearch))

• An actor HumanConsumercan have association with
UseCaseServiceInteractionandUseCaseServiceSearch
Context HumanConsumer : self.execute→ forAll
(a | a.oclIsKindOf (UseCaseServiceInteraction) or
a.oclIsKindOf (UseCaseServiceSearch))

• An actor ApplicationConsumercan have association
with a Use CaseUseCaseServiceInteraction
Context ApplicationConsumer : self.execute→ forAll



(a | a.oclIsKindOf (UseCaseServiceInteraction) or
a.oclIsKindOf (UseCaseServiceSearch))

3.4 Examples of Use Case diagram of AWS-
UML

To illustrate our proposal, we will give an example of
an Adaptive Web Service designed with AWS-UML. The
example is a Travel Agency Web Service.
Figure 2 illustrates an application consumer Use Case for
the travel agency Web Service.

Fig. 2: Example of Use Case diagram of AWS-UML

The web application actor and the composite Web Service
actor can invoke the travel agency service specifying usage
agreement. The web application can subscribe with the
service. The composite Web Service can search or compose
with other Web Services.

Figure 3 illustrates a provider Use Case for the travel
agency Web Service. The actor provider creates or modifies
the travel agency Web Service. He provides to customer the
ability to book complete vacation packages: airline service,
hotel service are used to query their offerings and perform
reservations and credit card service used to guarantee pay-
ments made by consumers. The provider actor may also,
deploy or undeploy the service. Moreover, he could be a
travel agency service consumer.

Fig. 3: Example of Use Case diagram of AWS-UML

4. Class Diagram of AWS-UML
Class diagrams are the mainstay of object-oriented anal-

ysis and design. They show the classes of the Web Service,
their interrelationships (including inheritance, aggregation,
and association), and the operations and attributes of the
classes. A Web Service may interact with several actors with
a variety of profiles. Each profile has specific needs on this
service. In order to ensure the flexibility and the adaptability
of services, a service must take into account the profile
in interaction with it. The problem is how to model these
various actors needs when designing class diagram of a Web
Service. In order to tackle this problem, we will exploit the
concept of VUML (View based Unified Modeling Language)
introduced by Nassar [7] and enrich the class diagram meta
model with user’s profiles. The view concept is largely
used in several fields, as a mean of separation of concern,
such as Database Management System and Workflow. It
helps in writing software that is modularized by concern.
For our work, we use views as a means of both assuring
functional separation of concern and managing access right.
The concept of VUML revolves around two key concepts:
Base and View.

1) Base: Is a core entity which includes specifications
that are common to all types of actor.

2) Views: Are used as a means of assuring functional
separation of concern and managing access rights.

In our case of study, we define a multiview service as a
first class modeling entity that highlights the actors needs
and requirements. In order to retrieve the most relevant
results with the user’s context, we should discover all
context elements that influence the result. These elements
are enclosed on actor’s profiles. TheBaseclass allows the
representation of the functionalities required by all kinds of
users. In contrast, theViewclass allows the representation of
the functionalities required by a specific kind of user. These
functionalities are accessible only if the specific user is in
interaction with the service. We distinguish one Base and
three kind of Views:

1) Application Consumer View: Is an abstract view class
to model functionalities allowed to an Application. It
depends on the Application Profile. This abstract view
contains two views: a Composite Web Service View
and a Web Application View.

2) Provider View: Is a view class to model functionnalies
allowed to a Web Service provider.

3) Human Consumer View: Is a view class to model func-
tionalities allowed to a human consumer. It depends on
the Consumer Profile.

Profile characteristics are also represented within the class
diagram and they will be traited by the WSDL file. To model
the Base and Views on the class diagram of AWS-UML, we
define following stereotypes and icons on table 3:



Table 3: Base and Views of AWS-UML
Base Provider Human Application Composite Web

View Consumer Abstract Web Service Application
View View View View

4.1 Meta model of class diagram of AWS-UML
Modeling elements of the UML class diagram are: the

class and the association. In AWS-UML, we need to extend
these standard elements to be able to design concern based
class diagrams. As extensions we define aMultiviewsClass
inherited from theClassifier and consists of oneBaseand
different Views and Abstract Views. The relation between
Base and Views is achieved through theViewExtension
inherited from Association. Views are related to specific
profiles describing actors characteristics.
Figure 4 shows the meta model of this class diagram.
Extensions are colored in grey.

Fig. 4: Meta model of the Class diagram of AWS-UML

Associations in this model obey certain rules that we
define using OCL.

