

PPSAM: Proactive PowerShell Anti-Malware

Customizable Comprehensive Tool to Supplement Commercial AVs

Alejandro Villegas and Lei Chen

Department of Computer Science, Sam Houston State University, Huntsville, TX 77341, USA

Abstract - This research first explores the different types of

Anti-Malware solution approaches, evaluating the pros and

cons, and concentrating on their potential weaknesses and

drawbacks. The malware technologies analyzed include

Windows Direct Kernel Object Manipulation (DKOM),

Kernel Patch Protection, Data Execution Prevention,

Address Space Layout Randomization, Driver Signing,

Windows Service Hardening, Ghostbuster, Assembly

Reverse Analysis, and Virtual CloudAV. Furthermore, a

proactive comprehensive solution is provided by utilizing

the Windows PowerShell 2.0 utility that is available for

Windows Vista, 7, 2008 and 2008 R2. The proposed

Proactive PowerShell Anti-Malware (PPSAM) is a utility

that monitors the system via health checks with shell scripts

that can be fully customized and have the ability to be

executed on remote systems. PPSAM is designed to be a

proactive complement that attempts to promote early

discovery of intrusions and malicious applications, and to

provide triggers and reports utilizing the scripts' output.

Keywords: PowerShell, malware, anti-virus, proactive,

customizable, security

1 Introduction

Majority of end users already have a preferred Anti-

Virus (AV) solution such as Windows Defender, McAfee or

Norton. In the meanwhile, anti-rootkits like VICE, GMER,

and Rootkit Unhooker [8] have become fairly popular. Most

of the anti-malware products take a reactive, rather than

proactive, approach to detection. The first and most

common strategy is to compare applications with common

malware signatures stored in a database and flag them as

suspicious malware, whether a virus, Trojan or rootkit.

Malware will continue to evolve and make AV applications

obsolete is simply the nature of the game.

Some computing essentials remain the same for all

different types of malware: for instance, the best malware is

the one that goes undetected (at least until is found or

discovered either manually or by a new AV tool).

Unfortunately, when a virus becomes too noticeable or by

the time is discovered it probably has already caused a lot of

damage. Average end users could have a rootkit installed

and don‟t even realize so, as they rely on the anti-virus to

detect the compromise, or expects a call from the system or

network administrator reporting “unusual” activities. In

addition, hackers are well aware of major AV companies

too, and they are used to code malware that detects AVs and

formulate a scripting workaround to avoid detection. If the

AV or Anti-Malware solution is not even able to detect the

illicit computing transaction, it becomes useless.

The rest of the paper is structured as follows. Next in

Section 2, we survey the existing vulnerabilities that can be

used by malware to hide themselves in the system. Section

3 discusses the motivation of this research, followed by the

technical details of PPSAM in Section 4 including four

levels of script repository, differences from existing

solutions, and hardware and software requirements. Section

5 shows a few examples how PPSAM can work along with

the AVs to help monitor the system. We draw conclusion in

Section 6 and propose future work in Section 7.

2 Background

The research performed by Woei-Jiunn Tsaur [8] clearly

exposes five potential vulnerabilities that rootkit developers

can exploit to maintain their applications undetected.

2.1 Windows DKOM

A lot of the current research focuses on kernel data

schemes that aim to detect hooking driven virtual machine

rootkits. Nevertheless, DKOM has been proven to be

strategy inefficient [8]. Woei-Jiunn Tsaur et al. in [8] go

beyond analyzing the traditional rootkits that typically are

traceable within registry keys, questionable drivers or

malicious API injections [4]. DKOM style rootkits exploit

the kernel object implementation in Windows systems by

altering EPROCESS objects [8]. The DKOM detection

approach by Woei-Jiunn Tsaur et al. is to install a hidden

driver as an object in order to detect DKOM activities. The

proposed rootkit named hookzw.sys is a driver format

(composed using Borland TASM 5.0) which executes on

the Windows XP SP2 platform. One of the DKOM rootkit

techniques is to exploit „PsLoadedModuleList‟ in order to

hide processes. The core data structures that are modified by

a DKOM rootkit are: List_Entry data structures of Object

Directory, Object Driver, Object Device and

PsLoadedModuleList [8]. Woei-Jiunn Tsaur et al. outline

the following five tips to detect DKOM rootkits: Removing

Object Drivers and Object Devices from Object Dir,

Removing Object Drivers from Driver Object_Type,

Removing Object Devices from Device Object_Type,

Removing Drivers from PsLoadedModuleList, and Altering

Object Driver Appearance.

