
Common Network Security Threats and Counter
Measures

A. Mahmoud Haidar1, B. Nizar Al-Holou, Ph.D.2

1Dialexa LLC, Dallas, Texas, U.S.A
2Electrical and Computer Engineering, University of Detroit Mercy, Detroit, Michigan, U.S.A

Abstract - Despite the growing level of interest in the field of
Network Security, there is still little knowledge about the
actual issues involved in securing networks. The real dangers
of cyber crime are of serious consequence. Individuals with
sufficient technical knowledge of Information Technology (IT),
networks, and networking devices can steal sensitive
information and may exploit vulnerable network systems. In
this paper we illustrate some of those threats and learn how to
protect our network from attacks and exploits. For this
purpose we also propose a set of developed theoretical and
practical laboratory sessions that can serve as a complement
to academic/professional introductory network security
classes.

Keywords: Network, Security, Labs, Software

1 Introduction
 A computer crime is rarely detected by a victim, which
makes it very hard to precisely determine the rate of its
occurrence. The General Accounting Office reported
approximately 160,000 successful attacks out of 250,000
attempts annually [1]. Moreover, the Defense Information
Systems Agency found that 65% of attempted attacks were
successful [2].

The cost of computer fraud and abuse in the US is over $3
billion each year, which is significant considering that over
90% of computer fraud cases are not reported. A study was
conducted by BYTE magazine showed that 53% of its readers
have experienced data losses that cost $14,000 on average. A
survey of over 600 governmental agencies and companies in
the United States and Canada revealed that around 63%
reported that their computers were infected by at least one
virus. In fact, there exist over 2,500 various viruses are
spreading around global at any given instance of time.
Moreover, the style and behavior of those viruses are
evolving rapidly. That’s why hackers with extensive
experience are more able to automate the exploitation of
networks and systems than any other day.

With the increasing security threats, protecting our networks
and systems from unauthorized access and exploits has
become an urgent necessity. Hence, arming Information
Technology students and professionals with knowledge and

experience necessary to identify and resolve these threats
becomes imperative. For this reason, we propose in this paper
an educational framework that employs freeware off the shelf
tools to learn network security. In section 2, the
methodologies to penetrate and exploit a network are
presented, while the labs developed to learn those methods
and how to address them are discussed in section 3.

2 Network Penetration and Exploitation
Methodologies

 Attacking a network is generally a two steps procedure.
The first step is to penetrate the network and find a weakness
you can take advantage of to gain access to the network. The
second step would be attacking and exploiting computers in
that network. For each step, there is a common set of tools
and methodologies.

2.1 Network Penetration

2.1.1 Scanners
 Scanners can be classified into different categories
based on the software application they run, which are
designed to either probe server-side or client-side. Examples
include TCP/IP/UDP port Scanner, Shared Scanner on a
network, and NetBIOS Scanner. These scanners are capable
to scan standalone workstation, a group of computers that are
connected to network, domains or sub-domains, providing
detailed information regarding the scanned area such as open
ports, active services, shared resources and the active
directory information [5].

IP scanner is used mainly to identify if an IP address is active
or not, the IP scanner should be able to scan range of IP
addresses, C or B range or even sub range to give fast report
for the active IP(s). The IP scanner is the first step in
gathering the information a target network or system.

A port scanner, on the other hand, scans the host’s Ports. It
looks for open service ports on the target. Each port is
associated with a service that may be exploitable or contain
vulnerabilities. Port scanners can be used to scan specific
ports or they can be used to scan every port on each host and
is used as a next step after knowing if the system alive or not
using the IP scanner.

2.1.2 Sniffers
 Sniffers are programs that passively monitor and capture
traffic. Almost any laptop or PC can be turned into a sniffer
by installing sniffer software, much of which is freely
available on the Internet. The system running the sniffer
should have a network interface card that can be used in
promiscuous mode. Promiscuous mode enables the sniffer to
view but not respond to network traffic, thereby making the
sniffer essentially invisible to the network.

