
QAComPS: A Quality-aware Federated Computational

Semantic Web Service for Computational Modellers

Abstract—This research sets out to help computational

modellers to select the most cost effective Cloud service

provider. This is when they opt to use cloud computing in

preference to in-house HPC facilities. Cloud computing is a

pay-per-use model for accessing computing resources from a

variety of service providers such as Amazon EC2.

Increasingly cloud providers are offering the high

performance computing options that are necessary for

computational modellers.

The paper is concerned with a quality-aware computational

broker (QABroker). The QABroker service federates across

specific service packages offered by a selected set of

computational cloud providers that potentially meet the

user’s computational resource and QoS requirements. These

vary during the various stages of the computational

modelling cycle. The core of the QABroker is a novel

Quality-aware federated computational semantic Web

service (QAComPS). This includes an integrated ontology-

based system that makes use of OWL2 features. This is used

to filter the cloud providers’ services into three groups.

These are: High, Medium and Low quality of service. This

classification is then used by a MatchMaker to automatically

select the highest ranked service that meets the user

requirements.

A SAWSDL interface was used to transfer semantic

annotations to/from the QAComPS service and QABroker.

Early evaluation of the QAComPS service was very

promising and demonstrates its potential to make cloud

computing more accessible and cost effective for

computational modellers.

Keywords
Cloud computing, quality aware service, semantic Web,

SAWSDL, computational modelling and broker mediation

I. Introduction
The motivation for this research was to help computational

modellers to have cost-effective access to computational

cloud services. Computational modellers address complex,

real-world problems through building computerized models

of physical phenomena. Their modelling often requires

access to HPC facilities. Typically, their computational and

quality of service needs vary during the modelling life cycle.

This research therefore focuses on developing a quality-

aware computational broker (QABroker) that automates for

the user the process of selecting and running a cloud provider

service that meets the user‘s computational and Quality of

Service (QoS) requirements throughout the lifetime of the

model and development.

Cloud computing [1] provides predictable and flexible on-

demand pay-per-use access to a shared pool of computing

resources (e.g. networks, servers, storage facilities,

applications and services). In this research we were

concerned solely with IaaS (Infrastructure as a Service)

cloud service providers. Each cloud computing service

provider offers the user a choice of different VMs (Virtual

Machines). A VM emulates a physical machine.It is

performed by hardware virtualization where a physical

machine is used for creating VMs. Each VM has processor,

memory, storage and other resources. Price of a VM depends

on the allocated resources (e.g. the amount of run-time

memory and the number of CPU cycles).

The user therefore has to choose between cloud computing

service providers and also between the VMs they offer. This

research considers the cloud providers: Amazon EC2 [2],

Rackspace [3] and FlexiScale [4]. Amazon EC2 now offers

a clustered HPC option so it is reasonable to assume other

cloud providers will also offer comparable HPC services.

An early comparative study of HPC cloud providers is given

in [5] and [6] reports their experience of using EC2 for HPC.

This paper is concerned with a computational cloud broker

service called the QABroker that mediates across a selected

set of computational cloud providers. The broker service

includes a cost structure that incorporates QoS metrics such

as reliability, user satisfaction (or reputation), cost and

security. The role of the QABroker is to automate the

selection process of cloud providers and their associated

VMs. The selection process takes account of the user‘s

computational resource and QoS requirements at that point in

time. The user receives the selected VMs without needing to

know about the provider.

A key step in building the QABroker was to design and

evaluate the Quality-aware federated computational

semantic Web service (QAComPS). The main features of

QaComPS are:

1. A federated cloud provider‘s ontology service to

integrate the information on the QoS and cloud

provider‘s resources with associated costs;

2. An automatic (agent) selection process to discover the

best VM that meets the computational modellers QoS

and resources requirements;

Peter M. Dew (1) and Shahzad Nizamani (1, 2)

[1] School of Computing University of Leeds LS2 9JT, UK

[2] Mehran University of Engineering & Technology, Pakistan

p.m.dew@leeds.ac.uk, scsan@leeds.ac.uk

mailto:p.m.dew@leeds.ac.uk
mailto:scsan@leeds.ac.uk

3. A semantic annotation for web service description

language (SAWSDL) interface between the Broker

information and QAComPS service, for example to

update the QoS metrics.