There is no doubt that DKOM rootkits are a threat, and a

comprehensive tool for its prevention needs to be developed

by a commercial Research and Development (R&D) entity.

Furthermore, this approach is designed to discover unknown

rootkits on the wild and does not necessarily provide a

mechanism to create a signature based database for further

detection.

2.2 KPP, DEP, ASLR, DS, and WSH

There is a plethora of different third party rootkit

detectors for the Windows platforms such as VICE, GMER,

Rootkit Unhooker, among others [8]. Nonetheless,

Microsoft introduced five different software utilities to fight

rootkits and malware in general for Windows Vista and

newer versions [1]. These five utilities are briefly

introduced as follows [1]:

 Kernel Patch Protection (KPP) – provides protection

of the Windows kernel (formerly known as

PatchGuard) at the System Service Descriptor Table

(SSDT) level; prevents malware from hooking into

system APIs.

 Date Execution Prevention (DEP) – deals with Buffer

Overflow prevention.

 Address Space Layout Randomization (ASLR) –

randomly arranges the positions of key data areas in a

process‟s address space.

 Driver Signing (DS) – signs legit drivers in order to

prevent the installation of new malicious drivers.

 Windows Service Hardening (WSH) – increases

restriction to Windows background process.

Albeit the mentioned solutions have made the Windows

operating systems more secure and stable, there are exploits

such as DKOM among others that still represent a threat to

the Windows kernel, not to mention that malware keeps

evolving, and Windows only utilizes two of the four Intel‟s

architecture layers leaving the OS still vulnerable [1].

2.3 Strider Ghostbuster

The Strider Ghostbuster [9] is a cross-view difference

based approach Ghostware detector. The technique utilized

compares a high-level infected scan with a low-level clean

scan. Furthermore, it runs an inside-the-box versus an

outside-the-box clean scan [9].

The Strider Ghostbuster approach is essentially a

differentiation of potentially infected systems with a known

clean one. The term “Ghostware” refers to programs such as

rootkits and Trojans with stealth hiding capabilities [9]. The

main areas where Ghostbuster runs its diff approach is in

the “Master File Table”, the “Raw Hive Files”, and the

“Kernel Process List” [9]. Common Ghostware detected by

Ghostbuster includes Urbin, Mersting, Vanquish, Aphex,

etc. [9].

While Ghostbuster is considered a good approach to

determine whether the files/registry values/drivers were

modified or altered, there are some rootkits like DKOM that

may bypass the diff check. In addition, it utilizes a lot of

system resources when handling the system components

comparison. Ghostbuster also has the capability of

providing a Virtual Machine (VM) in order to run diff check

scans on virtual environments [9]. It may be a good solution

with questionable scalability when it comes to large IT

environments.

2.4 Assembly Reverse Analysis

The Assembly Reverse Analysis is essentially backward

engineering the rootkit assembly code, utilizing tools such

as MASM, ASM, and TASM [10]. The Windows debugger

Ollydbg is also useful to analyze the content of a given

malware [10]. This approach is for expert computer users

who are able to decompile the malware/rootkits, analyze the

contents and restore the system to its original stage as

applicable. It is a very hands-on strategy and does not

provide the users with a sustainable solution, which varies

on a case by case basis and is not recommended for the

average end users.

2.5 Virtual CloudAV

Cloud computing has revolutionized the deployment of

hardware infrastructure. There are different cloud solutions

such as Amazon‟s Web Services and Google‟s AppEngine.

