
A key agreement protocol based on Identity-Based Proxy
Re-encryption

Adrian Atanasiu1 and Adela Mihaita1

1Department of Computer Science, Faculty of Computer Science, University of Bucharest, Bucharest, Romania

Abstract— In this paper, we present a problem and propose
an elegant solution for it: a protocol that allows a manager
to choose his team from a database of experts and then
establish with them a common secret shared key. There
are some restrictions on the protocol which led us to the
use of proxy re-encryption: the list of experts chosen is
not known outside the team and the secret key agreed on
is known only by the team. The construction and security
of the protocol is based on the concept of Identity-Based
Proxy Re-encryption (IB-PRE). In the second part of this
paper, we extend the IB-PRE scheme by combining it with
an Identity-Based Time Specific Encryption (IB-TSE) scheme
obtaining a time specific encryption scheme that allows not
only encryption, but also re-encryption.

Keywords: key agreement, proxy re-encryption, identity-based
setting, time specific encryption, knapsack problem

1. Introduction
Let be a manager who wants to build a team of experts

from a large database and establish together a shared co-
mmunication secret key. We present here a possible solution
which is secure, and which has as underlying concepts
the knapsack vector problem and identity-based proxy re-
encryption scheme.

In the last part of the paper, in order to limit the waiting
times of acceptance, we combine IB-PRE and ID-TSE in an
Identity-Based Time Specific Re-encryption Scheme.

The content of the paper is the following: section 2 intro-
duces the problem which will be solved in this paper together
with a provisory protocol; in section 3 we discuss Identity-
Based Proxy Re-encryption which provides the encryption
part of our protocol. Section 4 presents the construction of
our protocol, while section 5 and 6 discuss some general
considerations and security issues. Section 7 introduces the
new scheme, IB-TSRE. The paper ends with conclusions.

2. Formatting Instructions
3. A simple key agreement protocol

We consider the following problem:
There is a database of experts. In order to evaluate
a project, a manager (from the database) is estab-
lished. He chooses his team from the members of
the database. There are some initial conditions:

- No one outside knows exactly the list of experts
chosen by the manager.
- The team members must agree on a communi-
cation key which only they know.

We first propose the following simple manner of adressing
the problem:

Initial data
• the database B = {P1, ..., Pn} is associated with a

knapsack vector A = (a1, ..., an) and a large prime
number p > max1≤i≤n{ai}, both of them public.

• the knapsack problem is NP-complete for anyone out-
side the database. The members of the database can
solve it in linear time.

• Each Pi has a public key ei for encryption, a secret key
for decryption di and a signing algorithm (sigi, veri).

A simple key agreement protocol

Let’s suppose that the manager M ∈ B wants to select his
team TM = {Pi1 , ..., Pik} which will share the same secret
key. We denote by I = {i1, ...ik} ⊆ [1, n]. The procedure
is:

Algorithm A
1) M makes public

S =
∑
i∈I

ai mod p. (1)

2) Each Pi ∈ B solves the knapsack problem (A,S) and
checks if i ∈ I; if so, then he generates a random
number αi.

3) Each Pi sends to each Pj (j ∈ I, j 6= i) the message

{ai, αi, sigi(αi)}ej
(2)

(we denoted by {w}e the encryption of w under key
e)

4) Each Pi ∈ TM :
a) Decrypts the k − 1 received messages
b) Checks if ∑

j∈I
aj = S mod p (3)

c) Checks if

verj(αj , sigj(αj)) = True,∀j ∈ I − {i} (4)



d) If both conditions are satisfied, then he computes
the secret shared key

K =
∑
j∈I

αj(mod p) (5)

This protocol looks simple, but it has certain disadvan-
tages. Step 3 is followed by all members of B and it requires
too many message exchanges between members of the team:
k(k−1). In order to reduce the number of sent messages, one
can use a central authority, but here arises another problem
since the CA doesn’t have to know the team EM nor the
common key. Moreover, we would like to add some further
conditions which are not met by the previous proposal:

• Only the members of the team should know that they
were chosen; all the other experts should ignore this.

• One expert should have the possibility to reject the
proposal of being part of an evaluation team; in this
case, the manager must remove him from TM and,
eventually, replace him with another expert.

4. Preliminaries
For the construction of our protocol, we will make use of

the concept of identity-based proxy re-encryption. Next we
recall this notion.

