
Traversing Documents by Using Semantic Relationships

Bilal Gonen1

1Computer Science and Engineering Department, University of Nevada, Reno, Reno, Nevada, U.S.A.

Abstract— Relationships are keys to the semantics and
hence the Semantic Web. One interesting way to exploit
relationships is to link documents such that terms in the
documents are semantically related through well defined
relationships. In his 1945 article, Dr. Vannevar Bush posited
the idea of creating a device capable of recording all of
human knowledge. Dr. Bush suggested that such a device
would allow its user to traverse a space of documents by
following a “trail of associations” in the user’s mind. The
assumption however is that links of the Web are meaningful
to the user. This assumption certainly does not hold for
the eight billion pages on the Web. We consider a scenario
where the user has some prior knowledge of the domain. Our
approach to building such a system relies on two aspects of
Semantic Web: (a) semantic metadata for documents, and
(b) populated ontology with relationship instances.

Keywords: semantic web, semantic browser, data mining

1. Introduction
There have been significant research activities in doc-

ument categorization. A number of tools have been built
that provide users to browse among the classified collection
of documents. In order to give the user ability to pick
the most relevant documents which are classified under a
category, several methods have being used to rank them
based on their representative values, i.e., term frequency,
inverse document frequency, etc. In most of these tools,
the classification of the documents is built as a taxonomy.
There is no connection between the different nodes in the
taxonomy other than hierarchy-relationships. Consequently
such a document organization restricts the users to browse
documents under a particular category. To get to a document
on a related topic the user has to navigate up the hierarchy
and back down to the relevant topic.

For instance, consider a user reading an article about
the disease “measles”. The user would like to read articles
which talk about some drugs that help in curing measles.
For instance, there is a “cure” relationship between “egg
plant seeds” and “measles”. Here is a quotation from the
home-remedies web site: “The seeds of the egg plant are
a stimulant. Intake of half to one gram of these seeds
daily for three days will help develop immunity against
measles for one year.” [3] Although these two concepts “egg
plant seeds” and “measles” are related to each other by an
important relationship between them, how likely is it that
they may be classified under the same category? Availability

of such “related” information depends on whether the author
of the text includes such information. Without having the
information that a relationship “cures” links the concepts,
or having a means to use this information, a document
categorization tool would not put documents about these two
concepts under the same category, because one of them is a
disease, and the other one is a plant. A categorization system
arguably should not put such “related” documents in the
same category, but the ability to navigate from a document
about “measles” to one about a cure is a very useful one to
have. The egg plant seeds are not the only things helping
in remedy of measles. The same webpage [3] mentions
that “application of mud packs” also helps in remedy for
measles. Therefore, would not it be nice to suggest the
user to read about articles about “egg plant seeds”, “mud
packs”, “barley”, “turmeric”, and perhaps some others, by
also giving the “cures” relationship, thus telling the reason
why some articles about these topics are offered? Also,
before offering the articles of topics which cures the measles,
would not it be better to offer the user the relationships
about the measles, first? Perhaps, the user may not be
interested in reading topics about curing the measles, but
may be interested in reading topics about causes of measles.
By choosing this relation, totally different topics would be
offered to the user, instead of egg plant seeds, barley, etc.
which help cure the measles.

The above discussion demonstrates the need for using
some kind of knowledge base which includes the entities
along with relationships between them. Here is where the Se-
mantic Web comes in. The Semantic Web has gained much
interest during the past few years. Data typically published
on the web is human understandable and is meant for human
consumption. However, the Semantic Web makes such data
machine-understandable. Associating formal semantics with
data, and using it in making search, browsing and analysis
more intelligent and precise, can also lead to saving time for
a user who would otherwise have to peruse more data to get
all the information he or she seeks.

When we see a word in the text, for instance “America”,
human cognitive processes associate meaning with the term.
However, a machine does not know that “America” is a
country, located in North America, has a border with Canada,
etc. As humans, we know that America is (likely or certainly)
the USA, which is a country. We need to attach the property
or the relationship “country” to the word “America” some-
how. Also we know that America, USA, United States, US,
etc. all refer to the same thing. Should we also attach such



Fig. 1: Relationship in the ontology

information to the word “America”? How about the concepts
that have some relationships with America? Georgia in the
relationship of being a state, or George W. Bush, in the
relationship of being the President, for example. It would
be useful for us to attach this information to the word
America in text somehow to have the machine find the
relevant information for the user. Instead of attaching all
the information we know about a word in the plain text,
some external knowledge bases (parts of what is called
ontologies) are used in the Semantic Web. In the ontology,
we have class-subclass hierarchy, such as apple is subclass
of fruit, and fruit is subclass of food, and so on. Taxonomy
also has these hierarchical relations. The difference between
ontologies and taxonomies is that ontologies have named
relationships between the classes, even if they do not have
hierarchical relationship. However, taxonomy does not have
such relationships besides hierarchical relationships.

