
Software Defect Taxonomy, Analysis and Overview

Ali A Karahroudy, M.H.N. Tabrizi

Asgharykarahroudy10@students.ecu.edu, Tabrizim@ecu.edu
Computer Science Department, East Carolina University, Greenville, NC, USA

Abstract - In this paper an overall analysis of

current defect taxonomies is presented also plans for

well defined process based taxonomy is carefully

created using the existing models. The existing

software defect taxonomies do not focus fully on the

process, in most cases process and product are

studied in parallel and significant amount of time is

spent to identify and debug the defects or prevent

them from occurring again. Our study is focused on

the defects found based on the process in which they

are found and selected based on the largest potential

impact on the final product that will have significant

impact in defect prevention.

Keywords: Defect, Taxonomy, Process, Model,
Frame ware, Attribute

1. Introduction

Various studies attempt to quantify the losses caused
by software defects. As a recent instance Toyota has
announced a recall for its 2010 hybrid vehicles. A
break problem caused by faulty antilock braking
software is believed to be the reason [1]. Tens of
thousands of medical devices were recalled in March
2007 to correct a software bug [2]. Another example
is the first flight of the European Space Agency's new
Ariane 5 rocket failed shortly after launching [3],
resulting in an estimated uninsured loss of a half
billion dollars. It was reportedly due to the lack of
exception handling of a floating-point error in a
conversion from a 64-bit integer to a 16-bit signed
integer.

It is also reported that [4] software bugs caused the
bank accounts of 823 customers of a major U.S. bank
to be credited with $924,844,208.32 each in May
1996, according to newspaper reports. The American
Bankers Association claimed it was the largest such
error in banking history. According to bank
spokesman the programming errors were corrected
and all funds were recovered. One study [5]

estimated losses to the U.S. economy alone due to
software defects at $60 billion annually.

There are many instances of monumental software
failures that have staggering losses up to and
including the loss of human life. In 2010, a software
problem caused bank cards to fail across Germany
[6]. It is also likely that Air France flight 447 was
brought down due to software defect that was not
able to handle the extreme weather conditions. In
1999, the Mars Climate Orbiter was lost due to
software confusing pounds with kilograms. One of
the most notable instances of software failure was the
Therac-25 radiation treatment system [7]. In this
case, faulty software caused patients to be given
massive overdoses of radiation, killing several of
them.

Defect prevention in early stages of software
development life cycle is very cost effective.
Meanwhile the more defect prevention processes are
in place, the more costs will be imposed to the project
budget therefore a very well balanced model is
needed to fulfill both defect prevention and cost
effectiveness.

However Software’s complexity and accelerated
development schedules make defects prevention
difficult. Also current models like peer reviews,
analysis tools, and different testing techniques detect
different classes of defects at different points in the
development cycle. [8] providing the justification that
no existing model can be enough as a standalone
model.

Organizations are still asking how they can predict
the quality of their software despite the substantial
research effort over the last 30 years. [9] where wide
range of prediction models have been proposed.
Complexity and size metrics have been used in an
attempt to predict the number of defects a system will
reveal in operation or testing. Reliability models have
been developed to predict failure rates based on the
expected operational usage profile of the system. The
maturity of design and testing processes has been

advanced as ways of reducing defects. Recently large
complex multivariate statistical models have been
proposed in an attempt to find a single complexity
metric that will account for defects [9].

1. Software Defect Taxonomy

It is reported that the best way to prevent and control
software defects is using proper defect taxonomy [10]
(A defect is a structural property of software
document of any kind, namely a deviation from the
nearest correct document that makes the document
incorrect or locally incorrect. Taxonomy is a system
of hierarchical categories designed to be useful aid
for reproducibly classifying things) the area of
software quality measurements and quantification is
beset with undue complexity and has, in some ways,
advanced away from the developer [11]. In an area
where the processes are so amorphous, the tangibles
required for measurement and modeling are few.
With the result academic pursuits that can't be
confined to the limitations of practice evolved and
became distanced from the developer. In this area,
the need to derive tractable measurements that are
reasonable to undertake and intuitively plausible
cannot be understated. Measurement without an
underlying theme can leave the experimentalist, the
theorist and the practitioner very confused.