Sniffers are very useful tools during penetration testing and
network troubleshooting; we commonly use them to capture
user names and passwords from FTP and telnet sessions. In
addition, sniffers can be used to capture any network traffic
that is not encrypted, such as e-mail, HTTP, and other clear
text services. Sniffers are generally able to intercept network
traffic only on their local network segment. For instance, if a
sniffer is located on a shared network that uses hubs, it can
view all traffic on the entire network. If a sniffer is located on
a switched network (one that uses switches versus hubs), the
sniffer can see only broadcast traffic and traffic directed to it.
To sniff a switched network, the sniffer would have to be
located on a switch port that mirrored the traffic to other
ports. Emerging sniffers, such as Dsniff by Dug Song, can
sniff switched networks. The thought that switched networks
are safe from sniffers are no longer true. Hence, encrypting
sensitive information is always recommended to eliminate the
affect of sniffing. Data encryption will be discussed in more
detail in later sections of this paper.

2.1.3 Denial of Service (DoS)
 Denial-of-Service (DoS) attacks are well known attacks
and have been the bane of the security professionals. The
objective of a DoS attack is to exhaust the resources
(memory, buffer space, or CPU) to make its service
unavailable to legitimate users.

Denial-of-Service (DoS) attacks can be accomplished by two
methods. The first and most commonly used method is to
flood the target to exhaust its resources. The second method is
to create multiple attacks to confuse and crash the target.

Denial-of-Service (DoS) attacks are considered one of the
most marketed hacker attacks since its tools have been the
destruction of many powerful security structures. The main
objective of this kind of attacks is to prevent access to a
service or a resource located on the server, and makes it
unavailable by the end-user. This is often performed by using
flooding techniques against the target server in order to
exhaust its specific resources (CPU, memory or buffer)
depending on the main service that it provides. Also several
attacks aim to stop these services by sending confusing
packets to the target, resulting in system crashes while
processing these packets due to some bug in the target.

Avoiding penetration is accomplished using Intrusion
Detection Systems (IDS) and Firewalls. The main function of
IDS is similar to that of burglar alarms. While the firewall
keeps its organization safe from any external spiteful attacks
through the Internet [3], the IDS detects any illegal attempt to
break in the firewall security or any plans to access the trusted
side, and once one of the previous actions occurred, an alert is
sent to the system administrator warning him/her of a breach
security existence [4].

2.2 Network Attacks and Exploits

2.2.1 Viruses and Worms
 Day after day, the reliance on computer applications and
programs increases. But what most of us don’t know, that
programs by themselves often expose a security threat. The
work done by a program is hidden from the user. We only
know what input we gave to the program and the output
displayed by the program. Hence, most of the programs are
treated as a black box. A malicious code could be hidden in
that black box causing an intentional harm to the computer or
the network. The most common form of such codes are
Viruses and Worms. The origin of the word “virus” is Latin;
which means a poison. In biology, it is defined as an
infectious agent that is unable to grow or reproduce outside a
host cell. A computer virus, on the other hand, is a set of code
instructions encapsulated within an executable file, made to
cause damage on the host machine, in such a way it is
executed when the host executable is executed. By June 2005,
there had been 103,000 different computer viruses created.
Viruses are distinguished either by their function or
category/type. The function is the harm that the virus creates.
Whereas the category/type defines the characteristics of the
virus. The following defines some of the important computer
viruses’ categories [5]:

Polymorphic Viruses- Are viruses that can change themselves
after every infection to avoid identification by virus scanners.
They are considered by many the most dangerous type of
viruses [6].

Stealth Viruses- Are viruses that hides the harm they have
caused. This is mainly done by taking control over the system
module responsible of reporting or detecting the harm caused
by the virus. When the stealth virus takes over this module, it
will report the correct information before infection and hides
the damage done.

Fast and Slow Infectors- A slow infector virus is the
traditional virus which infects the programs when they are
created. As for the fast infector virus, it infects the programs
when they run in the memory. The main reason behind
creating a fast infecting virus, is to infect the anti virus when
it runs in the memory so it would infect all the files being
scanned.