Our Semantic Browser tool enables easier navigation with
relationships as opposed to hyperlinks. In their paper, Logi-
cal Information Modeling of Web-accessible Heterogeneous
Digital Assets [5], Amit Sheth, and Kshitij Shah defined
hyperlinks as “physical (hard) relationships” and semantic
relationships in the Relationship Web as “virtual links”.

In our paper, we also show that more relevant documents
are returned by using the virtual links as opposed to hy-
perlinks which do not have semantic relationship between
the documents. Processing the documents in our dataset by
using our ontology, we built a relationship web in which
documents are connected to each other with relationships.
The advantage of these virtual connections is that a user can
navigate from one document to another using relationships,
even if there is no hyperlink between those documents.

Our work is one of the earliest attempts at utilizing
the semantics of the relationships to support browsing and
navigation of a document space.

In section 2, we describe the concept “Relationship Web”.
Then, we explain the system architecture in Section 3. In
that section, we describe the ontology and dataset used in
the project. Section 4 shows the “Semantic Browser” tool
[25]. In section 5, we review related work. In section 6,
conclusions and future work are explained.

Fig. 2: A screenshot from PubMed Website

2. Building Relationship Web
Given a set of documents along with an ontology schema

and a set of entity instances, our goal is to create a web
of documents linked to each other by named relationships.
Any two documents may not be connected to each other
by physical links (HREF), but may contain terms which are
related to each other based on the ontology used. Without
building the Relationship Web, the user does not have a way
to navigate semantically connected documents unless there
is at least one physical link between those documents. Even
with the existence of such a physical link, the relationship
between the hyperlinked term and the target page is based
on the interpretation of the user. Although the relationship
is human understandable, it is not machine understandable.

Some websites have some system to suggest related
articles to users. However, the relationships between those
related articles are not named. Another issue is that the user
may not be interested in reading the articles related to the
article she reads at that moment, but may be interested in
reading articles related to any particular term in the article
she reads.

Let us consider a scenario that a user reads a medical
article in the PubMed [6] Web site. She reads a sentence that
contains “melanoma”. Melanoma is a type of skin cancer.
In the page where she reads the article abstract, the web site
includes a hyperlink saying “Related Articles”. The user may
not be interested in the articles related to the main concept
of the article she reads at that time, but may be interested
in the article related to the particular term “melanoma” that
she has just encountered in the article abstract. If the term
“melanoma” in the sentence is not hyperlinked, then the user
has to type the term “melanoma” in the search box at the
top of the page, to read articles about the melanoma. What
if she is not interested in articles about the melanoma, but is
interested learning about the causes of the “melanoma”? If
the user does not know the causes of the melanoma already,
there is no way that she can reach to the articles which talk
about those causes in the current system. She needs to know



the causes beforehand, so that she can type their names in
the search box.

Imagine that in order to return related terms to user,
a website uses a statistical mechanism. Such statistical
mechanisms may bind two terms together as “related” just
because they occur in the same sentences frequently. If we
consider the recommendation systems on the online stores;
they relate some products together, just because they are
frequently purchased in the same transactions. According to
such statistical systems, the only relationship between those
products is statistical proximity. Instead of giving the user
related terms only, it is necessary for the user to know the
relationships also, because the user may not be interested in
spending her time to read articles about “aneuploidy”, unless
she knows that aneuploidy is a result of melanoma. By using
our approach, however, for the chosen term “melanoma”, the
user is offered several relationships, such as “affects”, “co
occurs with”, “occurs in” and “is result of”. By choosing the
relationship “is result of”, the user can get the terms which
are the result of “melanoma”.

As can be seen in the scenario above, no physical link
(hyperlink) is needed to navigate to “semantically” related
documents. Also, no prior knowledge is needed by the user
to know what the results of “melanoma” are.