The concept of Infrastructure as a Service (IaaS) refers to

offering access to remote computer resources [5]. The

architecture of this virtual cloud solution consists of running

a Kernel Agent that gathers information from each virtual

machine and passes the data into a ProxyScan that analyzes

the data and seeks for potential malware or kernel rootkits

[5]. It is considered an excellent solution for cloud providers

as they typically grant root/administrator access to their VM

clients, yet remain liable for their actions as they own the

hardware infrastructure. Implementation with similar

functionality can be costly for small and medium businesses

(SMBs).

There is also a behavior based approach in [4] that

hooks Native APIs in the kernel mode, however it does

have an impact on system performance in addition to the

standard AVs system utilization.

3 Motivation

In this research, we decided to develop a boutique style

anti-malware tool that would address the key drawbacks of

each of the algorithms researched, yet comprehensive,

scalable and intuitive. The goal of this research was to target

newer Windows operating systems such as Vista and 7. The

proposed solution PPSAM takes advantage of the Windows

PowerShell supplied on newer Windows Operating Systems

to craft simple scripts that monitor suspicious activity on a

given system.

PowerShell (PS) has the capability of running

commands on remote systems, therefore is ideal for

scalability purposes. In addition PowerShell can be utilized

to create scripts and functions by combining different

cmdlets [7]. PPSAM is a starting point solution that can be

customized with additional PS scripts and actualize them as

malware evolves. The main purpose is to keep this solution

relatively obscure in order to prevent automatic detection by

malware components. The script can be located in random

locations, named differently, and executed on different

manners. Ideally it can be scheduled to run periodically

(without user intervention), create reports and flag them

accordingly with triggers designed to catch suspicious

activities within the system(s). The suggested method to run

PPSAM is to execute it from a remote system to avoid

affecting performance and ensure that the source system is

“clean”.

Before the discussion of the implementation and use of

PPSAM, here we list the key drawbacks of each of the

algorithms researched:

1. DKOM: potential security holes not currently

exploited. Solution algorithm requires corporate level

R&D investment.

2. Microsoft Security Implementations: Efficient.

However the Windows platform only utilizes two of

the four Intel‟s architecture rings. OS still exposed to

other potential malware/exploits.

3. Strider Ghostbuster: excellent diff approach; requires a

lot of resources and limits scalability.

4. Assembly Reverse Analysis: ideal for a malware

research lab, not practical for average end users.

5. Virtual CloudAV: comprehensive anti-malware setup

for virtual cloud environments. It requires hardware

investment and extensive configuration, optimal for

ISPs not a promising solution for SMBs.

4 PPSAM

The Windows PowerShell [6] is native to the Operating

System and therefore is able to interact with the OS and

Microsoft applications flawlessly. PPSAM is designed to

operate from the command line via the default PS cmdlets.

4.1 Levels of script repository

The script repository is divided in four levels: Registry,

Network, Driver, and Application. These four levels and the

corresponding Cmdlets [6] are introduced as follows.

 Registry Level

PowerShell cmdlets that interact with the registry:

o Get-Item – get a file/registry object (or any other

namespace object)

o Get-ChildItem – get child items (contents of a

folder or reg key)

o Get-Acl – get permission settings for a file or

registry key

o Get a registry key – PS C:\>get-item

hklm:\software\ microsoft\exchange

 Network Level

PowerShell cmdlets that retrieve mac-addresses:

o $strComputer = "."

o $colItems = get-wmiobject -class

"Win32_NetworkAdapterConfiguration" `

-computername $strComputer |

Where{$_.IpEnabled -Match "True"}

foreach ($objItem in $colItems) {

write-host "Hardware Address:"

$objItem.MACAddress}

 Driver Level

PowerShell cmdlets that retrieve drivers:

o Get-WmiObject -Class Win32_SystemDriver |

Format-List Name, Caption, Description,

InstallDate, PathName, Started, StartName,

Status, SystemName

 Application Level

PowerShell cmdlets that verify exchange health:

o Test-ServiceHealth – tests if all required services

have started successfully

o Test-SystemHealth – gathers data about

Microsoft Exchange system and analyzes the data

according to best practices

o Test-UMConnectivity – tests the operation of a

computer that has the Unified Messaging (UM)

server role installed

o Test-WebServicesConnectivity – tests the

functionality of Exchange Web Services

PPSAM takes advantage of the comprehensive utility

availability of PowerShell in order to run health checks at

different levels and monitor the system for suspicious

activity. PPSAM utilizes a collection of PowerShell scripts

fully customizable that can be easily executed and formulate

reports in HTML and/or XML format for easy viewing.

