
Evaluation of the Testing Methods in Agent-Oriented
Software Engineering

A. Saeed Zamani 1, B. Ramin Nassiri 2 and C. Sam Jabbehdari 1
1Department of computer engineering, Islamic Azad University, Tehran north branch, Iran

2

Department of computer engineering, Islamic Azad University, Tehran central branch, Iran

Abstract - Testing is an important process that can
assure the quality and the correct functionality of the
multi agent systems (MAS). Multiple testing methods in
agent-oriented software engineering (AOSE) have been
introduced in recent years. Although the quality of the
system is dependent on the quality of the applied test
method, very little attention has been paid to evaluating
these testing methods. As a result, it is difficult to select a
sufficient method for testing an agent-based system.
Additionally, there are no means to determine what the
advantages and drawbacks of each method are. This
paper proposes a framework for evaluating and
comparing the testing methods in AOSE. This framework
addresses major divisions of a testing method. The
framework is then used to evaluate some prominent
testing methods, have been proposed so far. A subset of
these testing methods, which cover more criteria in the
proposed framework, is presented.

Keywords: Agent-Oriented Software Engineering,
Testing Methods, Evaluation Framework, Comparing the
Test Methods.

1 Introduction

 Agent-Oriented Software Engineering (AOSE), is
concerned with how to specify, design, implement, verify
(including testing and debugging), and maintain agent
systems [36]. The objective of AOSE is to efficiently and
effectively develop high-quality agent-based software
products. Nowadays, intelligent agent-based systems are
applied to many domains including robotics, network
security, traffic control, and ecommerce. Therefore, the
owners and the operators of these systems need
guarantees over quality and correct functionality of them
[11]. This calls for suitable software engineering
frameworks, including testing techniques, to provide
high-quality software development processes and
products [23].

 During the last decade, many methodologies have been
proposed for developing agent-based systems but current
state of AOSE paradigm reports relative lack of industrial
acceptance [1]. Furthermore, the application of these
methodologies is still limited due to their lack of maturity
and standardization. Testing is one of the most urgent
activities that are often disregarded in most agent-
oriented methodologies [7]; mainly because they focus on
analysis and design activities, and relegate the

implementation and testing to the traditional techniques
[20]. Software testing is one of the most important phases
in software engineering, and plays a pivotal role in
software quality assurance.

 Under ideal situations, with minimal testing efforts,
integration of reliable software agents should produce
high-quality agent-based systems. In reality, however,
many agent-based software characteristics, such as
autonomy, pro-activity, mutual relationships of these
agents and relationships with the environment impose
great difficulties on achieving this goal and make
traditional techniques inefficient.

 To thoroughly understand the difficulties and key
issues in testing and maintaining the agent-based
software, and thereby to apply adequate methods, this
paper focuses on the following questions:

1. What are the key characteristics of agent-based
systems that distinguish them from other systems
(merely according to testing)?

2. How can agent oriented software testing methods
verify these characteristics?

 In order to answer these questions, the testing issues
are characterized by proposing a framework to evaluate
the existing testing methods. We consider the methods
employed by agent-oriented methodologies (there are
also several methodologies that do not include testing in
their process models [7]) and the methods that are not
related to any specific methodology (e.g. [9]). Comparing
prominent agent-oriented testing methods and evaluating
their strengths and weaknesses, play an important role in
improving their performance. This can also contribute to
applying appropriate testing methods or combinations of
various methods and techniques. Within the last few
years many frameworks have been proposed for
evaluating AOSE methodologies, e.g. [17], [35]. These
frameworks merely check if the testing process is
mentioned in the methodologies or not. There is no work
on verifying the quality of the testing methods in AOSE
methodologies. Yet, comparing methods is often difficult,
because they might address different aspects or differ in
their terminology. For instance, some methods verify the
static structure of the agent systems [4], [23], while the
others verify the dynamic behavior [9]; some focus on the
Agent Level of the systems while some consider that the
agents are reliable and focus on the Society Level of the

systems. Comparing is also problematic with some
methods that are influenced by a specific methodology
(e.g. Tropos, MaSE and Prometheus).

 This paper is organized as follows. Section 2 describes
our proposed framework for comparing and evaluating
AOSE testing methods. In Section 3 the framework is
applied in order to compare the existing multi-agent
testing methods and finally Section 4 concludes the
paper.

