
Secure Common Web Server Session
Sharing object data across deployed Java web applications on the same web server

Chad Cook and Lei Chen

Department of Computer Science, Sam Houston State University, Huntsville, TX 77341, USA

Abstract - When web applications are deployed to a Java
web server, there is no consistent or easy way to share
object data among them. In this paper, we propose a
mechanism, the Secure Common Web Server Session
(SCWSS), which allows object data to be shared across
deployed web applications, independent of the web server
or any other implementation specifics, in a manner similar
to storing session objects in Java. In SCWSS, the byte
representation of the object data is first encoded to ASCII
format, then encrypted (currently using DES), and finally
saved in a cookie with a name supplied by the developer at
the root level. Data can then be retrieved by any other
application deployed to the same web server that can
supply the correct encryption key. The proposed mechanism
has been implemented, tested using various browsers, and
analyzed for shortcomings and possible improvement.

Keywords: Secure, web Applications, Java, session,
cookies, encryption

1 Introduction

When developing Java web applications, there is often a
need to store data, objects, for use elsewhere in the
application. This can be conventionally done by saving data
for that specific user’s session which can then be retrieved
elsewhere in the application. While useful for a single web
application, it cannot be used to share data across web
applications deployed to the same web server. Some web
application vendors offer settings and mechanisms for
allowing session data to be shared across web application,
but these require administrator level access and developers
may not have access to these permissions.

One method that is available for sharing data across web
applications is by storing a cookie in the client’s browser.
However, this method only stores string data, which is not
very useful to an object-oriented language such as Java.
This paper proposes a method of using this cookie
mechanism to share data in a secure manner between web
applications by converting the object data into a string
representation of that object, encrypting it, then storing it in
a cookie for retrieval by any web application that has the
proper key to decrypt it, and converting the string back into
the original object.

The rest of the paper is structured as follows. Next in
Section 2, we discuss the advantages and disadvantages in
the existing ways to share data across web applications. We
outline a number of key terms and concepts used throughout
the paper in Section 3. An overview of the Data Encryption
Standard (DES) scheme, the encryption standard we used to
share data across web applications in a secure way, is
introduced in Section 4. This is followed by description of
the detailed implementation in Section 5, which describes
object data sharing, implementation environment, diagrams
of Java classes developed, and the code flows of object
storage and retrieval processes. The implementation
environment is described in Section 6 and is tested and
analyzed in Section 7. At the end of the paper we discuss
some of the known shortcomings of our implementation in
Section 8 and areas for future enhancements and
improvements in Section 9.

2 Background
Every now and then web application developers need to

store data or objects to be used later in applications.
Therefore session data need to be store in a reliable and
sometimes secure way to preserve data confidentiality and
integrity. When only a single web application is involved,
the above method may be quite competent. However in a
multiple web applications environment, there exist a
number of potential problems, the most noticeable problem
being the settings and mechanisms for allowing such
session data sharing require administrator level access
which developers and web applications normally do not
have.

Currently, when sharing data between web applications
deployed to the same web server, there are a couple of ways
to do so. Some vendors offer settings at the server level to
provide ways to share session data (also known as context
sharing). For example, when using WebSphere Application
Server V5, the WebSphere extension to the servlet 2.3 API
allows sharing session context across an enterprise
application [14] [15]. Session attributes must be serializable
to be processed across multiple Java Virtual Machines
(JVMs) [11]. Reliability and availability of a user’s session
state must be guaranteed. The In Process and Out of Process
methods used by ASP.NET can be configured to maintain
session state [10] in a reliable way. While this can be useful,
it does not work if the applications need to be deployed to a

different vendor’s web server that does not offer context
sharing or if the developer does not have access or a way to
modify the server’s settings to enable context sharing.

Data has also been shared by writing its binary
counterpart to a database, where other applications can then
access it. While this approach is web server vendor
independent and the developer does not necessarily have
administrator access, it is a very tedious approach, requiring
changes to the database whenever new objects need to be
saved and possible modification to existing database
metadata when changes to the objects occur. When the
database environment changes, all tables must be copied
over, which can be tedious if this is a switch between
vendors.