Proxy re-encryption(PRE) allows a semi-trusted proxy to
convert a ciphertext originally intented for Alice into one
encrypting the same plaintext for Bob. The proxy needs for
the conversion a re-encryption key issued by Alice and can
not learn anything about the plaintext. An identity-based
proxy re-encryption(IB-PRE) scheme [2] allows a proxy
to translate an encryption under Alice’s identity into one
computed under Bob’s identity. We will focus our attention
on IB-PRE since we work in the identity-based setting.

An Identity-Based Proxy Re-Encryption scheme is an
extension of Identity-Based Encryption scheme. Let’s see
a formal definition of IB-PRE scheme. An identity-based
proxy re-encryption scheme [2] consists of the following
algorithms:

• Setup takes as input the security parameter k and a
value indicating the maximum number of consecutive
re-encryptions permitted by the scheme and outputs the
master public parameters which are distributed to the
users and the master secret key (msk) which is kept
private.

• KeyGen takes as input an identity id and the master
secret key and outputs a private decryption key skid
corresponding to that identity.

• Enc on input a set of public parameters, an identity
and a plaintext, outputs the encryption of m under that
identity.

• RKGen on input a secret key skid1 and identities
id1, id2, outputs a re-encryption key rkid1←id2 .

• Reenc on input a ciphertext cid1 under identity id1, and
a re-encryption key rkid1→id2 , outputs a re-encrypted
ciphertext cid2 .

• Dec decrypts the ciphertext cid using the secret key skid
and outputs message m of failure simbol ⊥.

5. Our construction of the key agreement
protocol

The protocol suggested in the first section has many
vulnerabilities, but one of them is that the manager sends
to every expert a solvable instance of the knapsak problem
and therefore, any expert from the database knows the team
composition. But this should be revealed only to the selected
members of the team. So it is important that, in the first
phase, the knapsack problem remains NP-complete for all
the experts. Those who were selected to be part of the team
will be sent an encrypted trapdoor for solving the knapsack
problem. The protocol that we propose allows an expert to
refuse the request of joining the team and so he can be
replaced by another expert who accepts the request, if k, the
number of members of the team is fixed.

For encryption of the trapdoor, we use the encryption al-
gorithm from the identity-based proxy re-encryption scheme.
The idea of this scheme allows re-encryption of a trapdoor
under a key available to the recipients.

Now that we have seen the scheme we want to use for
encryption, we can go on with the main issue of this paper,
the key agreement protocol.

Algorithm B
1) M chooses a team Tm = {Pi1 , ..., Pik} where I =
{i1, ..., ik} and a knapsack vector A = (a1, ..., an)
which he makes public.

2) M computes and makes public the sum

S =
∑
i∈I

ai mod p. (6)

This instance of the knapsack problem is NP-complete
for all the experts.

3) M sends to each Pj(j ∈ I) a nonce encrypted under
his identity together with the trapdoor encrypted under
M’s identity (of course, in this case, none of the Pj
is able to decrypt, since this is what we want for the
moment).

4) Each Pj is able to decrypt the nonce and sends it back
to M only if he accepts the proposal to be part of
the team; note that Pj is not able yet to decrypt the
trapdoor.

a) If each Pj gives a positive answer, then M
computes (using Reenc algorithm from the IB-
PRE scheme) and makes public a vector of re-
encryption keys

Rk = (rkidi1
, ..., rkidik

), (7)



where each rkidj
corresponds to Pj , ∀j ∈ I .

Then each Pj uses the key published for himself
which allows him to re-encrypt the trapdoor
received at step 3 under his own identity; once he
obtains the trapdoor encrypted under his identity,
he will use the private key associated to his
identity and decrypt.

b) There might be experts who don’t accept to join
the team (they don’t send back the answer); then
M chooses other experts instead, and will repeat
steps 3 and 4. If the new chosen experts accept,
then M publishes re-encryption keys for each
member, as in the step above, which allow them
to obtain the encryption of the trapdoor under
their own identity. After this, simply using their
private keys, they will be able to decrypt the trap-
doors. We must emphasize that before publishing
the re-encryption keys, M will recompute

S =
∑
i∈I

ai mod p (8)

as the sum of elements of the knapsack vector
according to the new created team.