2 The Evaluation Framework

 In [11], six testing method were evaluated. The
evaluation criteria are divided into two test levels and
their test types (white box and black box). In this paper, a
comprehensive framework of evaluating and comparing
agent-oriented testing methods is proposed. This
framework offers a well-defined, structured set of aspects
that an agent-oriented testing method should include. The
first major division of the framework is based on the
framework suggested by [2]. This study extends and
modifies this framework to address the properties of a
comprehensive testing method in AOSE. The other major
divisions that are being inspired by [3] and [35] are not
specifically related to AOSE and could be considered in
other software engineering paradigms, e.g. object
oriented and procedural. We refer to a testing method as
the entire set of these major divisions:

• Multi-agent systems test basics
• Test process
• Test techniques
• Test pragmatism

 Each of these four major divisions includes their
specific criteria that will be explained in the following.
The proposed framework is illustrated in figure 1.

 We emphasize that these four divisions, are in fact four
different views of the whole test method, and can
overlap; i.e. some of the criteria may be present in
different divisions, having different names but the same
identity.

2.1 Multi Agent Systems Test Basics

 Multi-agent systems testing are normally divided
into multi layers [9], [11] and [29]. According to the V-
model [31], the Test Levels are: testing agents as
individual units of the MAS, testing the integration of
collaborator agents and testing the whole system.
Dynamic Testing (will be discussed in 2.3) should be
used in the first layer, in order to verify the behavior of an
agent. Much of this testing would require another agent to
trigger an event inside the agent to be tested, such as a
message from another agent, or an event from the
environment [9]. Furthermore, Static Testing (will be
discussed in 2.3) should be used for validation in the first
layer.

 We have changed the general V-model by adding a
layer called "Agent Acceptance Test" after testing the
functionality of an agent in the first layer. This test layer
is concerned with the essential properties of agents such
as Autonomy, Pro-activity and Sociability. Testing agents,
according to these properties, is the most challenging task
which makes the traditional testing methods insufficient.

 Two main issues in Integration Level testing of an
agent-based system are to be considered: (i) data models
define the contents and format of the interactions in the
control protocol and (ii) as agent-based systems are built
under a distributed environment, which will then inherit
all issues of the distributed systems, such as race
conditions and deadlocks.

Figure 1 - Multi Agent Systems Test Evaluation Framework.

 Agents are different from objects and interaction is
based on communication language and protocols, rather
than invoking the functions of each other. In addition, the
agent-based systems include agents that autonomously
pursue their individual goals and access resources and
services of the environment. Therefore, deadlock
detection techniques must differ from other distributed
systems. A set of errors that could occur in unit level and
integration level of agent-based system are presented in
[28].

 After the end of the System Level testing, the
functionality of the whole system could be assured.
Furthermore, Performance Testing is needed to verify
that all of the worst case performance targets have been
met (according to the resource constraints within the
system, e.g., time, CPU and memory). Since these
systems are also non-deterministic [11], this kind of
testing will be challenging too. Within the last layer,
Validation should be performed to find out whether the
system has met the stakeholders requirements or not.

 Testing types (e.g. functional, nonfunctional and
regression) are independent of a particular test level. In

the Generic Testing division, the evaluation is about the
existence of test types in the test levels. For instance,
since agents are work flexibly in a dynamic environment
without continuous direct supervision [11], and may
change through the time, regression testing (for parts that
have been changed) and progressive testing (for parts that
have been added) must be performed in the integration
level.

 The last important factor in testing is how to define
Quality Metrics in AOSE. Well-established metrics and
measures, aligned with project objectives, will enable the
tester to track and report the test and quality results. A
lack of metrics and measurements leads to subjective
assessments of quality and testing [3]. Not only metrics
and measurements are crucial, but also baselines (An
acceptable result), are required to verify the actual quality
of the system under test, against the expected quality.
Although these metrics are different from traditional
software metrics, only few studies have addressed the
issues of AOSE metrics.