Another method that allows data to be shared is by using
a cookie [5] [8]. A cookie is string data that is stored in the
client’s browser and resides at the level of the web
application that creates it. However, the path of the cookie
can be created to the root level, giving all web applications
deployed to the server access to it. While this approach
does not require any administrative changes and is vendor
independent, the fact that it uses cookie data limits the data
that can be shared to strings. But if there is a way to convert
object data to a string and vice-versa, a simple, vendor
independent approach that requires no administrative
assistance becomes available to the developer. Our goal
was to develop such a solution. In the next section, we
introduce a number of terms frequently used in our secure
object data sharing mechanism.

3 Key terms and concepts
Below are a number of the key terms and concepts used

in this paper:

 Client: the end user, typically referring to the end
user’s computer or computing device. The term client
also refers to client side applications. The client sends
requests for data and/or to perform actions to a server.

 Server: the machine where the web server and web
applications deployed to it are running. The term
server also refers to the server applications. When the
server receives a request from a client, it sends a
response after processing the request.

 Web Server: a piece of software that is run on a
machine with an internet connection. It processes
requests for web pages and other internet related data
and typically sends data back after processing the
request.

 Web Application: an application which is based in the
web browser. A single web application can be run for
many different users at once, each with their own
session.

 Cookies: string data which is saved on the client’s
machine. This is typically informational data and can
be included if a user has accessed this web application
before and any user (client) preferences.

 Data Encryption Standard (DES): a widely used
encryption standard. DES is covered in detail in
section IV.

 Java Session: when a client first accesses a web
application on a web server, a unique session is
created for that specific web application. This session
“lives” while the client interacts with the web
application. They can store and retrieve information
in the session while they interact with the web
application. However, they cannot share data with
other web applications and once the client terminates
their interaction with the web application the session is
removed.

4 Data Encryption Standard (DES)
The Data Encryption Standard Scheme (DES) [3] [4] is

a standard encryption scheme, used both by the government
and privately [12]. DES is a symmetrical encryption
algorithm as it uses the same 64-bit key (56 bits for
encryption, 8 bits for parity checking) to both encrypt and
decrypt the data. This is done by providing a key to encrypt
the plaintext data, resulting in encrypted text, or ciphertext.
To decrypt the ciphertext, the same key used to encrypt the
data must be supplied to decrypt the data back to its
plaintext form.

To perform the actual encryption, data is split into 64 bit
blocks and then fed through 16 rounds of processing. To
perform each round of processing, the 64 bit block of text is
split into two 32-bit halves. Each half is then expanded by
using substitutions and permutations of bitwise shifts and
reordering, resulting in 48 bits. Then a subset of the key is
combined with the 48 bits using an XOR operation and the
block is again divided into smaller pieces where each piece
is fed into a substitution box where a non-linear
transformation is used to ensure that the cipher will not be
trivially breakable. To perform the decryption, the process
is run in reverse order.

Since a brute force attack against encryption using a 56
bit key is relatively easy to perform [6], the DES process
can be repeated two more times, called Triple DES and in
effect creates an encryption key of 56, 112 or 168 bits to
use, depending on which of the three the keying options is
used [13]. This can still be brute force attacked, but it does
increase the security of the encryption algorithm to some
extent. While it was reported that Triple DES may suffer
from meet-in-the-middle (not man-in-the-middle) attack [7],
Triple DES is more than sufficient for data confidentiality
and integrity in our project. We discuss the possibility of
using the Advanced Encryption Standard (AES) [1] in the
last section Future Work.

5 Implementation

5.1 Object data sharing
Taking the advantage of cookies that can be shared

amongst all web applications we developed a process to
convert the specified object into a consistent string
representation for storage in the cookie. This string
representation can then be retrieved by any other application
deployed to that web server, converting the string back into
its original object for use by that application. Figure 1 below
depicts how this process works in a nut shell.

Figure 1. Object sharing mechanism

To start, the object is supplied and converted into a byte
array. This is done via a byte array output stream supplied
to an object output stream where the object is written out as
a byte representation. The byte representation is saved as a
byte array and is then encoded via Base64 encoding, to an
ASCII format, which allows for the byte array to be easily
converted into a string. The encoded byte array is then
encrypted with a supplied encryption key and then saved in
a cookie with a name supplied by the developer at the web
server’s root level. By encrypting the data, any other web
application wanting to read the data must know the key,
preventing unauthorized web applications which are also
deployed to the same web server from accessing the data.