4.2 Differences from existing solutions

PPSAM is a simple utility that is instrumental to

perform proactive malware scans and flag suspicious

activity that could have been overlooked by a commercial

AV. PPSAM can be customized and deployed to several

systems. While it does not replace traditional AVs or Anti-

Rootkit programs, it is designed to complement them.

PPSAM PowerShell architecture makes the scripts

executable natively without third party application

installation requirements. In addition, the code is transparent

and there is no need to install malware freeware that might

be facilitated from web sites that include malware along

with the utility. It is a middle man solution – it might not be

as thorough as debugging with Ollydbg or MASM [10], but

has enough capabilities to detect malicious activity in a

system(s) that could have bypassed a traditional AV.

4.3 Software and hardware requirements

Software Requirements:

 Windows Vista, 7, 2008 or 2008 R2

 Windows Framework Management (Installed by

default in Windows 2008 R2 and Windows 7)

 PowerShell 2.0

 WinRM 2.0

 BITS 4.0

Hardware Requirements:

 1 gigahertz (GHz) or faster 32-bit (x86) or 64-bit (x64)

processor

 1 gigabyte (GB) RAM (32-bit) or 2 GB RAM (64-bit)

 16 GB available hard disk space (32-bit) or 20 GB (64-

bit)

 DirectX 9 graphics device with WDDM 1.0 or higher

driver

5 Performance and analysis

This section shows a few examples of how PowerShell

cmdlets can be utilized to help AVs monitor the system.

The PowerShell has a myriad of different cmdlets that make

interacting with a Windows platform smoothly and

flawlessly. The get-itemproperty command is useful to

obtain the values of a specific registry key as shown in

Figure 1. This command can be combined with the invoke-

command in order to be executed on a remote system. The

PowerShell uses a similar approach than the Linux BASH

shell, where the scripts can be coded on a simple text editor

such as notepad, saved with the .ps1 file extension and can

then be executed accordingly. They can also be loaded via a

.bat (batch file). The registry key HKLM:\SOFTWARE\

CLASSES\CLSID\{2781761E-28E1-4109-99FE-

B9D127C57AFE} queried in Figure 1 shows that the

system is running the Microsoft Malware Protection

IOfficeAntiVirus Implementation.

The registry key in Figure 2 shows that Windows

Defender is installed as the default AV solution

HKLM:\SOFTWARE\CLASSES\CLSID\{2781761E-

28E0-4109-99FE-B9D127C57AFE}.

Figure 3 shows the output from the PowerShell get-

process * | more command, essentially showing all the

running processes on the system. It can also be combined

with the invoke-command to be executed remotely.

Figure 1. get-itemproperty cmdlet showing Microsoft

Malware Protection IOfficeAutiVirus Implementation is

running

Figure 2. get-itemproperty cmdlet showing Windows

Defender IOfficeAutiVirus Implementation is running

Figure 3. get-process cmdlet showing all the running

processes on the system (partially shown due to length

limit)

In order to parse the piped content of the PS scripts, the

Out-File cmdlet can be utilized: Get-Process | Out-File

c:\output\processes.txt.

PPSAM has a PERL written scripting implementation

that controls the execution of the PowerShell commands,

parses the data in HTML format and launches a browser

window to display the output.

PPSAM requires a simple setup, a folder that contains

the ppsam.pl PERL script, PowerShell .ps1 files containing

commands to be executed, and the ppsam.html output report

as shown in Figure 4.