Sparse Infectors- Is the virus that uses a certain technique to
decrease the probability of its detection. For example, it might
only infect files after being executed 12 times, infect files
with a certain size range, etc..

Armored Viruses- This virus is made in a way that it is very
hard for anti-virus engineers to reverse engineer it. Usually
the reverse engineering of a virus is done by disassembling its
code. For this purpose, virus writers write thousands and
thousands of unnecessary assembly code to make the virus
code look like a maze and confusing.

Virus Droppers- It is a regular program that doesn’t cause any
harm to your computer other than dropping or installing a
virus.

Regardless of the virus category or type, every virus generally
has four main parts as shown in Figure 1.

Re-infection Prevention Mark (Optional)
Infection Mechanism (Required)

Trigger (Optional)
Payload (Optional)

Figure 1: General Virus Stack

Re-infection Prevention Mark- It is a mark that the virus
leaves on the infected file or system so it won’t infect again.
This part of the virus is optional.

Infection Mechanism- It is the method used by a virus to
spread or infect other files on the computer. This part is
required for any virus.

Trigger- Is an optional property. It defines the condition
required to execute the virus’s payload.

Payload- Is the damage that the virus causes to the infected
computer besides spreading into other files.

A computer worm on the other hand, is a malicious program
that copies itself over a network without the user consent,
intervention, or knowledge [7]. It is very similar to computer
viruses in design. However, it doesn’t need a host file to
replicate itself over the network. It takes advantage of the
holes or weak spots in your system to travel across the
network. It could send itself through your email, local
network, or internet. When it is copied to another computer, it
will copy itself to all the computers in that network and so
forth. So, the worm can spread among computers
exponentially. One the dangers is if the worm creates many
copies of itself on the same computer, then each copy will
send a copy of itself through the network. This will exploit
the network and affect the bandwidth considerably.

A common method to avoid viruses and worms is to use an
anti virus program. It is a software used to search for,

identify, and recover a computer from hosted viruses. An anti
virus software uses three main approaches to detect a virus:

Virus Dictionary- When a virus is first reported by a user to
an anti virus software company, an anti-virus researcher will
examine the virus, reverse engineer it, and create an anti virus
to recover from it. The virus identified will be added to a
virus dictionary, which contains records of all the viruses
previously identified. Each record will contain the virus
identifier, function, type, and actions need to be taken to
recover from it. The dictionary can be later used by the anti
virus software to detect viruses and recover from them. This
is done by going through all the files in the computer and
comparing each file by the records in the dictionary. If it
matches a record, then the action defined will be executed.

Programs’ Behavior Monitoring- Using this approach, the
anti virus software will monitor the programs being executed
in the computer at real time. If it detects a suspicious
behavior, an alert will be popped to the user. A suspicious
behavior could be a program trying to write data to another
executable. This approach is used to detect newly created
viruses.

Program Execution Emulation- An anti virus software may
emulate a program execution to check if it is a virus or
infected file. This is done by executing the beginning of the
program to check if it will try to infect other files or execute a
damaging payload.

2.2.2 Password Cracking
 A password is a piece of information needed to access a
private resource such as: emails, programs, bank accounts,
computers, routers, house security systems, etc. Because of
their importance and purpose, passwords should not be
guessed, recovered, or bypassed by those who are not allowed
to access the password-protected resource.

Since it must be known to the program or application it is
protecting, a password is usually stored in a database or file to
be later used for comparison with the password provided by
the user to grant/revoke access. Securing this file is
imperative. Moreover, precautionary measures should be
taken to make it less probable for a person to crack passwords
stored in that file, if the network or system was penetrated.
One of the most commonly used approaches in this regard, is
to prevent storing the passwords in clear text format. This can
be done by applying an encryption function on the password.
However, this encryption function must be a “one-way
function”; which means if you have a password, you can get
its encryption, but if you have the password encryption, you
can’t get the password. This type of functions is called a
cryptographic hash function where its encrypted output is
called a hashed password.