The critical research issue, however, is to identify which
of the prohibitively large number of relationships are more
relevant than others. We demonstrate this capability by
developing an application that allows users to browse docu-
ments by following chains of named relationships much the
same way we follow hyperlink today. As a starting point, we
test a subset of PubMed [6] abstracts linked to each other by
named relationships. The named entities at the instance level
are associated with some schema class types at the schema
level of the ontology. The instances are usually associated
with one, two, or three class types at the schema level.
Because we do not yet have relationships between concepts
at the instance level, we look at the relationships between
the types of those instances. Then we use these relationships
to build our relationship web.

3. System Architecture
In this chapter, we explain the ontology and dataset used

in the project.

3.1 Ontology Used In The Process
To build the schema layer of the ontology used in our

project, we have parsed the UMLS [1] dataset. The UMLS
dataset consists of several XML files. Triples (terms and
relationships associated between them) were extracted and
stored in an RDF file. In the RDF schema file generated,
there are 135 classes and 49 relationships.

In order to build the instance layer of the ontology used
in our project, we used SAX java parser to parse the MeSH
XML file. This XML file is 240 MB in size. It contains

Fig. 3: Architecture of the Semantic Browser Application

Fig. 4: A triple in XML format from the UMLS dataset

21,945 MeSH terms, but does not contain relationships
between these terms. Because MeSH terms are represented
as instances in our ontology, we have 21,945 instances in
the instance layer of our ontology. From this XML file for
each instance, we extracted the UI number which is a unique
number for each MeSH term. We extracted the UMLS types
of MeSH terms. As mentioned above, these UMLS types
are represented as schema classes in the schema layer of
our ontology.

The main benefit of this ontology is to let the user see the
class of an entity instance, and all of the relationships that
class has. By selecting any existing relationships, the user



Fig. 5: Schema level and instance level of the ontology used

can traverse to another document which is indexed under the
type that relationship is connected to.

Figure 5 illustrates the schema level and instance level of
the ontology we used in our implementation. There is no
direct relationship between concepts at the instance level.
Without using the schema level, we can not say if there is any
relation between “Kidney Neoplasm” and “Ureteral Calculi”.
As can be seen from the Figure 5, Kidney Neoplasm has two
types in the ontology schema. Ureteral Calculi, however, has
only one type in the ontology schema. Figure 5 demonstrates
that there is an “analyzes” relationship between “Diagnostic
Procedure” and “Body Substance” at the schema level. Di-
agnostic Procedure is one of the types of Kidney Neoplasm.
Body Substance is the type of Ureteral Calculi. Because
we have the “analyzes” relationship between “Diagnostic
Procedure” and “Body Substance” at the schema level, we
conclude that there is also “analyzes” relationship between
“Kidney Neoplasm” and “Ureteral Calculi” instances at the
instance level.

3.2 Dataset Used In The Project
In this project, we use PubMed as a dataset [6]. It has

16 million documents with abstracts. We used a fraction of
that dataset (48,252 documents). Their format is illustrated
in Figure 6.

To distinguish the MeSH terms in an abstract, those
MeSH terms needed to be annotated. We have developed
an algorithm for this annotation which works in linear time.
The algorithm finds the MeSH terms in the sentences, and
encloses them between specials tags. Figure 7 below is the
annotated form of the abstract at Figure 6.

The algorithm tokenizes the text, and processes it word by
word. When the algorithm finds a word in the text and that
term exist also in the ontology, it does not annotate that word
immediately. Instead, the algorithm continues processing the
words in the text and tries to find the term with maximum

Fig. 6: File format of PubMed dataset before annotation

Fig. 7: File format of PubMed dataset after annotation

number of words in text which also exists in the ontology.
The word “LongestTerm” in the Algorithm 8 refers to the
term with maximum number of words.

3.3 Processing Data And Indexing The Articles
To index the documents in our dataset, we used Lucene

[7]. By using the regular expression methods of the Java
API (java.util.regex), we picked each annotated term in the
documents, and associate each of these annotated terms with
the document. As each document is associated with several
MeSH terms, also each MeSH term is associated with several
documents. In our implementation, we used 21,945 MeSH
terms and their synonyms. Thus, we used around 104,000
terms to index our dataset.

