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Abstract- This paper discusses modern hash function 
construction using the NIST SHA-3 competition as a 
survey of modern hash function construction properties.  
Three primary hash function designs are identified based 
on the designs of SHA-3 candidates submitted as part of 
the NIST SHA-3 competition.  These designs are Wide-
pipe, Sponge, and HAsh Iterated FrAmework (HAIFA). 
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1 Introduction  
Modern secure hashing algorithms are critically 

important to the integrity and non-repudiation of information 
and data in many different computer systems.  The most 
widely used cryptographic hash functions, MD5 and SHA-1, 
have considerable weaknesses [1,2]. The National Institute of 
Standards and Technology (NIST) is currently holding an 
international competition to select the next generation secure 
hashing algorithm, called SHA-3.  This paper covers the 
construction properties of modern cryptographic hash function 
as well as the security requirements that motivate these 
construction properties. After an overview of cryptographic 
hash function security properties and attacks, we will discuss 
three primary classifications of modern hash function 
construction: Wide-pipe, Sponge function, and the HAsh 
Iterated FrAmework (HAIFA). 

2 Hash function security properties and 
attacks 

Cryptographic hash functions play a fundamental role 
in modern cryptography, specifically in the areas of message 
authentication, data integrity, digital signatures, and password 
schemes.  In general, a hash function 

 h	:	 0,1 *→ 0,1 n (1) 

maps an arbitrary finite sized binary input message  to a 
fixed sized, -bits, binary output called the hash value, 
message digest, or simply hash. (Figure 1) For a cryptographic 
hash functions, the hash value serves as a unique and fixed-
sized representation of the unique message input.  
Unfortunately we have one big problem. Given a 
domain  and range  with ∶ →  and | | | |	implies 
that collisions are inevitable, where multiple inputs map to the 
same output. [3]   

An acceptable solution is to design a cryptographic 
hash function (simply hash function from here forth) in such a 
way that a collision is difficult to find.  In other words, finding 
a collision should be computationally infeasible.  In the 
requirements for NISTS’s SHA-3 competition, NIST notes 
that 280 work is considered too small of a security lower 
boundary and requires all SHA-3 candidates to have a higher 
security boundary. [4] This measure is simply the number of 
calls to the hash function an attacker would have to make in 
order to find a collision.  Although not an ideal definition, 
computational infeasible today means that more than 280 work 
is required to find a collision in a hash function. 

 

Figure 1 Hash Function 

Three distinct attack methods exist for finding a 
collision in a hash function based on the goals of the attacker.  
These methods form the fundamental security properties of a 
hash function. The basic properties of a hash function are: 

1. Preimage resistance - given an output , it is 
difficult to find . See Figure 2. 

2. Second-preimage resistance - given a specific input  
 with an output , it is difficult to find 

another input  such that . See 
Figure 3. 

3. Collision resistance - it is difficult to find two 
messages  and  such that . 
(Note: There is free choice for both messages.) See 
Figure 4. 



 

Figure 2 Preimage resistance 

 

Figure 3 Second-preimage resistance 

 

Figure 4 Collision resistance 

Preimage resistance has a fixed output value, 
Second-preimage resistance has a fixed input value, and the 
attacker seeks to find another colliding input message for 
either of these values.  For collision resistance, the attacker 
does not care what the two input message are, only that they 
“hash” to the same output.   

A common security model used to describe the ideal 
hash function is the random oracle.  Visualize the random 
oracle as an elf sitting in a box with a source of physical 
randomness and some means of storage.  A common 
explanation uses dice and a scroll.  The elf will accept queries 
from anyone and will look in the scroll to see if an entry exists 
for that query.  The elf will answer queries from anyone, both 
friendly and foe.  If the query exists, the elf will respond with 
the recorded result.  If the query does not exist, the elf will 
throw the dice, record the randomized result, and respond.  
The elf can only work so fast and thus has a limited amount of 
queries that can be answered every second.  The end result is a 
“perfect” one-way function. [5] 

In order for a hash function to have an acceptable 
security level it should behave like a random oracle.  The 
minimum amount of work required by an attacker to violate 
the preimage or second-preimage resistance property for an 
‐bit output hash function should be 2 .  The minimum 

amount of work to violate the collision resistance property 
(due to the birthday paradox [6]) should be 2 . [7] For 

example, SHA-1 has a 160-bit output, so any attack that finds 
a preimage or second preimage in less than 2  or a collision 
in less than 2  demonstrates that SHA-1 provides less 
security than a random oracle.   In fact, a collision attack exists 
against SHA -1 that only requires 2 work [1] which was one 
of the largest motivating factors for NIST to form the SHA-3 
competition to select a new standard hash function. 

Table 1 Minimum Security Requirements for a Hash Function 

Attack Security Boundary 
Preimage 2
Second-Preimage 2
Collision 2  

 
The hash functions, MD5 and SHA-1, use a classic 

Merkle-Damgård construction [8,9] which, in general,  splits 
the input message into  equal sized -bit message blocks 
( ⋯  padding the last block as necessary and 
appending the message length, then iterates through each 
message block applying a compression function  

 ∶ 	 0,1 0,1 → 0,1 . (2) 

The input to the compression function is the previous 
compression function output and the current message 
block .  The compression function output   is called the 
Chaining Value and the initial chaining value  is called the 
Initialization Vector or .  This process is show in Figure 5 
below. 

 

Figure 5 Iterated Hash Function 

Unfortunately, due to the iterative nature of classic 
Merkle-Damgård (MD) construction certain generic attacks 
exist that differentiate an MD hash function from a random 
oracle [5] such as the multicollision attack [10] and length 
extension attacks.   