Defect removal and defect prevention techniques [12]
are no longer good enough to inspire confidence for
software products. Techniques that help predict the
number of remaining defects in software products can
further boost customer confidence. Such techniques
are easy to perform and have been used outside the
realm of software engineering to produce reliable
estimates for decades in the area of animal, bird, fish,
and insect counts, and more recently for estimating
the prevalence of “SARS” (Severe Acute Respiratory
Syndrome) and cancer occurrences.

In this paper we will review major taxonomies that
are being used by software developers.

1.1. Orthogonal Defect Classification

The ODC (Orthogonal defect classification) [13] is a
scheme to capture the semantics of each software
defect quickly. It is the definition and capture of
defect attributes that make mathematical analysis and
modeling possible. Analysis of ODC data provides a
valuable diagnostics method for evaluating the
various phases of the software life cycle (design,
development, test and service) and the maturity of the
product. ODC makes it possible to push the

understanding and use of defects well beyond its
quality.

An evolved model based on ODC is introduced by
Madachy and Bohme [14] is called Orthogonal
Defect Classification COnstructive QUALity Model
(ODC COQUALMO) that predicts defects introduced
and removed, classified by ODC types. Using
parametric cost and defect removal inputs, static and
dynamic versions of the model help one determine
the impacts of quality strategies on defect profiles,
cost and risk.

The dynamic version provides insight into time
trends and is suitable for continuous usage on a
project. The models are calibrated with empirical
data on defect distributions, introduction and removal
rates; and supplemented with Delphi results for
detailed ODC defect detection efficiencies. This work
has supported the development of software risk
advisory tools for NASA flight projects. They have
demonstrated the integration of ODC COQUALMO
with automated risk minimization methods to design
higher value quality processes, in shorter time and
with fewer resources, to meet stringent quality goals
on projects. There are different implementations of
ODC COQUALMO as static versions in a
spreadsheet and one that runs on the Internet that
estimate the final levels of defects for the ODC
categories. They have developed a dynamic tool to
apply COQUALMO in the field that could be found
at [15].Different methods for risk analysis and
reduction have been performed in conjunction with
ODC COQUALMO, which can produce optimal
results in less time

Another technique to reduce risks with the model is a
strategic method of optimization. It generates optimal
risk reduction strategies for defect removal for a
given budget, and also computes the best order of
activities. An integration of ODC COQUALMO has
also been prototyped with the DDP risk management
tool which uses fault trees to represent the overall
system's dependencies on software functionality.
These experiments to optimize quality processes are
described in more detail in [16].

1.2. Defect Severity and Defect Priority

Based on [17] the severity framework for assigning
defect criticality that has proven that a five level
criticality scale is the most effective scale to study
defects. The criticality associated with each level is
based on the answers to several questions:

• It must be determined if the defect resulted in a
system failure.

• The probability of failure recovery must be
determined.

• It must be determined if the system can do this
on its own or if remedial measures must be
implemented in order to return the system to
reliable operation.

• It must be determined if the system can operate
reliably with the defect present if it is not
manifested as a failure.

• It must be determined if the defect should or
should not be repaired.

The five level scale of defect criticality addresses the
above mentioned questions are; critical, major,
average, minor and exception. In addition to the
defect severity level defined above, defect priority
level can be used with severity categories to
determine the immediacy of repair. A five repair
priority scale has also been used in common testing
practice. The levels are: resolve immediately, give
high attention, normal queue, low priority, and defer.

1.3. Statistical Defect Models

The goal of statistical defect modeling, which
includes what is commonly referred to as Software

Reliability Growth [18], has been to predict the
reliability of a software product. Typically, this may
be measured in terms of the number of defects
remaining in the field, the failure rate of the product,
the short term defect detection rate, etc. Although this
may provide a good report card, it often occurs so
late in the development cycle that makes it of little
value to the developer. Ideally, a developer would
like to get feedback during the development life
cycle.