Most of the operating systems being used nowadays use
hashed passwords. Linux-based systems, for example,

currently use MD5 hashed passwords. As for Windows
systems, prior to Vista, uses LM hashed passwords [8].
Hashed passwords add more security to our system. However,
attacks shown in the following list, can be used to recover a
hashed password. The main idea behind those attacks is that
they keep generating hashed passwords from a clear text
password and they compare the result with the hased
passwords in the password file. If, they match, then the clear
text password is the password. You should note that unless
you are trying to guess the password, the attacks presented
will not work without knowing what algorithm was used to
produce the hashed password.

Dictionary- This attack uses a dictionary file which contains
most of the words that we use. Of course, the more words are
there in the dictionary the higher the probability to crack a
password. This attack is only effective if the password was a
single or a combination of alphabetic words. Using this
attack, you will have a fair chance to crack a password. A
study that was conducted lately shows that 3.8% of the
passwords are a single word passwords and 12% are a single
word plus one numeric digit in which 66% of the time is “1”
[9].

Brute Force- In this attack, the cracking program generates
every possible combination of a password. Theoretically, this
attack will always work and eventually crack any password.
However, the larger the password the less practical the attack
will be. For example, if we had a three digit alphanumeric
password, we would need to generate 46,656 passwords (36 *
36 * 36) because in each digit we have 36 possibilities (26
letters and 10 numbers). Imagine now if the password used
one of the other characters on the keyboard like
~!@#$%^&*()-_+=”:;’?/.>,<{}|\[]`. That’s another 32
possibilities for each digit, this will exponentially increase the
number of needed passwords to generate. In real life, the
average length of a password is between 8 -12. So, we need
9.77477912 × 1021 (6812) trials to be certain that we will
crack a 12 character length password. This is true only if we
know what is the length of the password. In case we don’t
know, we will need to generate all possible passwords with
lengths between the minimum and maximum allowed
password length. If we had a system that allows password
lengths between 1 and 12, we will need 6812 + 6811 + 6810
+ 689 + 681 trials. It is obvious to see how
unpractical it is to use the brute force attack when the
password length is long or not known. A more practical
approach is a hybrid attack between dictionary and brute
force where we use a dictionary word and start generating a
prefix and suffix. Of course, this will work only if the
password had a dictionary password in part of it.

Pre-computation- It is similar to brute force attack except that
it is done before attempting to crack a password. In this
approach, we generate all possible passwords to create a hash
lookup table containing the clear text passwords paired with
their hash. The table will later be used for hash lookup. This
will only take the searching time to crack the password.

Although, it took the same time as brute force attack while
generating the hash lookup table, the pre-computation attack
is more effective if we want to crack many passwords on
different systems.

2.2.3 Buffer Overflow and Shell Coding
 Programming an application is not a straight forward
task. Sometimes, an unintentional mistake, weak
programming, or a bug in the program’s code can be used as a
back door to penetrate, take control over, and exploit the
system. The most common example of such threat is Buffer
Overflow.

Buffer overflow is the state where you write beyond the
memory boundary specified for a buffer in your program. The
overwritten memory could belong to a variable, return
addresses, pointers, or other important data in the program
[10]. Overwriting it, will lead to wrong results, errors,
crashes, or exploits in the program. Buffer overflow is
common on all platforms especially in applications written in
C/C++ programming language. The reason behind that is
C/C++ doesn’t provide boundary check for allocated memory
arrays. Take the following code as an example:

void BufferOverflowFunction(char *String)
{
//Buffer allocated of size 3 bytes
char BufferToOverfLow[3];
//Copies the contents of String buffer to another buffer until a
null character is reached.
strcpy(BufferToOverfLow, String);
}

int main() {
//Buffer allocated of size 34 bytes
char String[34];
//Add data to the buffer
String = “Network security class is awesome”;
BufferOverflowFunction(String);
return 1;
}

As you can see, even though BufferOverflow buffer is only
three bytes long, C/C++ will allow copying data of larger
size. What is of concern, however, is what happens when you
overflow the buffer? Before we dig deeper into this, we need
to know the exact memory layout of a process or a program to
predict the behavior of a program after a buffer overflow.