5) Each Pj is now in possesion of the trapdoor, so he
is able to solve the knapsack vector problem and find
out who are the other members of the team; then he
generates a random number αj and sends the message

{aj , αj , sigj(αj)}ei
(9)

to every Pi, where i ∈ I, i 6= j.
6) Every member Pj of the team follows the steps:

a) Decrypts the k − 1 received meesages;
b) Checks if ∑

j∈I
aj = S mod p; (10)

c) Checks if

veri(αi, sigi(αi)) = True,∀i ∈ I − {j}; (11)

d) If both conditions are satisfied, then he computes
the secret shared key

K =
∑
j∈I

αj(modp) (12)

7) The last step verifies if all the members of the team
share the same key:

a) Each Pj , j ∈ I , generates a random βj and sends
to M the message

{{βj}ej , aj , sigj(aj)}K ; (13)

b) M sends back to Pi the message

{βj , aj − 1, sigM (aj − 1)}K . (14)

6. Considerations about the protocol
We notice that even if we use the scheme of proxy re-

encryption, there is no proxy in our protocol; the experts
from the team play the role of the proxy and apply re-
encryption algorithm. On the other hand, in order to reduce
the number of messages sent during the protocol, M sends
the nonce together with trapdoor, both encrypted, in a single
step 3.

We mention that step 4.a) might be repeated more than
once since the new chosen experts might as well refuse
joining the team. In order to limit the waiting times of
acceptance from step 4.b), we introduce in section 7 an
Identity-Based Time Specific Re-Encryption scheme where
precisely time is essential. Anyway, refusing experts are not
a problem for the security of the protocol.

We remark that we assume from the begining that the
members of the team are honest. It is very unlikely that an
expert will want to fail the protocol, but still he can easily
do this, for example, by sending different random numbers
αj to different members or by signing a different αj in
step 5. We have also omitted the situation when two or
several managers want to create their own team from the
same database of experts, in the same time. We leave this
for future work together with the situation where each of the
two managers M1 and M2 of two simultaneous teams, from
the same database, is a member in the team of the other one.

We also recall that the knapsack problem used in our pro-
tocol is NP-complete. Many of the kanpsack cryptosystems
have been proven to be weak against low-density attacks. In
this paper, we propose for the construction of our protocol
a knapsack cryptosyetm based on elliptic curve discrete
logarithm [3]. We note that the cryptosystem from [3] has
been broken by [1] who also proposes a simple solution in
order to avoid their attack: in [3] instead of defining

Cmi
= {kα, Pmj

+ ksi}, (15)

one should define

Cmi
= {kaπ(i)α, Pmj

+ ksi}. (16)

This cryptosystem enjoys high-density and, therefore, avoids
low-density attacks. The trapdoor for the knapsack vector
is, as in the case of Merkle-Hellman cryptosystem, a super-
increasing vector (which represents the private key) which
allows linear solving of the problem. We refer the reader
to [3] for more details on the construction of the knapsack
cryptosystem suggested.

7. Security of the protocol
First of all, we notice that every expert chosen by M will

receive the trapdoor encrypted, before he gives an answer.
But this is not a problem, even if an expert doesn’t accept
participation, since the trapdoor is encrypted under M’s
identity, so nobody else, except him, is able to decrypt.



So, if an expert refuses joining the team, he can keep the
trapdoor encrypted, but he won’t be able to decrypt it, even
if later M publishes re-encryption keys for the members
of the team. Working in the identity-based setting enables
decryption only for the intended recipients.

As we indicated at the begining, we use an identity-
based proxy re-encryption scheme from [2], section 4, where
Green and Ateniese present two non-interactive identity-
based proxy re-encryption schemes which are secure under
the Decisional Bilinear Diffie-Hellman Assumption (DBDH)
in the random oracle model. The first, IBP1, is secure under
chosen plaintext attack (in fact, it is IND-Pr-ID-CPA secure),
while the second one, IBP2, presents stronger security under
adaptive chosen ciphertext attack (IND-Pr-ID-CCA secure).
Any of the two constructions presented in [2] based on
biliniar pairings might be used for our protocol.

8. A Time-Specific Encryption scheme
In this section, we introduce an identity-based time-

specific re-encryption scheme, starting from an IB-PRE
scheme combined with Time Specific Encryption, a concept
that we detail in the next subsection. This scheme can be
used in order to limit waiting time at step 4, but we believe
it might be useful also in some other applications where
encryption and decryption are done in a timely manner.
Briefly, the scheme allows re-encryption.