1.4. Qualitative Casual Analysis

To identify the root causes of the defects, the defects

are analyzed, one at a time, by a team that is

knowledgeable in the area.

At IBM, the Defect Prevention Process and similar

efforts elsewhere have found causal analysis to be

very effective in reducing the number of errors

committed in a software project [19]. The qualitative

analysis provides feedback to developers that

eventually improve both the quality and the

productivity of the software organization. Defect

prevention can provide feedback to developers at any

stage of their software development process.

However, the resources required to administer this

method are significant, although the rewards have

proven to be valuable. Moreover, given the

qualitative nature of the analysis, the method does not

lend itself well to measurement and quantitative

analysis. Consequently, defect prevention, though not

a part of the engineering process control model, could

eventually work in conjunction with it.

1.5. Peer Review Technique

Peer reviews, in particular software inspections, have
become accepted within the software industry as a
cost effective way of removing defects as early as
possible in the software development cycle [20] The
peer review process is also quite easy to measure.

Peer reviews are included in the Software
Engineering Institute’s Capability Maturity Model
Integration (CMMI ®) [21] as a required process for
those organizations following the CMMI as a guide
for process improvement. Peer reviews are especially
valuable as a way to remove defects early in the
development cycle and should be performed on all
major software development work products including
requirements, design, code, and test procedures. The
software inspection method of performing peer
reviews is generally considered the most effective
method of performing peer reviews [22] and is an
indisputable software engineering best practice.
Other types of peer reviews that are practiced with
varying degrees of formality are team reviews,
walkthroughs, and pair programming. Once peer
reviews are an established practice, the data from
each peer review can be used for defect management.
For this purpose the following data from each peer
review are recommended to be collected [23]:

• Program, function, and work product identifiers

• Type and phase of review, e.g., design
walkthrough or code inspection

• Who attended and how much time was spent
preparing for the review meeting

• How long the review meeting(s) lasted and who
attended the meeting

• Size of the work product, e.g., pages of design or
source lines of code (SLOC)

• Total major defects and total minor defects
detected

 For each defect found the following data is
recommended [24]:

• Defect type, e.g., missing, wrong, or extra.

• Defect origin, i.e., the development phase where
the defect originated, e.g., requirements, design
or code. Note that it is possible that a defect can
be discovered in a later phase than when it was
first inserted, e.g., a design defect can be
discovered during a peer review of code.

• Defect severity, i.e., major or minor. A major
defect being any defect that could be discovered
or observed by a customer during operational use
of the software, or a defect that requires
significant time to fix. Minor defects are
everything else, e.g., documentation errors.

• Defect location, e.g., module or program element
name.

And finally from the collected data the following
derived measurements are recommended for each
peer review:

• (Major) defects per detection hour – the average
number of major defects found for each hour of
detection time derived by dividing the number of
major defects found by the sum of the
participants’ total preparation time and total time
(labor hours) spent in the review meeting

• Average preparation rate - the average rate at
which each reviewer prepared, e.g., pages per
hour, which indicates how quickly the material
was reviewed.

• Meeting rate, e.g., pages per hour

• (Major) defect detection rate – the ratio of the
number of defects found per the size of the work
product, e.g., defects per page or defects per
1000 SLOC (KSLOC)

After a sufficient amount of peer review data has
been collected by similar projects and data integrity
has been established, average rates can be established
for the 3 preparation, meeting, and defect detection
rates (for each type of peer review for each type of
work product). This is usually done by the
organization’s measurement guru or analyst. From
these averages high and low detection rate thresholds
can be established to trigger further analysis of the
data and possible action. An advanced method is to
apply statistical process control (SPC) [25] and
calculate the normal range of performance for each of
these rates.