• An elementViewExtensionis an association between a
departure elementBaseand a receiver elementView or
AbstractView
context ExtensionView inv : (self.client.oclIsKindOf
(View) or self.client.oclIsKindOf (AbstractView)) and
(self.supplier.oclIsKindOf (Base))

• An elementView can inherit from aView or an Ab-
stractView
context View inv : self.generalization→ forAll
(g : Generalization | g.parent.oclIsKindOf(View) or
g.parent.oclIsKindOf(AbstractView))

4.2 Example of class diagram of AWS-UML
In this section, we will design a class diagram of a travel

agency service using AWS-UML. The class stereotypedBase
represents the common behavior. Classes stereotypedView
represent specific behavior. Views are related to profiles.
The Human Consumer View is related to a consumer profile
defined by user preferences and the context of use.

1) User preferences specify the display preferences and
the content preferences.

2) The context of use contains:
a) The localisation defined by latitude and longi-

tude,
b) The connection characteristics defined by the

bandwidth, type and the debit,
c) The device characteristics: software (browser,

operating system) and hardware (type, desktop,
processor, memory, graphics card).

The Application View is related to an application profile
defined by an access account and an usage agreement
between the Web Service and the application:

1) Access account defined by login, password and date
of validy of the account,

2) Usage agreement defined by the list of input parame-
ters, the list of output parameters and the access url.

Fig. 5: Example of class diagram of AWS-UML

5. Sequence diagram of AWS-UML
UML sequence diagrams are used to model the flow of

messages, events and actions between the objects or com-
ponents of a system. It presents interactions that can exist
between the user and the Web Service functionnalities. This
interaction, which is achieved from exchanges of messages,
is related to actor’s profile. The UML sequence diagram
doesn’t allow to model objects and instance message for
an Adaptive Web Service. We need more precision to model
objects and Messages according to their behavior.



5.1 Concepts of the sequence diagram
Objects of the sequence diagram are class instances with

specific operations and attributes. We propose in AWS-UML
five kinds of objects described by new icons:

• ObjectMultiviews: presenting the Web Service inter-
face,

• ObjectBase: presenting commun behavior of the Web
Service,

• ObjectProvider: presenting the supplier activities, the
deployment process, etc,

• ObjectHumanConsumer: presenting the human user of
the Web Service,

• ObjectApplicationConsumer: presenting a software user
of the Web Service witch contains ObjectCompos-
iteWebService and ObjectWebApplication.

These objects interact while exchanging messages that can
be simple messages or profile messages (containing profile
features) labeled by the corresponding type:

• PublicationMessage: presenting publication activities
like deploying, undeploying, creating, updating, etc,

• SearchMessage: presenting searching and selecting
Web Service,

• InteractionMessage: presenting all the execution pro-
cess,

• ProfileSearchMessage: providing search preferences or
context parameters to objects,

• ProfileInteractionMessage: providing profile character-
istics to objects of the execution process.

5.2 Meta model of the sequence diagram of
AWS-UML

Figure 6 illustrates AWS-UML sequence diagram ex-
tension to take into account our definition of objects and
messages. AWS-UML objects are described by meta classes
that inherits from theObject UML meta class. And AWS-
UML messages are described by meta classes that inherits
from the InstanceMessageUML meta class. Extensions are
colored with font color grey.

Our sequence diagram meta model must obey to the
following OCL constraints:

• An ObjectMultiviewscan only send messages to an
ObjectBaseor anotherObjectMultiviews
context ObjectMultiviews: self.send→ forAll (o |
o.oclIsKindOf (ObjectBase) or o.oclIsKindOf (Object-
Multiviews))

• An ObjectMultiviewscan receive messages from an
ObjectBaseor from ObjectApplicationConsumerView
or ObjectHumanConsumerViewor ObjectProviderView
or anotherObjectMultiviews
context ObjectMultiviews: self.receiver→ forAll (o
| o.oclIsKindOf (ObjectBase) or o.oclIsKindOf (Ob-
jectMultiviews) or o.oclIsKindOf (ObjectApplication-

Fig. 6: Meta model of the Sequence diagram of AWS-UML

ConsumerView) or o.oclIsKindOf (ObjectHumanCon-
sumerView) or o.oclIsKindOf (ObjectProviderView))

5.3 Example of sequence diagram
Next, we consider the interactions between the actor

Travel Portal Web Application and the Travel Agency Web
Service. We focus on the Use Case:Invoke travel agency
serviceshown in Figure 2 and describe a sequence diagram
example illustrating messages exchanged. Table 4 shows
icons used to model objects and Figure 7 depicts the
sequence diagram.