8.1 Identity-Based Time Specific Encryption
The cryptographic primitive Time Specific Encryption

(TSE) was introduced in 2010 [4] and it’s closely related
to the concepts of Timed-Release Encryption (TRE) and
Broadcast Encryption.

The idea behind TSE is allowing a user to specify during
what time interval a ciphertext can be decrypted by the
receiver. This is done in the following manner in TSE: a
Time Server broadcasts a key, a Time Instant Key (TIK) kt
at the begining of each time unit, t. The TIK is available
to all users. A sender, who wants to encrypt a message m
to form a ciphertext c, can specify any interval [t0, t1], with
t0 ≤ t1. In Plain TSE, a receiver can recover the message
m only if he holds a TIK kt for some t ∈ [t0, t1].

Plain TSE was extended to public-key and identity-based
settings. We remain in the identity-based setting (ID-TSE),
where decryption requires also a private key coresponding
to the identity of the receiver besides the appropriate TIK.

Formally, an ID-TSE scheme consists of the following
algorithms[4]:
• TS-Setup. This algorithm is run by the Time Server,

takes as input the security parameter k, T, the number
of allowed time units and outputs the master public key
TS-MPK and the master secret key TS-MSK.

• ID-Setup. This algorithm is run by the Trusted Author-
ity (TA), takes as input the security parameter k and

outputs the master public key ID-MPK and the master
secret key ID-MSK.

• TIK-Ext This algorithm is run by the TS, takes as input
TS-MPK, TS-MSK, t and outputs kt which is broadcast
by TS at time t.

• ID.Key-Ext This algorithm is run by the TA, takes as
input ID-MPK, ID-MSK, an id and outputs the private
key skid corresponding to id.

• ID.Enc This algorithm is run by the sender, takes as
input TS-MPK, ID-MPK, a message m, a time interval
[t0, t1] and an identity id and outputs a ciphertext c.

• ID.Dec This algorithm is run by the receiver, takes as
input TS-MPK, ID-MPK, a ciphertext c, a key kt and
a private key skid and outputs either a message m or
a failure symbol ⊥.

Paterson and Quaglia [4] use a binary tree for the con-
struction of the TSE schemes. The leaves of the binary tree
represent time instants. They also define two particular set of
nodes. The idea is to view the nodes of the tree as identities
and make use of identity-based encryption techniques to
instantiate plain TSE. The number T of allowed time units
will be of the form T = 2d. The tree associated in [4] to
the scheme has some properties:

1) The root of the tree has label ∅; the other nodes are
labelled with binary strings of lengths between 1 and
d. Therefore, each node has associated a binary string
t0t1...tl−1, of length l ≤ d. The leaves are labelled
from 0...0 to 1...1 and each leaf will represent a time
instant.

t =
d−1∑
i=0

ti2d−1−i. (17)

2) There are two particular set of nodes defined with
respect to the tree:
• Pt - the path to t. For a time instant

t =
d−1∑
i=0

t12d−1−i, (18)

the following path Pt corresponding to t can be
constructed in the tree:

∅, t0, t0t1, ...t0...td−1 (19)

• the set S[t0,t1] which covers the interval [t0, t1]
- the minimal set of roots of subtrees that cover
leaves representing time instants in [t0, t1]. The
labels of the nodes in this set are computed in a
particular order by running Algorithm 1 from [4].

The two sets Pt and S[t0,t1] intersect in an unique node
only if t ∈ [t0, t1].



8.2 Identity-based Time Specific Re-encryption
Scheme

We present here an identity-based time specific en-
cryption scheme combined with identity based proxy re-
encryption scheme; in fact, the aim of this time spe-
cific encryption scheme is to allow not only encryption,
but also re-encryption. We start from an IB-PRE scheme
I = (Setup,KeyExt,Enc,RKeyExt,ReEnc,Dec) with
message space {0, 1}l in order to derive an ID-TSE X =
(Plain.Setup, P lain.TIK−Ext, P lain.Enc, P lain.Dec)
with the same message space. We call our scheme an
Identity-Based Time Specific Re-Encryption scheme:
• Setup(k,T). Run Setup on input k to obtain a master

public key TS-MPK and the secret key TS-MSK. We
define T = 2d where d is the depth of the binary tree
used in TSE, and T is the number of allowed time units.