The user interface is a simple HTML page using
JavaScript and CSS. JavaScript contains the AJAX engine
[9]. AJAX engine serves as an intermediary between the
JavaScript methods and server. Because of its high per-
formance and quick response time, we have used AJAX
engine to send requests and to receive responses from the
server. Server-side code is written in Java Server Pages (JSP)
codes. After JSP receives the request from AJAX engine, it



Fig. 8: Pseudocode of AnnotateText Algorithm

parses the Request String to get all of the parameters coming
from AJAX engine. Based on the parameters received, a
JSP method is called. The method then calls one of the
methods in the Java class. Java class includes Lucene [7]
and SemDis API [8] methods. Java methods return an array
list (java.util.ArrayList) to the JSP. The JSP method returns
the response to the AJAX as in XML format. The methods
in the JavaScript can easily manipulate the response by using
XML DOM methods. We then insert the response received
from the AJAX to the HTML file, without having to reload
the whole HTML page.

4. Semantic Browser Application
The articles to be shown in the user interface are annotated

beforehand. To begin traversing between documents, the user
needs a document to begin with. On the left column of the
user interface, there are two text boxes, where the user can
search documents by either the PMID number of the article
or by any MeSH term which may appear in the documents.
As the user types in the textbox, just below the textbox, a
popup menu appears showing the MeSH terms, which begin
with the typed letters.

After selecting any MeSH term from the list, the names
of the files in which the selected MeSH term, or its synonym
appears. For instance, by entering the keyword “neoplasm”
in the search box, the user also gets file names in which
“serum” appears, but “neoplasm” does not. Because, serum
is a synonym of “neoplasm”, the user does not miss that
document which may be very important for the user. Those
documents are returned, because when we index the docu-
ments with Lucene, we have also used the synonyms of the
MeSH terms. While the number of MeSH terms is 21,945,
the number of terms used to index documents are around
104,000 including the synonyms of MeSH terms.

Fig. 9: A screenshot of Semantic Browser tool

Fig. 10: A screenshot of Semantic Browser tool

The named entities in the text have different colors so that
the user can understand that those terms are annotated based
on some ontology, and will let the user traverse to other doc-
uments. This traversal is based on the semantic relationships
between the two documents. By simply hovering the mouse
pointer on that named entity, a popup menu appears with a
list of types under which that entity instance is placed. By
hovering over any of those types, the user also gets the list
of relationships of that type. By hovering over any of those
relations from the list, the user gets the list of types that the
relationship selected is connected to. By hovering over any
of the types from the list, user gets a list of MeSH terms
which are instance of hovered types. By hovering over any of
the MeSH terms from the list, user gets a list of file names in
which the MeSH term appears. Then, the user simply clicks
on any file name in the menu and the abstract part of the
selected file appears on the webpage.

The AJAX technology makes this process is very fast,
because the page does not have to be reloaded every time



Fig. 11: Previous Traversals section of Semantic Browser

the content of the popup menus is retrieved from the server,
and abstract of the file is retrieved from the PubMed dataset.

By picking a relationship in the popup menu, the user
can go to another document. Just after this process, the
name of the previous document is written into the “Previous
Traversals” section of the Semantic Browser tool. Just next
to the name of the file, the triple that the user went through
in that document is written. Let us assume that the user
reads the abstract of the document named “7620485”. By
hovering over the term “spinal cords neoplasm”, the user
picks the relationship “co occurs with”. Then, the user picks
“aortic aneurysm”. Then among the file names appearing in
the popup menu, the user selects the document “9279325”.
Just at the end of this process, the name of the previous
file, 7620485, is written into “Previous Traversals” section.
The traversal done in that document is written next to the
file name. By simply clicking on the file name, the user can
go to previous document easily. If the user wants to read
other documents that contain the term “aortic aneurysm”,
without having to go back to previous file, user can hover
on the term “aortic aneurysm” in the “Previous Traversals”
section. When the popup menu appears, the user can select
another file name and go to that document (See Figure 11).

Such a history mechanism is meant to be more than just a
browsing aid. These recorded traversals contain entities and
named relationships. They can therefore serve as “Semantic”
indices in the document corpus. If the user discovered new
and interesting information during such a traversal she could
choose to remember the trail that she followed to get the
information. In the future we plan to build a relationship-
based document index that will allow retrieval of documents
that were found along such trails. This is an idea very similar
to “trailblazing” described by Dr. Vannevar Bush [4].