A primary evaluation study was performed to demonstrate

the feasibly and value of the QAComPS service. The paper is

structured in the following way: §2 provide the details on the

proposed QABroker service architecture, in which the novel

QAComPS service resides. The following section provides

details of the QAComPS semantic Web service including the

architecture and ontology. This is followed in §4 with the

evaluation study and key details of the implementation. §5

covers the relevant background literature and the last section

provides the conclusions and recommendations for future

work.

II. QA Cloud Broker

a. QA-Aware Cloud Services
A number of papers around 2003/2004 discuss QoS issues in

Web Services (e.g. see [7-9] and more recently [10]). Service

ontology provides a consistent semantic data model for

describing QoS metrics that are non-functional properties.

The two types of QoS are ―best–efforts‖ and ―guaranteed

service‖. Here we use ―best-efforts‖ that is referred to as

Quality-awareness where the service provider can: (1) just

drop the service in the case of overload; and (2) provide no

guarantees concerning the response time, job throughput

etc.). Today most public cloud providers only offer quality

aware services. This paper also provides a quality aware

service.

Figure 1 Cost Model

Figure 1 shows the use of QoS and the cloud cost. Four non-

functional QoS metrics were considered:

Cost C(p), Reputation Rp (p), Reliability Rl(p) and Security

S(p)

where p is a provider and each rating is on a rating scale of 1

– 9 with 1equating to lowest quality and 9 to highest quality.

Selection of these illustrative and other QoS metris can be

added/deleted as required in the future. The cost QoS is

computed from the cost model described below. The

reputation and reliability ratings of the VM used can be

updated with quantitative data after each computational

modelling run. Security ratings are updated qualitatively. A

MatchMaker matches the user‘s QoS requirements against

all the VMs that the different providers offer and

subsequently ranks the VMs from best to worst on the

closeness of the match. This technique is widely used for

selecting Web Services. In our case the goal is to

automatically select the VM that meets the user‘s

computational resource and QoS requirement at the lowest

cost. For fuller details on the QoS metrics and the

MatchMaker the reader is referred to paper [9, 10]. As it can

be difficult for the user to specify the exact QoS they require

they are asked to indicate whether they desire a high,

medium or low QoS. They are also required to state the

relative importance of the each QoS metric for a job. The

QABroker can be adapted to incorporate additional levels.

Three levels were used in our evaluation study.

b. Case Study
At the University of Leeds, computational modellers have

been experiencing frustrations in two areas. Firstly, they feel

disadvantaged by the way local HPC facilities schedule jobs

with a run-time of twelve hours or more (a feature of much

of their work). The turnaround time of these jobs can be

unpredictable depending on the size of the HPC job queue

and long job runs may be limited to weekends. Secondly,

they find the price and reliability of the service. These are

inflexible and do not cater very well for their computational

service needs as they vary throughout the model

development process. For example in the early stages of the

modelling, when job runs tend to be short and each one has

relatively little importance depending on the outcome, the

developer may be happy to accept some reduction in service

reliability in order to have lower run time costs. However,

the longer the run time for a job, the more important it is that

the run is successfully executed at the first attempt. In

addition, at certain times, for example when demonstrating to

project sponsors, the reliability of the service is crucial, and

for these job runs, the modeller is likely to prefer to pay a

premium rate for very high reliability.

Figure 1 illustrates the way cost and quality of service are

related and indicates the likely preferences of the

computational modeller during three phases (model

development, production runs and demonstration). The

QABroker would discover the user‘s computational and QoS

preferences at each stage of the life cycle of the model. This

information would enable the broker to make a set of VM

selections. Each choice would meet the modeller‘s

computational and QoS requirements at the lowest cost.

QABroker Service Architecture

Figure 2 shows our envisioned QABroker, the environment

in which the QAComPS semantic Web service is used. The

QABroker cloud service is managed by an external Broker.