Imagine a collision finding function  that takes an 
initialization vector ( ) and outputs two message 
blocks ′  that both hash to the same value 

 , ′ , . (3) 

The amount of work required to find this collision is 2 .  Set 
 and the collision finding function will find two more 

messages,  and ′ , that also collide which requires 
another 2 .  Thus for finding -colliding pairs (Figure 6) of 
message blocks that all hash to the same final value , the 
attacker only has to expend 2  effort instead of the 

expected 2 effort if the hash function was truly 
random.  This attack also leads to other serious attacks such as 



the long message second-preimage attack [11] and the herding 
attack [12].   

 

 

Figure 6 Multicollisions in Merkle-Damgård construction 

Another problem with MD based hash functions is 
length extension.  A message  is divided into , , ⋯ ,  
blocks and hashed to a value .  Now choose another message 
′ that divides into , , ⋯ , ,  blocks.  Since  

and  share the same first  blocks, the hash value  is 
simply the intermediate hash value after  blocks when 
computing ′ .  This is shown in Figure 7 below.  This 
certainly is not a property of the ideal hash function and 
creates serious problems in practice.  [13] 

 

Figure 7 Length Extension 

Merkle and Damgård [8,9] proved that a collision 
resistant compression function implies a collision resistant 
hash function but due to internal collisions caused by the 
iterative nature of MD construction, these additional attacks 
are possible.  A random oracle does not have these 
weaknesses.  These generic attacks have motivated 
cryptographic researchers to find new methods of designing 
hash functions. 

3 State-of-the-art hash function design 
The NIST SHA-3 competition began in November 

2008 with the first round consisting of 51 candidate hash 
functions.  In August 2009, the second round cut the 
competition down to 12 candidates.  The final round began in 
December 2010 with 5 finalists.  Nearly all these candidate 
hash functions can be broken down into one of three general 
categories: wide-pipe, sponge functions, and HAIFA. 

3.1 Wide-pipe 

Wide-pipe hash function construction is designed to 
overcome the multicollision attack and length extension attack 

by trying to prevent internal collisions. [14] In simple terms, 
this is accomplished by increasing the size of internal state of 
the hash function.  For an -bit output hash function with a -
bit , . (Figure 8)  In order to obtain the -bit output, 
an output transformation is performed on the final .  
This could be just discarding bits or some other more 
complicated function.   

 

Figure 8 Wide-pipe Construction 

3.2 Sponge Functions 

The next class of hash function construction, sponge 
functions [15], was designed in such a way to mimic a random 
oracle.  In general terms, a random oracle 

 ∶ 	 0,1 ∗ → 0,1  (4) 

maps a variable-length input message to an infinite output 
string.  It is also completely random; the output bits are 
uniformly and independently distributed.  The requirement of 
a random oracle that makes it suitable for a proper hash 
function security model is that identical input messages 
generate identical output strings.  A secure hash function with 
an -bit hash value should behave exactly like a random 
oracle whose output is truncated to -bits. 

Again, due to the iterative nature of classic Merkle-
Damgård construction, internal state collisions exist in the 
chaining values, .  State collisions introduce properties that 
do not exist for a random oracle such as the length extension 
attack.  For example, consider that  and  are two 
messages that form a state collision.  For any suffix , the 
messages |  and |  will have identical hash values.  
State collisions alone are not a problem but they do lead to a 
differentiator from a random oracle.  The random oracle 
security model is an unreachable goal for an iterated hash 
function.  Instead of abandoning iterated hash functions, 
Bertoni et al. [15] designed the sponge function construction 
as a new security model that is only distinguishable from a 
random oracle by the presence of internal state collisions. 

Sponge construction consists of a fixed-length 
permutation on a fixed number of bits, , shown in Figure 
9 below [15].  It can be used to create a function with variable-
sized input and arbitrary length output.  



 

Figure 9 Sponge Construction 

The value  is called the bitrate and the value  is the 
capacity.  Both are initially set to zero.  The input message is 
first padded and split into -bit length message blocks. The 
sponge construction consists of two stages, absorbing and 
squeezing.  In the absorbing stage, -bit sized blocks of the 
input message (  in Figure 9) are XORed with the first -bits 
of the state, followed by an application of the permutation 
function .  This is repeated until all message blocks are 
processed.  In the squeezing stage, the first -bits are returned 
as output of the sponge construction, again followed by 
applications of the permutation function .  The length of the 
squeezing phase is user-specified depending on the desired 
output length.   

3.3 HAIFA 

The HAsh Iterative FrAmework (HAIFA) [16] design 
solves many of the internal collision problems associated with 
the classic MD construction design by adding a fixed 
(optional) salt of -bits along with a (mandatory) counter  of 
-bits to every message block in the iteration  of the hash 

function.  Wide-pipe and HAIFA are very similar designs. The 
counter  keeps track of the number of message bits hashed 
so far.  The HAIFA design is both prefix- and suffix-free and 
as a consequence is collision resistant and indifferentiable 
from a random oracle. [17]  This design is also proven secure 
against 2nd-preimage attacks if the underlying compression 
function behaves like an ideal primitive. [17] Figure 10 below 
shows the construction of the compression function.  This can 
also be expressed as 

 , , , . (5) 

 

Figure 10 HAIFA Construction 

4 Discussion 
This paper covered three general secure hash function 

construction methods represented by various hash functions 
specifications in the NIST SHA-3 competition.  All of these 
are general descriptions and do not represent an actual hash 
function.  Instead, these construction methods serve the 
purpose of describing general solutions to some serious attacks 
against classic Merkle-Damgård hash function construction.   
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