When a function is called, the CPU will store the data of that
function (parameters, local variables, and address of where to
go after the function is executed) in a Stack Frame (SF). The
SF will also contain a Stack Frame Pointer (SFP) which
contains the address of a fixed location within the stack so
local variables can be located relative to that location.

In Figure 2, we show the stack frame for the above
BufferOverflowFunction(char * String) function:

Figure 2: Stack Frame for the BufferOverflowFunction()

If you look at the above Stack Frame, overflowing
BufferToOverFlow buffer will overwrite the SFP, Return
Address, and *String. This will cause a segmentation fault
error and will crash your program. Moreover, the return
address can be overwritten in a way the program would jump
to execute a malicious code after the execution of the
program.

Here is where Shell Coding jumps in as a security threat since
it can be used to exploit such mistakes to take over your
system. A shell code is a piece of code that is injected into a
vulnerable program to exploit your system [11]. Originally, it
was called a shell code because the injected code was
supposed to take over the operating system’s shell command,
which would give access to the kernel’s functions. However,
many of the current “shell codes” don’t take over the shell
command. Many attempts to change the naming to a more
conceptually fitting name failed to succeeded. Shell codes are
written in machine code.

To exploit a system using the Buffer Overflow vulnerability,
all what the hacker needs to do is to put the shell code in
memory and overwrite the return address in the SF to point to
the address of the shell code and then the shell code will
automatically be executed. That’s why buffer overflow is
considered to be one of the most dangerous threats being
faced in computer and network security.

2.2.4 Attacks on Encrypted Information
 Sniffing network data is not a hard task to do. Hence,
sharing sensitive information of a high security application in
plain text will give the system information to an eavesdropper
on a silver plate. Hiding information by encryption is crucial
for such applications in this case. Encrypting shared
information will enhance the security of the system by
making it less probable for attackers to recover shared
information. This doesn’t mean that the system is totally

secure. Cryptography fails to claim that it is unbreakable [12].
In general, there are three methods of encryption:

Alphabetic substitution- is an encryption method which
applies a two way one-to-one mapping on every character or
ordered set of characters in the alphabet to a different
character or set of characters in the same alphabet [13]. This
method is hard to break using brute force since the mapping is
a permutation of a different alphabetic sequence, which is
very hard to guess. However, there is another way that will
make breaking it a very easy task. A study was made on the
average utilization relative frequency for every letter in the
English alphabet. The results are shown in Figure 3 [14]:

Figure 3: Letter Occurrence Frequency in English Alphabet

This information can be used to attack the Alphabetic
Substitution Encryption method. The letter relative utilization
frequency analysis can be applied in the same manner for the
encrypted text and then use the result to guess the key. For
example if we saw that the letter “t” is the most frequently
used in the encrypted text then “t” is most probably “e” in the
plain text. This can be applied on all other letters.

Symmetric Key Ciphers- is a branch of encryption algorithms
that uses the same or trivially related key to encrypt and
decrypt data [15]. A good example on Symmetric Key
Ciphers would be the Data Encryption Standard (DES). DES
is a widely used algorithm that was developed by IBM . The
details of DES algorithm are out of the scope of this paper.
However, we will introduce the concept to better understand
Symmetric Key Ciphers. The key concept of the DES
algorithm is that it divides the plain text into equally sized
blocks and apply its encryption algorithm on every block
[16]. It has two main block encryption mechanisms:

1- Electronic Code Book (ECB)- In ECB mode, DES
will divide the plain text to blocks and encrypt each

block with the same key as shown in Figure 4. The
main advantage of this algorithm mode is that it can
be processed in parallel whereas the disadvantage is
that identical blocks will produce the same encrypted
block.

Figure 4: ECB Block Generation

2- Cipher Block Chaining (CBC): Similarly, CBC
will divide the text into blocks. However, it XOR’s
each block with the encryption result of the previous
block as shown in Figure 5. As for the first block,
CBC uses an Initialization Vector (IV), which could
be a pseudo randomly generated block or specified
by the user. The main advantage of this algorithm
mode is that looking at the encrypted text will not
give any information to the attacker since the
encrypted block depends on entire previous input.
However, it has a disadvantage of that it is a
sequential algorithm and can’t be processed in
parallel which makes it slower and less convenient
for real time applications.