2.2 Test Process

 We should investigate the way that any testing
method looks at the Test Process in the AOSE. If the
method does not consist of phases then it more looks like
an activity, rather than a process, and may delay testing
until the end of implementation. According to ISTQB
framework1

• Planning and control

 [3], a test process consists of the following
activities:

• Analysis and design
• Implementation and execution
• Evaluating exit criteria and reporting
• Test closure activities

 For any particular testing method, Test Process criteria
involve clarifying what activities of a software testing
process are mentioned within the agent-based system
lifecycle.

 Test Planning sets a framework for deriving Test
Cases2

• Identifying and refining the test conditions for
each test objective.

 and Test Conditions from the Test Basis. The test
basis may include requirements specifications, design
specifications, quality risks, and some other items. In the
Test Control, the test method compares actual progress
against the plan. The Test Objectives are a major
deliverable. The Test Analysis and Design involves the
following sub-activities:

• Creating test cases that exercise the identified
test conditions.

• Creating Test Oracles (will be discussed in 2.3).

1 International Software Testing Quality Board
2 The comprehensive definitions of the aforementioned testing
terms can be found in [12].

 Test Implementation includes all the remaining tasks
necessary to execute the test cases. In this activity, the
test method should run a Single Test Procedure and log
the Test Results. The Evaluation of Exit Criteria and
reporting of results is a test management activity.
Delivering test work products (e.g. error reports, test
plan, etc.) is one of the Test Closure Activities that, a test
method could have.

2.3 Test Techniques

 There are two kinds of Testing Techniques that
presented in the first level of the test techniques division
[3]: (i) static testing (i.e. testing the system without
running it) and (ii) dynamic testing (i.e. testing the
system during its runtime). The test techniques are
applied in the test types (presented in 2.1).

 A sufficient testing method should cover both the static
and the dynamic testing techniques. The input of the
static testing could be the AOSE Artifacts that get
developed in the agent-oriented methodologies [11].
Static and dynamic testing inputs are illustrated in figure
2. The Model checking approaches seem to be more
acceptable static techniques, (because of having less
complexity and better traceability [19]), since these
methods propose that testing could be in some way based
on the models of the system, which are abstractions of the
actual system, and can be used for automated generation
of test cases. Static testing has also the potential to lead to
more accurate requirements Verification.

Figure 2- Input Artifacts for Static and Dynamic Testing.

 On the other hand, dynamic testing is needed for
validating the behavior of agents and the MAS as a
whole. White box testing and black box testing are two
common dynamic testing. White box testing can be
performed in a traditional way, while there are some
problems with the black box testing: It is very hard to
find a test oracle (i.e. a source to determine expected
results to compare with the actual result of the software
under test [12]) for black box testing because of self-
adaptation, learning and the autonomy of agents and
successive tests with the same test data may give different
results [28].

2.4 Test Pragmatism

 In this division, we examine the practical aspects of
using a test method within an agent oriented
methodology. If the method is independent from a

particular methodology, then it becomes more applicable.
Some methods that are evaluated in section 3 are
proposed for specific agent architectures and agent-
oriented methodologies. On the other hand, the methods
that are proposed within AOSE methodologies seem
more reliable. The main reason of the limited
applicability of testing methods is that they are very
challenging and expensive since it is quite complicated to
automate them [6].

 A sufficient testing method should propose a
supporting tool and an automatic test case generator to
reduce the time required for testing [27], and have
visualization techniques, to become more acceptable.

 These methods could also be evaluated on the
mathematical sophistication level (e.g. exploiting the
Petri Nets) and knowledge (e.g. BDI architecture and
Formal methods) required to fully exploit the method.
This consideration could enable an AOSE methodology
to adopt a test method, better within its process.

2.5 Metric

 In order to rank the properties examined in the
evaluation process, we propose a scale of 1 to 3 as
follows:

1: Indicates that the test method does not address the
property.

2: Indicates that the test method refers to the property but
not enough details are provided.

3: Indicates that the method addresses the property with a
particular technique.

 We emphasize that these numbers are not representing
the quality of each property. They only indicate the
existence of a property in the relevant methods; albeit
with an exception for the Test Pragmatism that will be
explained in section 3.