To illustrate the services figure 2 shows two Web services:

 Broker RUN Web Service provides the infrastructure to

enable the computational modeller to run their job on the

selected cloud;

 Broker information Web service manages the

information for the QAComPS service.

QABroker

Service Interface to Consumer

Service Interface

Semantic

Metadata

Service Interface

Service Development

Set up and

update

services

Automatically

RUN the selected

Cloud services and

return results and log

to the user tenancy

Broker Information UI Comp. Modeller UI

Seamless

access to

Comp. Cloud

providers

UI

and Cloud

manage-

ment

Update QoS

information,

Cost model

paras

Web

Services

Semantic Web

Service

Web Service

RUN selected

Cloud with

preloaded user’s

code

RUN
QAComPS:

federated cloud

provider selection

process with

MatchMaker

Add/update/

delete active

provider’s list

(ProvUpDate)

Figure 2 QA Cloud Services

The QAComPS semantic Web service is the main service

discussed in this paper. Its purpose is to select the VM that

best meets the user‘s QoS and computational requirements.

This required enhancing the capability of the MatchMaker to

automatically make VM selections. This would more

precisely meet the user‘s requirements than had previously

been possible. This QAComPS service is fully described

below. It makes use of external Web services as shown in

the diagram.

These Web services are used for two purposes: (1) To access

the world of cloud providers, from which the Broker selects,

a set of suitable computational cloud providers; (2) Where

possible the Broker transparently accesses the provider‘s

information from their WSDL document or API. The Broker

service monitors each provider for any changes to the

information it holds about each provider and updates its

records at each Broker service break.

In addition to the QAComPS the QABroker internal services

include: (1) the UI and management (not developed further

in this paper); (2) a QABroker information service to

dynamically manage updates about the QoS of each VM.

The information in these updates is periodically passed

across to the QAComPS service; (3) a RUN Service that

provides the framework to run the selected cloud provider‘s

VM; and (4) The ProvUpDate service maintains a list of

available providers. It activates and deactivates providers

depending on their availability and performance.

The RUN service has a SAWSDL interface that receives

Resource Description Framework (RDF) information from

the VM selected by the QAComPS. The RDF information

is used to access the selected cloud service and run the user‘s

computational model. The job log is by QABroker and is

also uploaded to the user‘s tenancy.

III. QAComPS Service
This is a novel service that mediates across providers‘

various VMs. The service contains a logical model that

integrates three areas of information: general information on

the VM and cloud providers; details of the computational

resources the VMs offer and information about their QoS.

The model contains four QoS parameters: cost; reliability;

reputation and security (each on a scale from one to nine).

The precise meaning of a QoS rating is a business decision.

The cost element of the QoS model is derived from a

separate Cost model. This maps cost against the

computational resources purchased for example RAM (GB),

virtual core (integer), Disk space (GB), price per hour,

communication and storage services. The cost model can be

expressed as:

Cost = (α x Cl + β x Dt)/ (α + β)

where Cl is made up of memory (GB), processor (virtual

cores), and non-persistent storage. Dt is the data transfer rate

and α, β are constants chosen by the broker. The

computational resource size is in four bands: Small,

Medium, Large and Very Large. Table 1 shows the actual

cost values used in our evaluation study. Here the model

does not include long term storage costs that may also be

important.

Table 1: Broker Cost Model RUN Service

 Cost/ hour Memory GB #Cores Storage GB

Small 0.06 2.00 1 160

Medium 0.13 4.00 4 500

Large 0.22 8.00 8 800

Very Large 0.45 16.00 16 1700

The costs are based on an exchange rate of 0.6 £/$ and it

assumes a Linux operating system.

Three cloud providers were considered: Amazon, Rackspace

and FlexiScale as a representative sample of computational

cloud services. These providers were used to specify a

logical cost model and associated resources (see Table 1).

This was used by the MatchMaker that forms part of the

selection process. This is discussed in the next section.

The cost model was also used to define the cost QoS rating.