Figure 5: CBC Block Generation

After the encrypted text is transmitted, the receiving end will
use the same key to decrypt the cipher. Language analysis
can’t be applied on this type of algorithms. However, the
brute force attack is effective in breaking symmetric key
Ciphers especially when the key size is small.

Asymmetric Key Ciphers- is another branch of encryption
algorithms where the key used to encrypt data is different
from the key that is later used to decrypt it [17]. The key used
to encrypt data is called public key and it can be known to
anyone whereas the key that is used to decrypt data is called
private key and is only known to the host that is receiving the
encrypted data. Asymmetric Key Ciphers are considered to be
much more secure that Symmetric Key Ciphers and are the
most commonly used nowadays.

3 Developed Laboratories
 The principle of this study was initiated on the idea that
says the fastest way to learn network security is by trying to
break the network’s security. This study was prepared to form
the class note’s core and lab session’s experiments for
introduction to network security class. The students for this
class should have a background in Networking fundamentals
and TCP/IP protocol. The students should also have basic C
programming experience.

The laboratories were developed to accomplish several
objectives. The first objective is to let students have the
general background about hacking and network attacking
methods. The second objective is to help students understand
different methods on how to penetrate a network and detect
its backdoors, open ports and any unsecured services or holes.
The last objective is to teach the students how to secure the
network from the discussed attacks by using a variety of
defense measures.

Every lab session is ninety minutes long. At the beginning of
each lab, students will be required to present chosen topics in
network security that could form an introduction/support to
the lab. Each lab will be directed toward a general network
security problem. It will be composed of a theoretical
background section and a set of exercises. The objective of
the exercises is to allow students to learn the network security
problem by practice. Each exercise will reveal a specific
aspect of this problem. After every lab exercise, students are
required to solve problems related to the given exercise and
then write an explanation about this aspect of the problem and
conclude how it could be resolved. In Table 1, we show the
developed labs along with their objectives, and tools utilized
in them.

Lab Name Lab Objectives Tools Used
Introduction
to labs tools
and using
SMTP, POP3
and FTP

• Introduction to
the Vmware
environment.

• Working with the
Terminal
Console
through
Windows and
Unix

• Sending
anonymous
emails using
the Simple Mail
Transfer
Protocol
(SMTP) and
use its
command lines.

• Receiving emails
using the Post
Office Protocol
v3 (POP3) and
use its
command lines.

• Downloading,
uploading and
manipulating
files using a
File Transfer
Protocol (FTP).

NS lookup
(host)
Sam Spade
Pinger
Traceroute
Telnet
Finger
Whois/nicname
Knowbot
Netfind
Archie
Gopher

Penetration
Testing

• Deal with some
scanner tools
on windows

• Be familiar with
scanner tools
that require
Unix.

• Learn how to
install .rpm and
.tar files in
Linux.

• Be familiar with
the command
line in
Linux/Unix.

• Learn how to scan
targets without
being traced or
detected.

• How to block
ports

Superscan
Nmap

Sniffing • Using Sniffers

• Learn how to
apply Monkey
in the Middle
Attack

• Encryption as
precaution

-Session
Hijaking
- Dsniff

Denial of
Service (DoS)

• Understanding the
Denial of
Service
principle.

• Gain knowledge
of Resource
Exhaustion
Attacks.

• Knowledge in IP
Fragmentation
Attacks
method.

• Knowledge in the
Distributed
Denial-of-
Service (DDoS)
method.

Distributed
DOS
Syn Flood
Win Nuke
Smuf, snork

Viruses and
Worms

• Learn computer
viruses types
and structure.

• Program a simple
virus.

• Learn how does
an anti virus
work.

• Program an anti
virus for the
previously
created virus.

• Differentiate
between a
computer virus
and worm.

• Learn how does a
computer worm
work using the
famous
“msblaster”
worm example.

- Borland C
compiler

Password
Cracking

• Learn password
cracking
techniques.