Table 1 – The Evaluation of the Test Methods in AOSE

The
Evaluation of
Test Methods

in AOSE Te
st

C
rit

er
ia

MAS Test Basics Test Process Test
Techniques Test Pragmatism

U
ni

t

A
ut

on
om

y

R
ea

ct
iv

ity

Pr
o-

ac
tiv

ity

So
ci

ab
ili

ty

C
om

m
un

ic
at

io
n

D
is

tri
bu

tio
n

Sy
st

em

Pe
rfo

rm
an

ce

A
cc

ep
ta

nc
e

M
et

ric
s &

 M
ea

su
re

m
en

t

Fu
nc

tio
na

l

N
on

 F
un

ct
io

na
l

C
ha

ng
e

R
el

at
ed

Pl
an

ni
ng

 &
 C

on
tro

l

A
na

ly
si

s &
 D

es
ig

n

Im
pl

em
en

ta
tio

n

C
lo

su
re

 A
ct

iv
iti

es

St
at

ic

D
yn

am
ic

D
om

ai
n

A
pp

lic
ab

ili
ty

To
ol

 S
up

po
rt

R
eq

ui
re

d
Ex

pe
rti

se

A
ut

om
at

ic
 T

es
t C

as
e

ge
ne

ra
tio

n

Test Methods

[29] 3-layer 3 1 1 1 1 1 3 1 3 1 1 3 3 1 1 2 2 1 1 3 3 1 1 1
[18] Automated BDI 1 1 1 1 1 1 1 3 1 1 1 3 1 1 2 3 3 1 3 1 1 3 3 3
[32,33] Conversation

Verification 3 1 1 1 1 3 3 1 1 1 1 3 3 1 1 3 3 2 3 3 1 3 3 3

[27] Design artifacts 3 1 1 1 1 3 1 3 1 2 1 3 1 1 2 3 3 3 3 3 3 3 3 3
[22] Evolutionary Testing 2 2 1 1 1 3 1 3 1 1 3 3 1 2 3 3 3 3 1 3 3 3 1 3

[23] Goal-Oriented 3 1 1 1 1 3 3 3 3 3 1 3 3 3 3 3 3 3 3 1 2 3 2 2
[13] INGENIAS 3 1 1 1 1 3 1 3 2 1 1 3 2 1 2 2 2 1 3 3 1 3 1 1

[8] JAT 3 1 1 1 1 3 1 1 1 1 1 3 1 1 2 3 3 2 1 3 3 3 1 2
[15] MadKit 3 1 1 1 1 3 1 3 3 1 1 3 3 3 1 1 3 1 1 3 3 3 1 1
[6] MAZBD 3 1 1 1 1 2 1 2 1 1 1 3 1 2 2 2 3 1 1 3 2 3 1 3

[9] Mock Agent 3 1 1 1 1 1 1 1 1 1 1 3 1 1 2 2 3 2 1 3 3 3 1 2
[19] Model-based Deadlock

detection 1 1 1 1 1 1 3 1 1 1 1 1 3 1 3 3 3 2 3 3 2 3 2 2

[24,25] Ontology-Based 3 1 1 1 1 3 1 1 1 1 2 3 2 1 2 3 3 1 1 3 3 3 1 3
[26] Prometheus 1 1 1 1 1 3 1 3 1 1 1 3 1 1 2 2 2 2 1 3 1 3 3 1

[30] Regression Testing 3 1 1 1 1 3 1 1 1 1 1 3 1 3 1 2 1 1 1 3 3 1 1 1
[10] SEAUnit 3 1 1 1 1 3 1 3 2 2 1 3 3 2 1 1 2 1 3 3 3 3 1 1
[34] SUNIT 3 1 1 1 1 3 1 3 1 2 1 3 2 2 2 2 3 2 3 3 2 3 2 3

[28] Test Agent 3 1 1 1 1 3 3 2 1 1 3 3 3 3 1 2 3 1 3 3 3 2 1 2
[4] Verifying by model

checking 1 1 1 1 1 1 1 3 1 1 1 3 2 1 1 1 3 2 3 1 2 3 2 1

[16] XP 3 1 1 1 1 3 1 2 1 1 1 3 1 1 1 2 2 1 1 3 1 2 1 2
[21] Zeus 3 1 1 1 1 3 1 3 1 1 3 3 2 2 2 1 3 3 3 3 2 3 1 1

3 The Evaluation of Testing Methods
in AOSE

 In this section we evaluate the selected testing
methods found in literature for the AOSE approach,
according to the framework presented in Section 2. The
evaluation and the points that each method has gained,
are presented in Table 1.