Table 4: Icons of the Sequence diagram example
Object WSDL Object Object Web

Multiviews file Base Application View

Fig. 7: Example of Sequence diagram of AWS-UML

The Travel Portal component is a Web Application al-
lowing to access to a variety of the travel agency services.
It can connect and invoke our Travel Agency Web Service.
In order connect to the service, the web application sends



a message of type interaction to the object multiviews
Manage Travel Agency. This latest checks the validity of
connection informations and then recovers the profile of
the web application from the WSDL file. Then it transfers
the profile and the corresponding view to the object base
Travel Agencywithin a profile interaction message. Common
functionalities are executed by theTravel Agencybase object
witch transfers the execution process to the corresponding
view within a profile interaction message. Finally, the web
applicationTravel Portal Viewobject executes the adequate
operations and sends adapted result to the client.
Messages exchanged are labeled with the corresponding
letters as they can be simple messages or profile messages.

6. Conclusion
The adaptability and flexibility are challenging issues in

the world of Web Services. In this regard, we have presented
in this paper, an effective modeling language for the design
of highly adaptive and flexible Web Services named AWS-
UML. We have introduced the meta model and notation of
the language and illustrated its usage using an example of a
Travel Agency Web Service.

AWS-UML is a UML profile for Adaptive Web Ser-
vices. This extension of UML defines a set of stereotypes,
constraints and graphic annotations to allow us to design
adaptive Web Services. Along this paper, we have focused
on Use Case diagram, Class diagram and Sequence diagram.

Firstly, we have presented actors and Use Cases. We have
introduced various classes of actors that can interact with
Web Services and are looking for specific needs. We have
also defined different Use Cases related to adaptive user
needs.

Secondly, we have exploited the multi-view concept which
highlights the users needs and requirements by separating
their concerns on the class diagram. We have defined the
structure and the functionalities of a service according to
the actors which are likely to use it. Besides, we presented
actors profiles related to each view.

Finally, we have presented our sequence diagram pro-
posal. We have defined more objects and message instances
to achieve the goal of designing adaptive interaction.

Diagrams proposed above bring answers to reach insuffi-
ciencies of the UML language diagrams to model adaptive
Web Services. In the near future, we aim to validate our pro-
posal by proposing an AGL that supports new AWS-UML
extensions. It is based on the open source tool: ArgoUML.
Then we will focus on the Web Service implementation and
deployment process to be able to generate adequate Web
Service Descriptor file.

References
[1] R. Benaboud, R. Maamri, Z. Sahnoun, “User’s preferences and

experiences based Web Service discovery using ontologies,” in
Proc.ICRCIS’10, 2010, p 121-126.

[2] M. Sellami, O. Bouchaala, W. Gaaloul, S. Tata, “WSRD: A Web
Services Registry Description,” inProc.ICNDST’10, 2010, p 89-96.

[3] B. El Asri, A. Kenzi, M. Nassar, A. Kriouile, A. Barrahmoune, “Mul-
tiview Components for User-Aware Web Services,” inProc.ICEIS’09,
2009, p 196-207.

[4] B. Soukkarieh, F. Sedes, “Towards an Adaptive Web Information
System Based on Web Services,” inProc.ICAS’08, 2008, p 272-277.

[5] R. B. Djemaa , I. Amous and A. B. Hamadou, “Extending a Conceptual
Modeling Language For Adaptive Web Applications,”International
Journal of Intelligent Information Technologies., vol. 4, pp. 37-56,
2008.

[6] Q. Z. Sheng, B. Benatallah, “ContextUML: A UML-Based Modeling
Language for Model-Driven Development of Context-Aware WebSer-
vices,” in Proc.ICMB’05, 2005, p 206-212.

[7] M. Nassar, “Analyse conception par points de vue : le profil VUML,”
PhD Thesis, National Institute Polytechnique of Toulouse,Toulouse,
France, Sep, 2005.

[8] A. Pashtan, A. Heusser, P. Scheuermann, “Personal Service Areas for
Mobile Web Applications,”IEEE Internet Computing archive, vol. 8,
pp. 34-39, 2004.

[9] M. Keidl, A. Kemper, U. Passau, “Towards Context-Aware Adaptable
Web Services,” inProc.IWWWC’04, 2004, p 55-65.

[10] W. T. Balke, M. Wagner, “Towards Personalized Selection of Web
Services,” inProc.IWWWC’03, 2003.