When a web application wants to read the data, the
above mentioned process is reversed. The developer
provides the cookie’s name and the decryption key. The
cookie is then retrieved (if it exists) and the cookie value is
decrypted. The string representation must be decoded back
into a byte array using Base64 decoding. The resulting byte
array can then be fed into a byte array input stream which is
then given to an object input stream. The object input
stream can then read the object from the array and return it
to the developer.

Once the actual conversion process is completed, then
next goal is to implement an easy way for the developer to
use this technology. Our goal is to mimic the storage and
retrieval of session data in Java, thus two methods were
devised to allow for working with the common web server
data. For saving data, a setAttribute() method was
developed, taking the name to save the object under, the

object to be saved, the response object for working with the
cookie and the encryption key to encrypt the data with. For
retrieving data, a getAttribute() method was developed,
taking the name of the object to look for, the request object
for working with the cookie and the encryption key for
decrypting the data with. By using the same method names
as the methods used to work with data in the session, we
will create an intuitive and easy way to also share data
between deployed web applications. All the required
classes are stored in a single Java Archive (JAR) file and by
including the JAR file in the application’s or server’s
classpath working with session data is relatively straight-
forward.

For data encryption and decryption, Data Encryption
Standard (DES) scheme was used. As the purpose of this
research was not related to how data is encrypted, but rather
that the data could be encrypted to prevent unauthorized
access, DES scheme was used as a proof of concept.

5.2 Implementation environment
The implementation environment used the following

applications:

 Eclipse Helios SR1

 Java SE 1.6

 Apache Tomcat 6.0.20

 Mozilla Firefox 3.6.12

 Internet Explorer 8.0.7600.16385

Our secure common web session object was developed
in Eclipse using Java. We had two web applications to test
our implementation, one for setting the data and the other
for retrieving the data. Both web applications were
deployed to the same instance of Apache Tomcat. To ensure
there would be no problems with the cookies, the setting
and retrieval of data was tested with both Firefox and
Internet Explorer to help ensure cross-browser
compatibility.

5.3 Class diagrams
The following are the diagrams of the Java classes

developed.

Figure 2. Converter class diagram

Figure 3. ConverterException class diagram

Figure 4. CommonWebSession class diagram

Figure 5. Encrypter class diagram

5.4 Code flow
The following figures demonstrate the flow of code for

object storage and object retrieval processes.

Figure 6. Code flow for object storage process

Figure 7. Code flow for object retrieval process

6 Testing
To test our implementation we created two separate web

applications in Eclipse – one would write data to the
common web session and the other would read the data
back out. To further ensure the validity of the
implementation, custom objects were created which
contained standard Java objects and other custom objects,
ensuring the entire object and all data it contained, including
other objects, would be saved and retrieved properly.

The first web application would run a simple html page
which submits values to a test servlet. The servlet would
then take these values out of the request and use them to
populate the custom object. The custom object would then
be saved using the common web server session. The second
web application would run a JavaServer Pages (JSP)
program which would request data from its test servlet. The
test servlet would retrieve the custom object from the
common web session and then construct an URL from the
values from the custom object and forward to this URL,
which would call the JSP program and display the contents
of the object.

By allowing for form submission of the data in the
custom object, it was easy to quickly test that various
combinations of data were being written to the common
web session and were being retrieved properly as well. We
could also make multiple attempts to save and retrieve the
same object and ensure the consistency of the data that we
were working with.

7 Known shortcomings
While our research and implementation showed that we

developed a simple, reliable, and secure way to share object
data across web applications deployed to the same server,
we also identified some limitations.

The main problem we encountered was in converting
the object data to a string representation. Because we were
using an object output stream, objects must be serializable

to be written to a cookie. This means that any object which
does not implement the Serializable interface cannot be
saved with our implementation. The other limitation
regarding serializable objects is that any data which is
marked transient will not be output, meaning certain
member data can be lost. We encountered this in our testing
as some of the member data was marked transient in our test
objects and the application which read from the common
web session had empty data for these values as they were
not output (or saved).

As the main method for saving and sharing data relies
on cookies, we are also constrained by any limitations due
to using cookies. The first is cookie size, which cookie
specifications state should not be longer than 4k [9]. This
means that we are limited to a string representation of
approximately 3,800 characters, leaving room for the name
of the cookie and other header information. While even
arrays of one hundred of our custom objects only generated
300 character string representations, it is still possible that
the cookie size limit could be hit, thus we had to put in
checks to ensure the generated string length will all be
saved in the cookie.

As the data is stored in cookies, any client that has
cookies disabled will be unable to take advantage of this
functionality.