5. Related Work
In this paper, we presented an implementation that clas-

sifies documents, builds a Semantic Web by using the
semantics of the relationships, and enables users to navigate
among the documents in a meaningful way by using the re-
lationships as opposed to hyperlinks which do not carry any
semantics of relationships between the linked documents. In
this section, we discuss some of the related work to our
approach.

There has been a considerable amount of work done to
discover the relationships between terms in unstructured text

by using natural language processing techniques. There are
several NLP (Natural Language Processing) tools that are
used by third parties to parse the sentences in their dataset
to extract the relationships. GATE (General Architecture
for Text Engineering) [10], CGPARSER [11], OpenNLP
[12], and Link Grammar [13] are some of the commonly
used NLP tools. In our implementation however, we used a
structured text (XML file) to generate triples (two entities
and the relationship between them). By using these triples,
we generate our ontology.

There are many algorithms for automatic clustering, such
as the K-Means algorithm [14], hierarchical clustering [15]
and Expectation Maximization [16] to form the clusters.
These algorithms do not utilize the relationships that exist
between the terms. In their paper “Text Clustering using
Semantics” [17], the authors have proven that using rela-
tionships between the documents increases the accuracy. In
their work, they demonstrate that the text clustering using
semantics outperforms other clustering algorithms which
do not use semantics of relationships. The advantage of
our application is that we have the relationships not from
document to document, but from term to term. These terms
may appear either in the same document, or also in different
documents. Thus, any two documents may be connected to
each other via multiple relationships that exist between term
pairs.

There are some “Semantic Browser” implementations
[18]–[22] that enable users to navigate between the different
websites by using semantic relationships. To the best of
our knowledge, our Semantic Browser tool is the only
existing work that uses AJAX technology [9]. By using
AJAX technology, and JavaScript that works on the client-
side, users do not have to install anything to their machine.
AJAX technology works on almost all of the commonly-
used browsers, such as; Microsoft Internet Explorer, Mozilla
Firefox, Chrome, SeaMonkey, Camino, Flock, Epiphany,
Galeon, Netscape, and Apple Safari.

Anyone who has used Flickr, GMail, Google Suggest,
or Google Maps will realize that a new breed of dynamic
web applications is emerging. These applications look and
act very similar to traditional desktop applications with-
out relying on plug-ins or browser-specific features. Web
applications have traditionally been a set of HTML pages
that must be reloaded to change any portion of the content.
Technologies such as JavaScript programming language and
cascading style sheets (CSS) have matured to the point where
they can be used effectively to create very dynamic web
applications that will work on all of the major browsers
[23]. Likewise our implementation, although being a web
application, looks and acts like a desktop application.

Semantic Web content and Semantic Web tools depend
each other. Without sufficient Semantic Web content, few
tools will be written to consume it; without many such
tools, there is little appeal to publish Semantic Web content.



In the Piggy Bank project (MIT) [22], they define this
problem as “chicken-and-egg problem”, and they provide
a web browser extension called Piggy Bank that lets users
make use of Semantic Web content within web content
as users browse the Web. By using Piggy Bank, a tool
integrated into the contemporary web browser, Firefox, web
users extract information items from within web pages and
save them in RDF format [24]. When the user visits a web
site, if there is a structured data of the same information
available to retrieve, the web browser shows a “data coin”
icon in the status bar for each site. By clicking on that
icon, the “pure” information from each web site is collected.
The browser Piggy Bank shows the information items it
has collected from one of the sites, right inside the same
browser window. The user can also tag an item with one
or more keywords, to help him/her find it later. The “tag
completion” dropdown suggests previously used tags that the
user can pick from. The user can also tag or save several
items together. To make this effort in collaborative way, with
one click on the “Publish” button for each item, the user
publishes information to the Semantic Bank. Thus, other user
can use this information. Although having some similarity to
our project, their approach differs from ours in the usage of
semantics of relationships. They cluster documents by using
metadata in RDF, but not using relationships.

The project “Magpie” [26] is similar to our project.
However, in Magpie, a plug-in is needed to be installed to
browser, whereas in our project no plug-in is needed. In
the Magpie, they have very few relationships (around 6-7),
whereas we have 49 relationships in our project. Because
they have also very few classes (around 4 usually), they
show the different classes with different colors. Having 135
classes in our project, this was not possible.