In our evaluation study we used three cost bands: Low (1 –

4) equates to high cost VMs (the most expensive for the

computational resources they provide); medium (5 – 7)

represents intermediate value for money and high (8 – 9)

represents excellent value for money (the lowest cost). Cost

bands are the main linkage between the actual costs (what

the user pays) and the Cost QoS ratings.

Amazon is a cloud provider that explicitly offers HPC VMs.

These are clustered and support applications using MPI (the

message passing interface) and running very computationally

intense jobs. As these services are ideal for running HPC

applications the broker RUN service can be restricted to

considering only computational clouds that offer this type of

service.

a. Architecture

QAComPS SWS

Ontology

Management

MatchMaker

RDF

Management

WSDL or API Provider Interface

SWS

Update QoS

(reliably and

reputation

collected after

each RUN, Cost

and Security as

needed by the

Broker

Update Active/

Deactivate Providers Update Cost

model values

Selected

Provider (RDF)

RUN Selected

Cloud provider

Provider - Ever High,

Medium or Low

service

QoS

Provider’s

List
RDF

Resources
Ontology

Figure 3 QAComPS Architecture

The QAComPS architecture has three main functions: (1)

The management of the selected providers; (2) The

matchmaker; and (3) The selection of the best cloud

provider. The service ontology federates across the active

cloud providers and logically filters the providers‘ VMs into

High, Medium or Low quality services. This filtration

improves the performance of the selection process.

The first stage of the selection process is to apply the widely

used Euclidean distance algorithm [4] to rank the active

provider‘s VMs based on the four QoS ratings. The second

phase is to take the top five ranked VMs and use the Analytic

Hierarchy Process (AHP) [11]. It is a widely used MCDA

(Multi Criteria Decision Analysis) based method that uses a

hierarchical approach to decision making. The AHP process

matches the VMs against the user requirements using the

QoS levels (High, Medium and Low) together with weights.

A weight represents the importance of each QoS parameter

for the particular job. For example at certain times the cost

parameter may be much more important to the user than the

parameter ‗provider reliability‘. QoS levels and weights

express the relative priority of each QoS parameter. The

performance evaluation results are given below along with

the justification for our approach (see §4).

b. Provider’s Ontology

vMname

VMuURL,

hPCSupport,

ccomments.

name, id,

wsdl, web

uRL,

hypervisor.

Provider

Information

Property

Restriction – Provider

#Cores:Int,

Memory:double,

non-Persistent

 Storage:double

VirtualMachine

(at least 1)

Cost: small’

medium, large &

veryLarge

Class

VMProvider

ActiveVMProviderVMProviderHPC

Active

VMProviderHPC

Property

Restriction –

UpDate

Provider hasUpPr

Figure 4 Provider‘s ontology

The Provider‘s ontology is shown in Figure 4. The top class

is the Provider and a sub-class models the number of Virtual

Machines (VM) offered by the provider. An OWL2 property

restriction is used to ensure that there is at least one VM. As

discussed above the cost model provides four levels varied

by VM size. An information class is provided that handles

information associated with a provider. The VMProvider

class models the type of VM and whether it‘s active or

inactive. A UpDateProvider class enables the information on

the selected Provider‘s VM to be transferred to RUN service

using SAWSDL annotations.

c. QoS ontology

QoSRequest QoS

Reli-

ablity

Reputa-

tionCost
Secur

ity

Class

hasQoS

Req.

hasQoS

Rank

Low 1 to

Extremely 9

preferred

Low 9 to

Extremely

preferred

(inverse)

Rank

Rank

Enumeration

1-9

h
a

s
C

o
s
tR

a
tin

g

h
a

s
R

e
p

u
ta

tio
n

R
a

tin
g

h
a

s
R

e
lia

b
ilty

R
a

tin
g

h
a

s
Q

o
S

R
a

tin
g

h
a

s
S

e
c
u

rity

R
a

tin
g

Figure 5 QoS Ontology

The QoS ontology is based on the QoS model as discussed

above. It uses an OWL2 Rank Enumeration giving the

meaning to the ranking. The data properties enable the user

to access each QoS data property. A QoSRequest class

enables communication of information between the

QAComPS and the broker information service using

SAWSDL annotations.