8 Future work
As one of the major weaknesses in the implementation

was the omission of non-serializable and transient data,
identifying a way to include this, and in turn all object data,
will be very useful. More research into ways to obtain the
data from the objects and in turn reconstruct the objects
would be beneficial. Some preliminary research into
decomposing an object into a string found potential
solutions [2], but there was no non-trivial way to reconstruct
the object from the decomposition.

As the client must have cookies enabled for our
proposed implementation to work, identifying other simple
ways to save the string data will eliminate this requirement.
As one of the goals of this work was to avoid involving a
database or any component that is not “always” included in
a web session, we will try to avoid any solution that
involves the use of a database.

When continuing with a cookie approach, the current
implementation does not set an expiration date on the
cookie data, defaulting to the client’s browser’s expiration
date. Developing a “timeout” for the cookie by determining
a specific expiration date/time will be very useful. Not only
will this value need to be set when the cookie is created, but
periodically it will need to be checked so that if the cookie
is not accessed for a period of time it does not expire while
the user is interacting with other parts of the web
application.

The DES scheme was used as a simple proof-of-concept
to show that the data can be stored securely from prying
eyes. More advanced encryption schemes, such as AES,
can be used. In addition to more advanced security, other
encryption schemes that can offer better data compression
will be useful in helping to avoid any character limits of the
cookie or any other location the data could be stored in the
future.

As the current encryption scheme, DES, is hard-coded
into the implementation without any way of overriding it,
this greatly reduces the implementation’s maintainability
and lifespan. Allowing a mechanism to override the default
encryption scheme would be useful, especially for those that
are required to use a certain scheme or a more powerful
encryption scheme. Also, encryption schemes change with
the times as they become more powerful and allowing for a
way to override the encryption scheme used will increase
the lifespan of the implementation a great deal.

9 References
[1] Annoucing the Advanced Encryption Standard
(AES) (2011, March 15). Retrieved from
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[2] Apache commons: lang. (2011, March 15).
Retrieved from http://commons.apache.org/lang/

[3] Data Encryption Standard. (2011, March 15).
Retrieved from http://csrc.nist.gov/publications/fips/fips46-
3/fips46-3.pdf

[4] Data Encryption Standard (DES). (2011, March
15). Federal Information Processing Standards Publication
46-2. Retrieved from
http://www.itl.nist.gov/fipspubs/fip46-2.htm

[5] David M. Kristol, “HTTP Cookies: Standards,
privacy, and politics”, ACM Transaction on Internet
Technology (TOIT), vol. 1 issue 2, Nov. 2011

[6] Gilmore, John, "Cracking DES: Secrets of
Encryption Research, Wiretap Politics and Chip Design",
1998, O'Reilly, ISBN 1-56592-520-3.

[7] Meet-in-the-middle attack (2011, March 15).
Retrieved from http://en.wikipedia.org/wiki/Meet-in-the-
middle_attack

[8] Michael Nelte and Elton Saul, “Cookies: weaving
the Web into a state”, Crossroads, vol. 7 issue 1,
September, 2000

[9] Number and size limits of a cookie in internet
explorer. (2011, March 15). Retrieved from
http://support.microsoft.com/kb/306070

[10] Selecting the Method for Maintaining and Storing
ASP.NET Session State.(2011, March 15). Retrieved from
http://technet.microsoft.com/en-
us/library/cc784861%28WS.10%29.aspx

[11] Session management for clustered applications.
(2011, March 15). Retrieved from
http://www.oracle.com/technetwork/articles/entarch/sessio
n-management-092739.html

[12] T. Schaffer, A. Glaser, S. Rao and P Franzon, “A
Flip-Chip Implementation of the Data Encryption Standard
(DES)”, IEEE Multi-Chip Module Conference (MCMC
’97), pp 13-17.

[13] Triple DES Encryption (2011, March 15).
Retrieved from
http://publib.boulder.ibm.com/infocenter/zos/v1r9/index.js
p?topic=/com.ibm.zos.r9.csfb400/tdes1.htm

[14] Websphere application server v5: sharing session
context. (2011, March 15). Retrieved from
http://www.redbooks.ibm.com/abstracts/tips0215.html?Op
en

[15] Websphere application server version 6.1:
assembling so that session data can be shared. (2011,
March 15). Retrieved from
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/inde
x.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/tprs_
sharing_data.html