6. Conclusions and Future Work
In this paper, we described a tool that allows users

to navigate between documents using virtual relationships.
However, currently we use relationships that exist between
the types of instances, not between the instances. This
method works most of the time. However, we can not assume
that it holds true all the time. Because it is not guaranteed
that when there is a relationship between any two types,
the relationship should exists between every instances of
these two types. For instance; in our ontology schema, there
is a relationship “adjacent_to” between classes “body part
organ” and “body location or region”. Some of the instances
of the class “body part organ” are breast, prostate. Some
of the instances of the class “body location or region”
are cheek, chin, elbow, and abdomen. If we try to put
“adjacent_to” relationship between some of instances, we
would get incorrect statements. If we put “adjacent_to”
relationship between prostate and chin, then this would not
be a correct statement. In order to always get correct results,

we need relationships at the instance level of the ontology,
not at the schema level.

Currently, the indexing using Lucene [7] does not take
relationships into consideration. We will index our dataset
by also using the relationships that are extracted from the
documents. In this way, more relevant documents will be
returned to the user.

Besides providing the users ease of browsing between the
documents, our goal is also to reduce the time that a user
has to spend with documents. Among the returned multiple
documents, we should rank the documents based on their
relevance to the triples, the user may be interested to learn.

Our work is one of the earliest attempts at utilizing the
semantic relationships to support browsing and navigation
of a document space.

References
[1] Unified Medical Language System. http://umlsinfo.nlm.nih.gov
[2] Medical Subject Headings. http://www.nlm.nih.gov/mesh
[3] Home Remedies and Natural Cures for Common Illnesses

http://www.home-remedies-for-you.com/remedy/Measles.html
[4] Vannevar Bush: As We May Think. The Atlantic Monthly 176(1): 101-

108 (1945)
[5] Kshitij Shah, Amit P. Sheth: Logical Information Modeling of Web-

Accessible Heterogeneous Digital Assets. 266-275
[6] National Center for Biotechnology Information.

http://www.ncbi.nlm.nih.gov
[7] Apache Lucene Home Page. http://lucene.apache.org/java/docs
[8] Semantic Discovery: Discovering Complex Relationships in Semantic

Web. http://lsdis.cs.uga.edu/projects/semdis/sweto/index.php?page=5
[9] Ajax: A New Approach to Web Applications by Jesse James Garrett.

http://www.adaptivepath.com/publications/essays/archives/000385.php
[10] GATE, General Architecture for Text Engineering. http://gate.ac.uk
[11] Contextual Grammars. http://www.uni-koblenz.de/ harbusch/CG-

PARSER/welcome-cg.html
[12] OpenNLP Home Page. http://opennlp.sourceforge.net
[13] Link Grammar. Davy Temperley, Daniel Sleator, John Lafferty.

http://www.link.cs.cmu.edu/link
[14] J. B. MacQueen (1967): "Some Methods for classification and Analy-

sis of Multivariate Observations, Proceedings of 5-th Berkeley Sympo-
sium on Mathematical Statistics and Probability", Berkeley, University
of California Press, 1:281-297

[15] A.K. Jain and R.C. Dubes. Algorithms for Clustering Data, Prentice
Hall, Englewood Cliffs NJ, U.S.A., 1988.

[16] Arthur Dempster, Nan Laird, and Donald Rubin. "Maximum likeli-
hood from incomplete data via the EM algorithm". Journal of the Royal
Statistical Society, Series B, 39(1):1Ű38, 1977

[17] Choudhary, R., Bhattacharyya, P.: Text Clustering Using Semantics.
The 11th International World Wide Web Conference, WWW2002,
Honolulu, Hawaii, USA (2002)

[18] Haystack Project. http://haystack.lcs.mit.edu
[19] Semantic Browser. Associative Similarity Browsing.

http://semanticbrowser.aspasia-systems.de
[20] BigBlogZoo Home Page. http://www.bigblogzoo.com
[21] Amblit Navigator. http://www.amblit.com/products
[22] Piggy Bank Home Page. http://simile.mit.edu/piggy-bank
[23] AJAX. http://java.sun.com/developer/technicalArticles/J2EE/AJAX
[24] Resource Description Framework. http://www.w3.org/RDF
[25] Semantic Browser. http://lsdis.cs.uga.edu/projects/semdis/SemanticBrowser/
[26] Martin Dzbor, John B. Domingue, and Enrico Motta. Magpie -

towards a semantic web browser. In Proceedings of the 2nd Intl.
Semantic Web Conference,October 2003. Sanibel Island, Florida.