d. Filter Ontology

 Figure 6 Filter Ontology

The purpose of the filter ontology is to formally classify the

providers‘ VMs into three groups. These are Classes named

High, Medium and Low Service. They are used by the

MatchMaker. Our evaluation results in §4 show the

effectiveness of the filter and this simple classification for

Logic: ServiceQuality and

hasCost only HighRank and

hasReputation only

HighRank and hasReliabity

only HighRank and

hasSecutiy only HighRank

the selection of the best VM. The ontology is shown in figure

6. The two main Classes are ServiceQuality and Service.

There is an object property linking them. The QoS ratings

(1-9) are again used for each QoS metric. The meaning

given to the three service quality levels are: High (8-9),

Medium (7-5) and Low (4-1). The meaning of each level is

assigned by using the OWL2 union property restriction. The

logical expression to do this is:

UQoS = C & Rp & Rl & S

where C, Rp , Rl & S are given in §2.1. The meaning

assigned to each service quality class is as follows:

HighServiceQuality is UQoS ≥ 8; MediumServiceQuality is

UQoS ≥ 5 and < 8; and LowServiceQuality = UQoS < 5.

The semantic Web statements are shown in figure 6.

Logic for filtering providers for high QoS is given below:

Logic: ServiceQuality and hasCost only HighRank and

hasReputation only HighRank and hasReliabity only

HighRank and hasSecutiy only HighRank.

The logic for medium and low can be given in the same

manner.

IV. Evaluation
The evaluation identified whether the QAComPS selected

the ―best‖ provider while fulfilling all the QoS constraints. It

also pointed to any performance lags and other issues with

the proposed solution. The proposed solution evaluation was

mainly for the selection process against AHP and Quality

Matchmaking Process (QMP) [9] that used a combination of

Euclidean Distance and AHP algorithms. QAComPS was

implemented as a service. In order to undertake this

experiment AHP and QMP services were needed to be

created. These services were created and tested before

undertaking the evaluation. This section is subdivided into a

description of the experiment and its results.

a. Experiment
The experiment consisted of the development of two

services: QAComPS (responsible for processing user

requests) and QABroker (used for updating the provider

information).

QABroker provided a light weight service used for creating

and updating provider information. Inputs to the service were

provider and VM information shown as data properties in

Figure 4. This information was processed by creating a

model of the ontology with the inputted data values. This

was than inferred and reasoned for any errors. If there were

no errors than the information was added to a newly created

RDF record and an entry was made in the index file. For this

experiment public providers such as Amazon were

considered but were not used as it would have been too

expensive. The results from this research will provide

assurance before investing further with this research. Instead

twenty five simulated providers were created each offered a

different set of QoS metrics while all of them offered the

same computational resources. The simulated providers

offered small, medium, large VMs while public providers

also offered extra large VMs that were not part of this

experiment. The resource information associated with small,

medium or large came from public cloud providers and is

shown in Table 1. QAComPS as described in section 2.3 that

used SAWSDL to communicate with other services.

SAWSDL annotations included a model reference, and

lifting and lowering schema mapping data. The model

references represented entities that form part of the ontology

while the lifting and lowering schema mapping formed the

communication channel between QAComPS and other web

services. The lifting schema mapping was used for

transferring data from a non-semantic source, such as XML

to QAComPS. For the lowering schema mapping QAComPS

used a SPARQL query to extract information from RDF and

pass it to a non-semantic web service.

QAComPS MatchMaker consisted of a ranking and selection

step. It started off by receiving a user request that consisted

of resource and QoS requirements. The resource

requirements included memory, storage and CPU

requirements. The QoS requirements were low, medium and

high. The request was passed on to the Euclidean Distance

based ranker that ranked the list of available providers. The

top five providers were passed on to the AHP-based

matchmaker that selected the ―best‖ provider. At the top of

the AHP hierarchy the goal was setup to identify the best

provider. This was followed by the QoS criteria parameters

and their associated weights. These were inputted by the user

to reflect their relative priorities. At the bottom of the

hierarchy there were alternatives that represented available

VM options.

b. Results
The experiment was performed by creating twenty five

simulated providers and twenty four user requests. There

were eight user requests each for low, medium and high

QoS. They were controlled requests whose output was

previously calculated beforehand to identify the progress of

each service. Each user request was passed to AHP, QMP,

QAComPS and QAComPS (with filter).