• ID-Setup(k,T). Run by the TA (trusted authority), this
algorithm generates the public key ID-MPK and the
secret key ID-MSK.

• TIK-Ext(TS-MPK,TS-MSK,t). Construct the path Pt
to obtain the list of nodes {0, p1, ..., pd} on the path
to t. Run Key-Ext algorithm for all nodes p din Pt to
obtain a set of private keys

Dt = {dp : p ∈ Pt}. (20)

Return Dt which represents the key kt broadcasted at
moment t.

• RKGen (Dt, [t′0, t′1].) This algorithm returns a set of
re-encryption keys for messages that were initially
encrypted under interval [t0, t1] to encrypt them under
another interval [t′0, t

′
1]. Dt represents the set of private

keys associated to the identities from the set Pt, where
t ∈ [t0, t1]. For every dp ∈ Dt, run RKeyExt(TS −
MPK, dp, [t′0, t

′
1]), and obtain the set

Rk[t0,t1]→[t′0,t
′
1]

= {rkdp
: dp ∈ Dt}. (21)

• Encryption (TS −MPK,m, [t0, t1]). Run Algorithm
1 from [4] on input [t0, t1] to compute a list of
nodes S[t0,t1]. For each s ∈ S[t0,t1] run Enc(TS −
MPK,m, s) to obtain a list of ciphertexts

CT [t0,t1] = {cp : p ∈ S[t0,t1]}. (22)

Then, each ciphertext obtained is encrypted under the
identity of the recipient.

• Re-Enc (TS −MPK, CT [t0,t1], Rk[t0,t1]→[t′0,t
′
1]

). For
each cp ∈ CT [t0,t1] and each corresponding rkdp

∈
Rk[t0,t1]→[t′0,t

′
1]

, run ReEnc(params, rkdp
, cp), and

obtain a set of ciphertexts encrypted under interval
[t′0, t

′
1].

• Decryption (TS − MPK,C,Dt). Here C =
(CT , [t0, t1]) represents a list of ciphertexts together
with a time interval. If t /∈ [t0, t1], then decryption can

not be applied. Otherwise run Algorithm 1 from [4] to
generate an ordered list of nodes S[t0,t1] and generate
the set Pt. The intersection of these sets is the unique
node p. Obtain the key dp corresponding to p from Dt.
Run Dec(TS −MPK, cp, dp), where cp ∈ CT is in
the same position in the list CT as p is in S[t0,t1] and
obtain either the message m or a failure symbol.

8.3 Security of the scheme
Paterson and Quaglia [4] concentrate on achieving IND-

CPA security for ID-TSE and even IND-CCA security for
the Plain TSE, but they didn’t manage to achieve IND-CCA
security for ID-TSE. We already discussed in section 6 the
security of the IB-PRE scheme.

9. Conclusions
We suggested in this paper a problem for which we built

a protocol based on the idea of proxy re-enecryption. We
first proposed a simple solution improved later by using re-
encryption. The protocol’s security relies on the identity-
based setting in which we work and on the security of the
IB-PRE scheme used.

We also built an IB-TSRE scheme in order to limit waiting
time at step 4 in algorithm B, which allows time specific
encryption and proxy re-encryption in the same time. We
think that this scheme is valuable in certain situations since
it extends the notion of time specific encryption.

References
[1] Jingguo Bi, Xianmeng Meng, and Lidong Han. Cryptanalysis

of two knapsack public-key cryptosystems. [online]. Available:
http://eprint.iacr.org/2009/537.pdf

[2] M. Green, G. Ateniese. “Identity-Based Proxy Re-encryption” in Ap-
plied Cryptography and Network Security (ACNS ’07), 2007. [online].
Available: http://eprint.iacr.org/2006/473.pdf

[3] Min-Shiang Hwang, Cheng-Chi Lee, and Shiang-Feng Tzeng. “A
knapsack public-key cryptosystem based on elliptic curve discrete
logarithm”, Applied Mathematics and Computation, vol. 168, Issue 1,
September 2005, pp 40-46

[4] K.G. Paterson and E.A. Quaglia. Time Specific Encryption, In J. Garay
and R. De Prisco (eds.), SCN 2010, Lecture Notes in Computer Science
Vol. 6280, pp. 1-16, Springer, 2010.