2. Process Based Defect Taxonomy

Process based taxonomy assumes that defects are
recorded when they are found throughout the
software process lifecycle, including their
classification according to the defect taxonomy.
Recording defects and classifying them can help
understand the process with respect to all those
activities that produce defects in particular, they help
in identifying process weaknesses (high-defect steps).
In the other view, after product testing a list of
defects is produced that pinpoints the defects in
product and their roots causes. This view is not
talking about the process as a root to defect and
usually brings up suggestions for rework approach
and believes that the kinds of defects may point out
the best approach for doing rework (e.g. direct repair,
review, redesign, retest, etc.). Defect characteristics
of artifacts may help with risk assessment for process
decisions such as task priorities, go/no-go decisions,

reimplementation decisions etc.

Despite high amount of effort into studying root
cause analysis or qualitative analysis and bringing up
“Why” a specific defect is “produced” and how to
prevent it in future products, in most of the studies
the importance of process has been ignored. if a
taxonomy comes up with processes as center of
gravity, and point out the probability of preventing
defects based on process developments, that not only
will help the future projects – as the current process
based taxonomies do – but also serves to make a
better final product for an ongoing project.

2.1. Defect Driven Process Taxonomy

One of the biggest contributors to software defect is
“human” factor that is usually underestimated by
others. It seems like that they focused on the results
of human actions rather than “nature” of human
behaviors that will lead to those results.

A study is needed with focus on defects based on the
process in which they are found. These defects are
selected based on their potential impact on the final
product.

This study should focus on the following
characteristics of the process:

• When process starts and when ends

• What are the major and minor goals of the
process

• How human behaviors can affect the process and
in which level

• Is it possible to break down the process to sub-
processes

• Define the defects that can be produced by
specific process

• Define the severity of those defects and their
affect in project success

• Use mathematical methods for modeling the
process

Then a process improvement method can be elicited
from this study. The mathematical methods will then
be deployed to help in quantifying the processes in
order to make them more manageable and
understandable.

2.2. Framework

Generally to the authors believe the process based
taxonomy framework should focus on the following:

• Process Attributes;
o Taxonomy is defined by attributes. Each

attribute has a set of values. The values
represent defect characteristics that must be
registered at the process studying procedure.

o These attributes should be the ones which can
help analyze the process in future.

• Process Structure;
o Structure defines the relationship between

processes and the way they interact with each
other.

o One of the most used structures can be
orthogonal relationship that has been vastly
used by IBM.

• Process Properties;
o Unique properties of each process that can be

helpful for identifying that process as a “type”
and be used in future cleaning procedures to
make it faster and more effective should be
defined for each process.

• Effectiveness rate;
o A touchable parameter to evaluate each

cleaned process is needed to be in place that
will be used in order to compare the results.

Finally a modeling method can combine the entire
information gathered through this procedure to
introduce software defect taxonomy. This taxonomy
could prove to be much more cost effective than
those already exist.

Conclusion

Much of the published work in the defect Taxonomy
modeling area is focused on debugging rather than
defect prevention and mostly they emphasis the final
product or testing results. This review paper shows
that many past studies have suffered from including
the process as a standalone artifact. The issues and
problems surrounding the models illustrate how
difficult defect prediction is and how easy it is
introduce modeling errors. Specifically, we found out
that those existing models using size and complexity
metrics alone are incapable of predicting defects
accurately. Furthermore, these models do not
describe how defect introduction and detection
variables affect defect quantity and quality. The
existing software defect taxonomies often do not
focus fully on the process based approach. In most
cases process and product are studied in parallel and
significant amount of time is spent to identify and
debug the defects or prevent them from occurring
again. To the author’s believe, considering a process
based taxonomy which is carefully created and
implemented benefits from strength of already
developed taxonomies and avoid their weaknesses.