Figures 5, 6 and 7 showed the results. The horizontal axis

shows the user request whilst the vertical axis shows the

logical cost. The logical cost model is given in (section III).

The logical cost is measured on a scale of one to nine (with

nine showing the best option).

The selection was dependent on the user requests and

provider QoS. While providers with higher QoS service and

lower costs were selected more than once there were other

providers which were not selected at all as they offered

higher costs and lower QoS. The results shown in figures 5,

6 and 7 show the average cost of the selected providers. At

the start of the experiment user requests for high QoS were

made and then for medium and lower QoS.

Figure 5 shows the results for high QoS. This means that

each of the QoS rating (Cost, Reliability, Reputation and

Security), for the selected providers, were high. It can be

observed that AHP, QAComPS with and without the filter

produced good results. However QAComPS had some

inconsistencies and QMP was not very effective.

Figure 5 MatchMaker Comparisons (High QoS)

Figure 6 shows the results for medium QoS where the

selected providers had a medium level of QoS for all four

ratings. It can be observed that QAComPS and QAComPS

(with filter) were very effective.

Figure 6 MatchMaker Comparisons (Medium QoS)

Figure 7 shows the results for low QoS, for the selected

providers, all have low QoS ratings. It can be observed that

QMP was very effective with low QoS while QAComPS

(with filter) was consistent for all the user requests.

Figure 7 MatchMaker Comparisons (Low QoS)Overall AHP

performed well for user requests for higher QoS and did not

perform well for medium and low QoS. This may be due to

the way AHP selects the best provider as it prioritize high. It

behaved in a different way to a fixed set of simulated

providers and prioritized selecting the same provider more

than once.

 Overall the AHP performed well for higher level of QoS

while it did not perform well for others. AHP was effective

for major changes to user requests however and it was less

effective to smaller changes. This may be in part due to the

way the algorithm worked as we were using the same data

set for every request while it is still being investigated.

QAComPS without the filter works well for high and

medium with some discrepancies but was not very effective

for low while the introduction of filter resolves produces

effective results for any QoS. There were no performance

issues as the processing time for the twenty five user requests

was always under two seconds.

Overall QMP performed well for low but not so well for

medium and high. This is due to the way QMP operates as it

may prioritize for providers offering lower QoS

Overall QaCompS performed well for high and medium QoS

while for low it was not good. This was due to the way

QaComPS operates as it always prioritises requests for

higher QoS and prefers selecting providers with higher QoS.

Overall the results showed that the QAComPS (with filter)

performs best for all the three levels of QoS. Another

advantage of the filter was that the performance was

enhanced as it reduces the set of relevant providers which

results in less processing.

V. Related Research

For the background Semantic Web Ontology the reader is

referred to [12]. There are two approaches to creating

semantic web services. One is a top down approach using

OWL-S the other is a bottom up solution using either

SAWSDL [13] or WSMO lite [14]. SAWSDL annotations

were used in this paper. This avoids the complexity of using

OWL-S [15] while retaining the benefits of a semantic user

interface.

There are a number of papers on semantic matchmaking

arising from e-commence. The most notable is [16] that

presents a prototype matchmaking service using description

logic and DAML-S (this was a forerunner to OWL-S).

However for performance concerns a non-semantic

matchmaker was used in this paper.

There are also papers on QoS Web services that use

ontologies. In [17] they provide a novel, rich and extensible

ontology for the selection of the requested QoS. Also see

[18, 19]. However these ontologies were too comprehensive

for this research.