Figure 4. PPSAM file structure

The following is a piece of sample PERL scripting code

for PPSAM:

#!/usr/local/ActivePerl-5.6/bin/perl -w

PPSAM: Proactive PowerShell Anti-Malware

Customizable Comprehensive Tool to Supplement

Commercial AVs

Analyzes Windows system processes via PowerShell

commands

ppsam.pl

By: Alejandro Villegas

Department of Computer Science

Sam Houston State University

Professor: Dr. Lei Chen

April 29, 2011

#Loading necessary Perl Modules

use strict;

use warnings;

use FindBin ();

use File::Copy qw(copy);

use Fcntl;

#Path to the PowerShell Executable

my $PWSpath =

"C:/Windows/System32/windowspowershell/v1.0/power

shell.exe";

#Variable to store Running-Processes

my $PS1RunningProcesses =

"C:/Perl64/PPSAM/Processes.ps1";

#Variable to store installed Antivirus Info

my $PS1InstalledAV =

"C:/Perl64/PPSAM/InstalledAV.ps1";

#Retrieve Processes via a PowerShell cmdlet: get-

process * | format-table

chomp(my @RunningProcesses = `$PWSpath -command

$PS1RunningProcesses`);

print "Retrieving Processes... \n";

#Retrieve Processes via a PowerShell cmdlet: Get-

ItemProperty "HKLM:\SOFTWARE\CLASSES\CLSID

\{2781761E-28E0-4109-99FE-B9D127C57AFE}" |

format-list | format-table

chomp(my @InstalledAVs = `$PWSpath -command

$PS1InstalledAV`);

print "Retrieving InstalledAV info... \n";

#Path to the PowerShell cmdlet to load Internet Explorer

my $IEpath = "C:/Perl64/PPSAM/IE.ps1";

#Deleting previous PPSAM-Reports

my $file = "C:/Perl64/PPSAM/ppsam-report.html";

unlink($file);

#Creating PPSAM-Report in HTML

print "content-type: text/html \n\n";

sysopen (HTML, 'ppsam-report.html',

O_RDWR|O_EXCL|O_CREAT);

printf HTML "<html>\n";

printf HTML "<head>\n";

printf HTML "<title>PPSAM: Proactive PowerShell

Anti-Malware</title>";

printf HTML "</head>\n";

printf HTML "<body bgcolor=\"Silver\">\n";

printf HTML "<h2><p align='center'>PPSAM:

Proactive PowerShell Anti-Malware</h2>";

printf HTML "By: Alejandro Villegas</p>";

printf HTML "Processes
";

foreach (@RunningProcesses) {

printf HTML "$_ \n
";

}

printf HTML "Anti-Malware Info
";

foreach (@InstalledAVs) {

printf HTML "$_ \n
";

}

printf HTML "</body>\n";

printf HTML "</html>\n";

close (HTML);

print "Launching the PPSAM-Report in Internet

Explorer... \n";

#PowerShell cmdlet to load Internet Explorer: $ie = new-

object -com

"InternetExplorer.Application"; $ie.visible = $true;

$ie.navigate("file:///C:/Perl64/PPSAM/ppsam-

report.html")

`$PWSpath -command $IEpath`;

print "PPSAM Analysis Complete - Please refer to

ppsam-report.html"

The PERL script ppsam.pl can be executed from the

Windows command prompt as shown in Figure 5.

Lastly, the ppsam.pl script will automatically load the

ppsam.html report for viewing and analysis as shown in

Figure 6.

Figure 5. Execution of ppsam.pl via the command prompt

Figure 6. ppsam.html output generated report

The Windows PowerShell is based on the .NET

framework and is able to execute any functionality that is

available via the traditional GUI. Therefore the complexity

of each cmdlet can be customized in order to gather any

necessary data to from the system to discover a potential

malware proactively.

6 Conclusion

While commercial AV and Anti-Malware solutions

overall are the first layer of protection against popular

viruses, Trojans and rootkits, they typically target malware

that is known and utilize a comprehensive signature

database. Therefore, a more proactive approach is needed in

order to promote early prevention of malware attacks, since

in majority of the cases rootkits can be installed without the

end users ever acknowledging the systems have been

compromised. If the malware has bypassed their AV or

altered system binaries, chances are it will take a while

before they even discover the compromise. PPSAM

provides a solution that utilizes the newly released

Windows PowerShell 2.0 which comes with the Operating

System and is capable of executing a plethora of different

cmdlets that can check the performance of a system

including remote operations for scalability. While not an

AV replacement, it is absolutely a tool that can be used in

conjunction with most third party software in order to

propose a more proactive approach to prevent malware

adverse attacks. PPSAM can be adapted to match the

requirements of every particular infrastructure. PowerShell

is based on .NET, therefore there is also the option to

develop new cmdlets based on clients‟ OS and application

security priorities.