 In the first division of the framework, we evaluate that
which testing layers are covered in the method. Then, the
test types employed in each test layer are checked, and
finally we verify the existence of any metrics and
measurements proposed in the method. We rank the MAS
test basics of each method (discussed in 2.1), according to
the metrics presented in 2.5.

 For the purpose of ranking the test process criteria, we
emphasize that whenever a method does not explicitly
mention the testing activities (discussed in 2.2), we rank
it based on a personal analysis that may not necessarily
reflect the original intentions of the proposers, and that
sometimes has to sharpen shades.

 Whether a method performs during the development
phase without running the system or not, we simply gave
the static testing criterion the ranks of 3 and 1,
respectively. We use the same ranking scheme for the
dynamic testing criterion, to indicate if a method
performs on the running agent-based system.

 Based on the tool support, automatic test case
generation, visualization and knowledge level that may
be suggested by a method, we evaluate the pragmatics
aspect of a method (discussed in 2.4). Furthermore, we
investigate whether the method proposed particular
domain of applicability or development methodology to
use the method, or we can use the method within variant
methodologies. The only exception here is that the given
points indicate the quality of each property in addition to
its existence.

 Due to lack of space we will not discuss the
justification of each given point to a relevant method,
which we leave to future work for the selected methods.
As illustrated in Table 1, there is no single best method to
achieve the highest score in all criteria. Therefore, in
order to choose a comprehensive method for testing in
AOSE, that includes sufficient essential properties, we
have to combine several existing methods.

 As it is not possible to join all methods, we need to
find the smallest subset of all interesting methods.
Interesting are all methods that are not worse than any
other method in all criteria. We use an approach called
Skyline [5] to find the subset of interesting methods.
Table 2 illustrates the skyline of the evaluated methods,
ordered by the total points that each method has gained.
Any method left out of this skyline is dominated by at
least one method presented in the skyline and can be
disregarded in the combination of methods.

 The size of the skyline is still large. It shows that most
of the proposed testing methods in AOSE, present an
approach suitable for at least one group of the MAS
developers. Furthermore, the large size of the skyline
emphasizes the lack of a comprehensive testing method
in AOSE. From the Skyline, we can now make our final
decision, thereby weighing our personal preferences for
testing criteria.

Table 2 – The Skyline of the Test Methods in AOSE

The Test Method Total Point
[23] Goal-Oriented 57
[27] Design artifacts 52

[22] Evolutionary Testing 51
[34] SUNIT 50

[28] Test Agent 50
[32,33] Conversation Verification 49

[21] Zeus 48
[15] MadKit 46

[10] SEAUnit 46
[24,25] Ontology-Based 45

[19] Model-based DL detection 44
[13] INGENIAS 43

[29] 3-layer 40

4 Conclusion
 In this paper, we investigate the essential aspects
that an agent-oriented test method should include. The
proposed framework in section 2 divides these aspects
into the four major divisions: MASs test basics, test
process, test techniques and pragmatism. All these criteria
are explained in section 2. Section 3 demonstrates the use
of the proposed framework by performing an evaluation
of some prominent testing methods. We conclude that
there is no method that covers all criteria. As a result, in
order to find a sufficient test method we have to combine
several different methods. The selected subset of testing
methods is presented in Table 2. The combination of
these methods fulfills most considered criteria. However,
there are some criteria which are disregarded by most of
the methods, e.g. the agent acceptance testing.
Furthermore, the evaluation demonstrates low points in
the performance test, the metrics and measurements and
the test process. In our future work, we plan to devise a
method to promote the testing process in AOSE, by
dominating the uncovered criteria and performing a
standard testing process, proposed by ISTQB.

5 References

[1] Akbari, Z. “A survey of agent-oriented software
engineering paradigm: Towards its industrial
acceptance”; Journal of Computer Engineering Research,
Vol. 1, Issue 2, pp. 14-28, April 2010.

[2] Ayatollahzadeh Shirazi, M.R., Abdollahzadeh
Barfouroush, A. “A Framework for Agent-Oriented

Software Engineering Based On an Analytical Survey”;
Iranian Journal of Electrical and Computer engineering,
Vol. 6, Issue 1, pp. 36-47, 2007.