• Learn how to
attack Windows
LM hash
passwords
using dictionary
attack.

• Learn how to
attack Windows
LM hash
passwords
using brute
force attack.

• Learn how to
attack Windows
LM hash
passwords
using hybrid
attack.

• Learn how to
choose a strong
password.

- LCP
password
cracker.

Buffer
Overflow and
Shell Coding

• Buffer Overflow
description and
exploits.

• Buffer Overflow
programming
tutorial
(Practice).

• Shell Coding in
theory.

• Shell Coding
programming
tutorial
(Practice).

• Take home
exercise: Buffer
Overflow
exploit using
Shell Coding

Borland C
compiler or
other
IDA Pro

Cryptography • Practice and learn
Simple
Encryption
Using classic
Caesar
Algorithm

• Practice and learn
Alphabetic
Substitution
Encryption and
Attack Using
Language
Analysis.

• Practice and learn
Data
Encryption
Standard
“DES” and
develop attacks
on it.

• Practice RSA
Crypto systems.

• Practice message
signature
generation.

CrypTool

Table 1: Developed Labs, Objectives and Tools

By the end of the class, the students are expected to have
basic understanding of general issues in network security and
the approaches that can be followed to resolve them.

4 References
[1] Rodger, Will. Cybercops Face Net Crime Wave. (1996,
June 17). [Online]. Available at
http://www.zdnet.com/intweek/print/960617/politics/doc1.ht
ml.

[2] Flick, Anthony R.. Crime and the Internet. (1997, October
3). [Online]. Available at
http://www.rwc.uc.edu/bezemek/PaperW97/Flick.htm.

[3]. Guide to Firewalls and Network Security: Intrusion
Detection and VPNs, Course Technology, by Greg Holden
ISBN: 0-619-13039-3

[4]. Intrusion Detection Systems; Definition, Need and
Challenges, Sans Institute 2001.

[5]. Computer Virus Tutorial, 2005, Computer Knowledge,
http://www.cknow.com/VirusTutorial.htm

[6]. Péter Ször , Peter Ferrie, Hunting For Metamorphic,
Symantec Security Response

[7]. Computer Worms Information:
http://virusall.com/worms.shtml

[8]. How to prevent Windows from storing a LAN manager
hash of your password in Active Directory and local SAM
databases,
http://support.microsoft.com/default.aspx?scid=KB;EN-
US;q299656&

[9]. Net users picking safer passwords,
http://news.zdnet.com/2100-1009_22-150640.html

[10]. Crispin Cowan, Perry Wagle, Calton Pu, Buffer
Overflows: Attacks and Defenses for the Vulnerability of the
Decade*

[11]. Yong-Joon Park, Gyungho Lee, Repairing Return
Address Stack for Buffer Overflow Protection, CF’04 April
14-16, 2004, Ischia, Italy, Copyright 2004 ACM 1-58113-
741-9/04/0004

[12]. Ross Anderson, Why Cryptosystems Fail,
http://www.cl.cam.ac.uk/~rja14/wcf.html

[13]. Substitution Cipher:
http://www.nationmaster.com/encyclopedia/Substitution-
cipher

[14]. Cryptograms and English Language Letter Frequencies,
http://www.cryptograms.org/letter-frequencies.php

[15]. Cook, D. L. and Keromytis, A. D. 2005. Conversion and
Proxy Functions for Symmetric Key Ciphers. In Proceedings
of the international Conference on information Technology:

Coding and Computing (Itcc'05) - Volume I - Volume 01
(April 04 - 06, 2005). ITCC. IEEE Computer Society,
Washington, DC, 662-667. DOI=
http://dx.doi.org/10.1109/ITCC.2005.115

[16]. Walter Tuchman (1997). "A brief history of the data
encryption standard". Internet besieged: countering
cyberspace scofflaws: 275-280, ACM Press/Addison-Wesley
Publishing Co. New York, NY, USA.

[17]. J. Katz; Y. Lindell (2007). Introduction to Modern
Cryptography. CRC Press. ISBN 1-58488-551-3.