7 Future work

In order to provide a more user friendly application,

PPSAM will possess a GUI interface coded in PERL and

CGI. Such interface will have the capability of displaying,

parsing and organizing the cmdlets output. In addition,

archiving PPSAM scans will be an option. Furthermore, the

utility will offer the feature of loading additional

PowerShell scripts, as well as running a syntax and sanity

check before uploading. Another proposed implementation

is to be able to load PPSAM via a bootable image such as

Windows PE; this alternative would be able to be utilized

even on compromised systems. Additionally, the Windows

Research Kernel (WRK) [2] will be used in order to create

more monitoring PowerShell cmdlets at the kernel level, in

order to construct a potential DKOM detection antidote.

After all, new generation rootkits aim to exploit kernel

memory vulnerabilities, hence the importance of kernel

memory protection [3].

8 References

[1] Desmond Lobo, Paul Watters, Xin-Wen Wu, Li Sun,

"Windows Rootkits: Attacks and Countermeasures,"

ctc, pp.69-78, 2010 Second Cybercrime and

Trustworthy Computing Workshop, 2010.

[2] Diomidis Spinellis, "A tale of four kernels," icse,

pp.381-390, Proceedings of the 30th International

Conference on Software Engineering (ICSE '08),

2008.

[3] Dong Hwi Lee, Jae Myung Kim, Kyong-Ho Choi,

Kuinam J. Kim, "The Study of Response Model &

Mechanism Against Windows Kernel Compromises,"

ichit, pp.600-608, 2008 International Conference on

Convergence and Hybrid Information Technology,

2008.

[4] Hung-Min Sun, Hsun Wang, King-Hang Wang,

Chien-Ming Chen, "A Native APIs Protection

Mechanism in the Kernel Mode against Malicious

Code," IEEE Transactions on Computers, 10 Feb.

2011. IEEE computer Society Digital Library. IEEE

Computer Society.

[5] Matthias Schmidt, Lars Baumgartner, Pablo Graubner,

David Bock, Bernd Freisleben, "Malware Detection

and Kernel Rootkit Prevention in Cloud Computing

Environments," Parallel, Distributed, and Network-

Based Processing, Euromicro Conference on, pp. 603-

610, 2011 19th International Euromicro Conference

on Parallel, Distributed and Network-Based

Processing, 2011.

[6] Microsoft. Scripting with Windows PowerShell, 2008.

http://technet.microsoft.com/en-

us/scriptcenter/dd742419.aspx

[7] Nicolas Bruno, Surajit Chaudhuri, "Interactive

physical design tuning," icde, pp.1161-1164, 2010

IEEE 26th International Conference on Data

Engineering (ICDE 2010), 2010.

[8] Woei-Jiunn Tsaur, Yuh-Chen Chen, "Exploring

Rootkit Detectors' Vulnerabilities Using a New

Windows Hidden Driver Based Rootkit," socialcom,

pp.842-848, 2010 IEEE Second International

Conference on Social Computing, 2010.

[9] Yi-Min Wang, Doug Beck, Binh Vo, Roussi Roussev,

Chad Verbowski, "Detecting Stealth Software with

Strider GhostBuster," Dependable Systems and

Networks, International Conference on, pp. 368-377,

2005 International Conference on Dependable

Systems and Networks (DSN'05), 2005.

[10] Yong Wang, Dawu Gu, Jianping Xu, Fenyu Zen,

"Assembly Reverse Analysis on Malicious Code of

Web Rootkit Trojan," Web Information Systems and

Mining, International Conference on, pp. 501-504,

2009, International Conference on Web Information

Systems and Mining, 2009.