[3] Black, R. “Guide to the ISTQB Advanced
Certification as an Advanced Test Manager”. Rocky
Nook, Vol. 1, 2009.

[4] Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.
“Verifying multi-agent programs by model checking”;
Autonomous Agents and Multi-Agent Systems, Vol. 12,
Issue 2, pp. 239-256, 2006.

[5] Borzsonyi, S., Kossmann, D., and Stocker, K. “The
skyline operator”; In Proceedings of the International
Conference on Data Engineering (ICDE’01), pp. 421-
430, 2001.

[6] Caire, G., Cossentino, M., Negri, A., Poggi, A., and
Turci, P. “Multi-agent systems implementation and
testing”; From Agent Theory to Agent Implementation -
Fourth International Symposium (AT2AI-4), Vienna,
Austria, April 2004.

[7] Cernuzzi, L., Cossentino, M., Zambonelli, F. “Process
Models for Agent-based Development”; Journal of
Engineering Applications of Artificial Intelligence, Vol.
18, Issue 2, pp. 205-222, 2005.

[8] Coelho, R., Cirilo, E., Kulesza, U., von Staa, A.,
Rashid, A., Lucena, C. “Jat: A test automation framework
for multi-agent systems”; In Proceedings 23rd IEEE
International Conference on Software Maintenance
(ICSM07), pp. 425-434, 2007.

[9] Coelho, R., Kulesza, U., von Staa, A., Lucena, C.
“Unit Testing in Multi-Agent Systems using Mock
Agents and Aspects”; In Proceedings of the 2006
International Workshop on Software Engineering for
Large-Scale Multi-Agent Systems, 83-90, 2006.

[10] Ekinci, E.E., Tiryaki, A.M., Çetin, Ö. “Goal-oriented
agent testing revisited”; In proceedings of the Ninth
International Workshop on Agent-Oriented Software
Engineering, pp. 85-96, 2008.

[11] Gatti, M.A.C., Staa, A.V. “Testing & debugging
multi-agent systems: a state of the art report”;
Departamento de Informa tica, PUC-Rio, Rio de Janeiro,
2006.

[12] Glossary Working Party. “Standard glossary of
terms used in Software Testing"; International Software
Testing Qualifications Board, 2010.

[13] Gomez-Sanz, J.J., Botía, J., Serrano, E., Pavón, J.
“Testing and debugging of MAS interactions with
INGENIAS”; In proceedings of the Ninth International
Workshop on Agent-Oriented Software Engineering, pp.
133-144, 2008.

[14] Graham, D., Van Veendendal, E., Evans, I., Black,
R.; “Foundations of Software Testing ISTQB
Certification”. Patrick Bond, 2008.

[15] Huget, M.P., Demazeau, Y. “Evaluating multiagent
systems a record/replay approach”; In Proceedings of the
IEEE/WIC/ACM International Conference of Intelligent
Agent Technology (IAT 2004), pp. 536-539, 2004.

[16] Knublauch, H. “Extreme programming of multi-
agent systems”; In Proceedings of the First International
Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), pp. 704-711 2002.

[17] Lin, C.E., Kavi, K.M., Sheldon, F.T., Daley, K.M.,
Abercrombie, K. “A Methodology to Evaluate Agent
Oriented Software Engineering Techniques”; In
Proceedings of the 40th Hawaii International Conference
on System Sciences, pp. 1-10, 2007.

[18] Low, C.K., Chen, T.Y., Rönnquist, R. “Automated
Test Case Generation for BDI agents”; Autonomous
Agents and Multi-Agent Systems, Vol. 2, Issue 4, pp.
311-332, 1999.

[19] Mani, N., Garousi, V., Far, B.H. “Testing Multi-
Agent Systems for Deadlock Detection Based on UML
Models”; In proceedings of the 14th International
Conference on Distributed Multimedia Systems
(DMS08), Boston, USA, pp. 77-84, 2008.

[20] Moreno, M., Pavon, J., Rosete, A. “Testing in Agent
Oriented Methodologies”; Omatu et al. (Eds.): IWANN,
Part II, LNCS 5518, Springer-Verlag Berlin Heidelberg,
pp. 138-145, 2009.