References:

[1] Douglas A. McIntyre, 17 Feb 2010 “24/7 Wall

Street”, http://247wallst.com/

[2] Wikipedia “List of Software Bugs”,
http://en.wikipedia.org/wiki/List_of_software_bugs

[3] Gleick James, A bug and a Crash, 1996
“Sometimes a bug is more than a nuisance”.
 http://www.around.com/ariane.html

[4] Softwareengineeringrefrence.com, Software
Failure list, 2010
 http://www.sereferences.com/software-failure-
list.php

[5] National Institute of standards and technology
NIST, WED, APR 28, 2010 14:59
http://www.itbusinessedge.com

[6] Byline Bill Hoffman, CTO, Kit ware, 2009
“Software defects, one developer at a time”

[7] Lim Joanne October 1998, “An Engineering
Disaster: Therac-25” PP 1-2

[8] Boehm Barry, victor R. Basili , Jan 2001
“Software defect reduction top 10 List”

http://portal.acm.org/citation.cfm?id=621640

[9] Norman E. Fenton, 1999, “A Critique of Software
Defect Prediction Models”

[10] Freie Universitat Berlin Researchhome website
https://www.inf.fu-berlin.de/w/SE/DefectTaxonomy

[11] Chillarege Ram, 1992, “Orthogonal Defect
classification a concept for in-Process Measurement”
http://www.chillarege.com/articles/odc-concept

[12] Joe Schofield from Sandia National
Laboratories, 2005 , “Beyond Defect Removal:
Latent Defect Estimation with Capture Recapture
Method (CRM)”, PP 1-2

[13] IBM. Refer to IBM Center of software
Engineering at IBM Research web site ODC.
http://www.research.ibm.com/softeng/ODC/ODC.HT
M

[14] Raymond Madachy and Barry Boehm from
university of southern California, 2001, "Bayesian
Analysis of Software Costs and Quality Models"

[15] http://csse.usc.edu/tools/odc_coqualmo.php
[16] Madachy R., Boehm B., Richardson J., Feather
M., Menzies T.” Value-Based Design of Software
V&V Processes for NASA Flight Projects, In: AIAA
Space 2007 Conference, (2007)”,
http://csse.usc.edu/csse/TECHRPTS/2008/usc-csse-
2008-830/usc-csse-2008-830.pdf

[17] Pavankumar Pothuraju's weblog, 23 Aug 2007,
“The library of software Testing”
 http://geekswithblogs.net/ppothuraju/Default.aspx

[18] Shaik Mohammad Rafi ,Dr. K. Nageswara Rao
and Shaheda Akhtar, 2002, ” Software Reliability
Growth Model with Logistic-Exponential Test-Effort
Function and Analysis of Software Release Policy”.

http://www.enggjournals.com/ijcse/doc/IJCSE10-02-
02-50.pdf

[19] Chillarege Ram , 1993, “Process Measurement,
Analysis and Control”
http://www.chillarege.com/articles/odc-process-
control

[20] Karl E. Wiegers, Peer Reviews in Software,
Addison-Wesley, 2002, “Using Peer Review Data to
Manage Software Defects”
http://www.compaid.com/caiinternet/ezine/lett-
defects.pdf

[21] Beth Chrissis Mary , et al., 2007 “CMMI ® for
Development, Version 1.2, Addison Wesle”.

[22] Ronald A. Radice, “High Quality Low Cost
Software Inspections, Paradoxicon Publishing”, 2002

[23]H. Lett Steven, 2002, “Using Peer Review Data
to Manage Software Defects”

http://www.compaid.com/caiinternet/ezine/lett-
defects.pdf

[24] H. Lett Steven 2001, “General Management of
Software Defects” PP 4-5

[25] Addison Wesley, 1999, “ Measuring the Software
Process” PP 3

[26] Hower Rick, 2007, “software QA and testing
frequently asked questions”
 http://www.softwareqatest.com/qatfaq1.html

[27] Raymond Madachy, Barry Boehm, USC-CSSE-
2008-817, "ODC COQUALMO - A Software Defect
Introduction and Removal Model using Orthogonal
Defect Classification” ,