The Grid community [20] has been actively involved in QoS

Web services federated by a broker. This brokerage involves

managing the negotiation between the service provider and

the service consumer and recording any service level

agreement (SLA) that is reached. Such brokers often use the

standard on-line WS-Agreement SLA document [21] for

enforcement (including QoS guarantees). For example, see

the ASSESS project that considers risks to fulfilling the SLA

(e.g. because of reliability failures) [22]. Buyya and Ranjan

discuss a federated resource manager for both the grid and

cloud providers [23]. Rochwerger et.al. [24] argue that cloud

providers have only recently begun to address the

requirements of enterprise solutions, such as support for

infrastructure service-level agreements. Their Reservoir

project aims to enable providers of cloud infrastructure to

0

5

10

AHP QMP QaComPS QaComPS
(filter)

C
o

st
 E

ff
e

ct

MatchMaker (High)

0

5

10

AHP QMP QaComPS QaComPS
(filter)

C
o

st
 E

ff
e

ct

MatchMaker (Medium)

0

5

10

AHP QMP QaComPS QaComPS
(filter)

C
o

st
 E

ff
e

ct

MatchMaker (Low)

dynamically partner with each other to create a seemingly

infinite pool of IT resources. A new EU cloud project called

OPTIMIS [25] is also aimed at enterprise cloud computing.

Its goal is to enable organizations to automatically

externalize services to trustworthy and auditable cloud

providers in a hybrid cloud model. WS-Agreement are being

used in this project.

VI. Conclusion

This paper has presented a novel quality-aware federated

computational semantic Web service (QAComPS). This

service enabled automatic selection of cloud providers.

QaComPS is the key service for the envisioned cloud broker.

The evaluation results have potentially shown that QaComPS

service can successfully select the best computational cloud

provider that meets the user‘s resource and QoS

requirements. The paper has also shown the benefits of using

semantic annotations to communicate with external services.

For the future this research needs to ground the simulated

results to actual computational cloud providers. The next

stage is to fully integrate QaComPS service into to QaBroker

service.

QaComPS selects the best cloud provider and passes the

RDF file of the selected provider onto the cloud run service.

This service invokes the required VM and deploys a VM

image on the selected VM. Public providers such as Amazon

offer a public DNS key which is used to access VMs

remotely. The run service shares this key with the user which

grants the user access to the VM. The user can now run his

code on the VM and can also install new software. Once the

user has completed the job he notifies QaBroker which

invokes the cloud run service to stop VM.

This research also has the potential for helping brokers

provide a service within a specified timeframe. This service

assumes that a user or broker has inserted a number of

checkpoints. This would enable the performance of the

selected VM to be monitored during a job run. These jobs

typically take many hours it would be possible to switch to

another VM if the job run fell behind schedule. This would

help the broker fulfill service level agreements irrespective

of difficulties encountered with a particular VM. This moves

us closer to providing a guaranteed service. This assumes

that the modeling process is particularly regular to predict

the end performance.

VII. Acknowledgments
The authors are extremely grateful to Dr. Benadon Bennett

for writing the Filter ontology. Thanks to Professor Peter

Jimmack for posing the computational modelling scenario.

Thanks also to Dr K Djemame his support for this research.

 VIII. References

[1] Armbrust, M., Fox, A., Griffith, R., and Joseph, A.D.: ‗A view of cloud

computing‘, Communication of the ACM, 2010, 2010, 53, (4), pp. 50-58.

[2] Amazon Web Services. http://aws.amazon.com/ec2 (09/03/2011).

[3] Rack Space Hosting. www.rackspace.co.uk/cloud-hostin (09/03/2011).

[4] FlexiScale Public Cloud. http://flexiscale.com (09/03/2011).

[5] He, Q., Zhou, S., Kobler, B., Duffy, D., and McGlynn, T.: ‗Case Study
for Running HPC Applications in Public Clouds‘2009.

[6] Evangelinos, C., and Hill, C.N.: ‗Cloud Computing for parallel

Scientific HPC Applications: Feasibility of running Coupled

Atmosphere-Ocean Climate Models on Amazon's EC2‘. Proc. CCA-
08, Chicago 2008.

Menasce, D.: ‗Composing Web Services: A QoS Veiw‘, IEEE

Internet Computing, 2004

[8] Menasce, D.: ‗QoS Issues in Web Services‘, IEEE Internet Computing,

2002.