[21] Ndumu, D.T., Nwana, H.S., Lee, L.C., Collis, J.C.
“Visualization and debugging distributed multi-agent
systems”; In Proceedings of the third annual conference
on Autonomous Agents (ACM press), pp. 326-333, 1999.

[22] Nguyen, C.D., Perini, A., Tonella, P. “Constraint-
based Evolutionary Testing of Autonomous Distributed
Systems”; In proceedings of IEEE International
Conference on Software Testing Verification and
Validation Workshop (ICSTW'08), pp. 221-230 2008.

[23] Nguyen, C.D., Perini, A., Tonella, P. “A goal-
oriented software testing methodology”; Luck, M.,
Padgham, L. (eds.) Agent-Oriented Software Engineering
VIII. LNCS, Springer, Heidelberg, vol. 4951, pp. 58-72,
2008.

[24] Nguyen, C.D., Perini, A., Tonella, P. “Experimental
Evaluation of Ontology-Based Test Generation for Multi-
agent Systems”; M. Luck J.J., Gomez-Sanz (eds.): Agent-
Oriented Software Engineering, Springer-Verlag Berlin
Heidelberg, pp. 187-198, 2009.

[25] Nguyen, C.D., Perini, A., Tonella, P. “Ontology-
based test generation for multi agent systems (short
paper)”; In Proceedings of the 7th International

Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2008). Estoril, Portugal, pp. 12-16,
2008.

[26] Padgham, L., Winikoff, M., Poutakidis, D. “Adding
Debugging Support to the Prometheus Methodology”;
Engineering Applications of Artificial Intelligence,
special issue on Agent-oriented Software Development,
Volume 18, Issue 2, pp. 173-190, March 2005.

[27] Poutakidis, D., Winikoff, M., Padgham, L., Zhang,
Z. “Debugging and Testing of Multi-Agent Systems
using Design Artefacts”; R.H. Bordini et al. (eds.), Multi-
Agent Programming, Springer Science + Business Media,
pp. 215-258, 2009.

[28] Rouff, C. “A Test Agent for Testing Agents and
Their Communities”; Aerospace Conference Proceedings,
IEEE Volume 5, pp. 2633-2638, 2002.

[29] Salamon, T. “A Three-Layer Approach to Testing of
Multi-agent Systems”; G.A. Papadopoulos et al. (eds.):
Information Systems Development, DOI
10.1007/b137171_41, Springer Science Business Media,
pp. 393-401, 2009.

[30] Srivastava, P., R., Anand, K., Reddy, S., Raghurama
G. “Regression Testing Techniques for Agent Oriented
Software”; In Proceedings of the International
Conference on Information Technology, pp.221-225,
2008.

[31] The V-Model: The Development Standards for IT
Systems of the Federal Republic of Germany 2005,
http://www.v-modell.iabg.de/ (cited February 2011).

[32] Timothy, H.L., DeLoach, S.A. “Automatic
Verification of Multiagent Conversations”; In the Annual
Midwest Artificial Intelligence and Cognitive Science
Fayetteville, 2000.

[33] Timothy, H.L., DeLoach, S.A. “Verification of
Agent Behavioral Models”; In Proceedings of the
International Conference on Artificial Intelligence (IC-
AI'2000), 2000.

[34] Tiryaki, A.M., Oztuna, S., Dikenelli, O., Erdur, R.C.
“Sunit: A unit testing framework for test driven
development of multi-agent systems”; Padgham, L.,
Zambonelli, F. (eds.): AOSE VII / AOSE 2006. LNCS,
Springer, Heidelberg, vol. 4405, pp. 156-173 2007.

[35] Sturm A., Shehory, O. “A Framework for evaluating
agent-oriented methodologies”; In Proceedings of
Workshop on Agent-Oriented Information System
(AOIS), Melbourne, Australia, pp. 60-67, 2003.

[36] Winikoff, M. “Future Directions for Agent-Based
Software Engineering”; Special section on Future of
software engineering and multi-agent systems,
International Journal of Agent-Oriented Software
Engineering (IJAOSE08), pp. 1-10, 2008.

http://www.v-modell.iabg.de/�

	4 Conclusion