[9] Eleyan, A., Mikhailov, L., and ., L.Z.: ‗Quality-of-Services in Web
Services Architecture‘, Ingnierie des Systmes d'Information, Special

Issue on Information Systems Quality, 2004, 9, (5-6), pp. 185-203.

[10] Tran, V., Tsuji, H., and Masuda, R.: ‗A new QoS ontology and its QoS-

based ranking algorithm for Web services‘. Proc. Simulation
Modelling Practice and Theory, 2009.

[11] Saaty, T.L.: ‗How to make a decision: the analytic hierarchy process‘,

European Journal of Operational Resea rch, 1990, 48, (1), pp. 9-26.

[12] Allemang, D., and Hendler, J.: ‗Semantic Web for the Working

Ontologist‘ (Morgan Kaufmann, 2008.

[13] Kopecky, J., Vitvar, T., Bournez, C., and Farrell, J.: ‗SAWSDL:
Semantic annotations for WSDL and XML schema‘, IEEE Internet

Computing, 2007, 11, (6),

[14] Brooke, J., Fellows, D., Garwood, K., and Goble, C.: ‗Semantic

matching of Grid resource descriptions‘, in Editor ‗Book Semantic
matching of Grid resource descriptions‘ (Springer-Verlag, 2004,),

pp.60-67.

[15] Vitvar, T., Kopecký, J., Viskov, J., and Fensel, D.: ‗Wsmo-lite

annotations for web services‘. Proc. Proceeding ESWC'08 Proceedings

of the 5th European semantic web conference, 2008

[16] Martin, D., Burstein, M., Mcdermott, D., and Mcilraith, S.: ‗Bringing

semantics to web services with owl-s‘. Proc. World Wide Web 2007.

[17] Li, I., and I Horrocks: ‗A software framework for matchmaking based

on semantic web technology - International Journal of Electronic
Commerce, Proc. WWW2003, May 20-24 2003.

[18] Wang, F., Vitvar, T., Kerrigan, M., and Toma, I.: ‗A QoS-aware

selection model for semantic web services‘, IEEE Transaction
Software Engineer, 2006, 30, (5), pp. 311-327.

[19] Kritikos, K., and Plexousakis, D.: ‗Semantic QoS metric matching‘.

Proc. European Conference on Web Services (ECOWS'06) 2006.

[20] Ian Foster, Carl Kesselman, and Steven Tuecke ‖The Anatomy of the

 Grid: Enabling Scalable Virtual Organizations‖ International Journal

 of High Performance Computing Applications Fall 2001 15

[21] Andrieux, A., Czajkowski, K., Dan, A., K. Keahey, Ludwig, H.,

Pruyne, J., Tuecke, S., and XU, M.: ‗ Web services agreement
specification (WS-Agreement)‘, in Editor ‗Book Web services

agreement specification (WS-Agreement)‘ (Gridforum.org), 2006.

[22] K. Djemame,J. Padgett, I. Gourlay, and D. Armstrong. ‗Brokering of

Risk-Aware Service Level Agreements in Grids‘. Concurrency and
Computation: Practice and Experience, Vol. 23, No. 7, May 2011

[23] Buyya, R., and Ranjan, R.: ‗Special section: Federated resource

management in grid and cloud computing systems‘, Future Generation

Computer Systems, Elsevier B.V., 2010.

[24] Rochwerger, B.B., D. Levy, E. et al: ‗The Reservoir model and
architecture for open federated cloud computing‘, IBM Journal of

Research and Development, 2010, 53, (4), pp 1-11.

[25] A.Juan Ferrer, F.Hernandez, J.Tordsson, E.Elmroth, R.M.Badia,

K.Djemame ‗OPTIMIS: a Holistic Approach to Cloud Service

Provisioning‘. In Proceedings of the 1st International Conference on

Utility and Cloud Computing (UCC 2010), Chennai, India, Dec 2010.

[7]

http://aws.amazon.com/ec2
http://www.rackspace.co.uk/cloud-hostin
http://flexiscale.com/

