
Modern Hash Function Construction

B. Denton1 and R. Adhami1
1Dept. of Electrical & Computer Engineering, The University of Alabama in Huntsville, Huntsville, AL, USA

Abstract- This paper discusses modern hash function
construction using the NIST SHA-3 competition as a
survey of modern hash function construction properties.
Three primary hash function designs are identified based
on the designs of SHA-3 candidates submitted as part of
the NIST SHA-3 competition. These designs are Wide-
pipe, Sponge, and HAsh Iterated FrAmework (HAIFA).

Keywords- cryptography; hashing; hash function

1 Introduction
Modern secure hashing algorithms are critically

important to the integrity and non-repudiation of information
and data in many different computer systems. The most
widely used cryptographic hash functions, MD5 and SHA-1,
have considerable weaknesses [1,2]. The National Institute of
Standards and Technology (NIST) is currently holding an
international competition to select the next generation secure
hashing algorithm, called SHA-3. This paper covers the
construction properties of modern cryptographic hash function
as well as the security requirements that motivate these
construction properties. After an overview of cryptographic
hash function security properties and attacks, we will discuss
three primary classifications of modern hash function
construction: Wide-pipe, Sponge function, and the HAsh
Iterated FrAmework (HAIFA).

2 Hash function security properties and
attacks

Cryptographic hash functions play a fundamental role
in modern cryptography, specifically in the areas of message
authentication, data integrity, digital signatures, and password
schemes. In general, a hash function

 h	:	 0,1 *→ 0,1 n (1)

maps an arbitrary finite sized binary input message to a
fixed sized, -bits, binary output called the hash value,
message digest, or simply hash. (Figure 1) For a cryptographic
hash functions, the hash value serves as a unique and fixed-
sized representation of the unique message input.
Unfortunately we have one big problem. Given a
domain and range with ∶ → and | | | |	implies
that collisions are inevitable, where multiple inputs map to the
same output. [3]

An acceptable solution is to design a cryptographic
hash function (simply hash function from here forth) in such a
way that a collision is difficult to find. In other words, finding
a collision should be computationally infeasible. In the
requirements for NISTS’s SHA-3 competition, NIST notes
that 280 work is considered too small of a security lower
boundary and requires all SHA-3 candidates to have a higher
security boundary. [4] This measure is simply the number of
calls to the hash function an attacker would have to make in
order to find a collision. Although not an ideal definition,
computational infeasible today means that more than 280 work
is required to find a collision in a hash function.

Figure 1 Hash Function

Three distinct attack methods exist for finding a
collision in a hash function based on the goals of the attacker.
These methods form the fundamental security properties of a
hash function. The basic properties of a hash function are:

1. Preimage resistance - given an output , it is
difficult to find . See Figure 2.

2. Second-preimage resistance - given a specific input
 with an output , it is difficult to find

another input such that . See
Figure 3.

3. Collision resistance - it is difficult to find two
messages and such that .
(Note: There is free choice for both messages.) See
Figure 4.

Figure 2 Preimage resistance

Figure 3 Second-preimage resistance

Figure 4 Collision resistance

Preimage resistance has a fixed output value,
Second-preimage resistance has a fixed input value, and the
attacker seeks to find another colliding input message for
either of these values. For collision resistance, the attacker
does not care what the two input message are, only that they
“hash” to the same output.

A common security model used to describe the ideal
hash function is the random oracle. Visualize the random
oracle as an elf sitting in a box with a source of physical
randomness and some means of storage. A common
explanation uses dice and a scroll. The elf will accept queries
from anyone and will look in the scroll to see if an entry exists
for that query. The elf will answer queries from anyone, both
friendly and foe. If the query exists, the elf will respond with
the recorded result. If the query does not exist, the elf will
throw the dice, record the randomized result, and respond.
The elf can only work so fast and thus has a limited amount of
queries that can be answered every second. The end result is a
“perfect” one-way function. [5]

In order for a hash function to have an acceptable
security level it should behave like a random oracle. The
minimum amount of work required by an attacker to violate
the preimage or second-preimage resistance property for an
‐bit output hash function should be 2 . The minimum

amount of work to violate the collision resistance property
(due to the birthday paradox [6]) should be 2 . [7] For

example, SHA-1 has a 160-bit output, so any attack that finds
a preimage or second preimage in less than 2 or a collision
in less than 2 demonstrates that SHA-1 provides less
security than a random oracle. In fact, a collision attack exists
against SHA -1 that only requires 2 work [1] which was one
of the largest motivating factors for NIST to form the SHA-3
competition to select a new standard hash function.

Table 1 Minimum Security Requirements for a Hash Function

Attack Security Boundary
Preimage 2
Second-Preimage 2
Collision 2

The hash functions, MD5 and SHA-1, use a classic

Merkle-Damgård construction [8,9] which, in general, splits
the input message into equal sized -bit message blocks
(⋯ padding the last block as necessary and
appending the message length, then iterates through each
message block applying a compression function

 ∶ 	 0,1 0,1 → 0,1 . (2)

The input to the compression function is the previous
compression function output and the current message
block . The compression function output is called the
Chaining Value and the initial chaining value is called the
Initialization Vector or . This process is show in Figure 5
below.

Figure 5 Iterated Hash Function

Unfortunately, due to the iterative nature of classic
Merkle-Damgård (MD) construction certain generic attacks
exist that differentiate an MD hash function from a random
oracle [5] such as the multicollision attack [10] and length
extension attacks.

Imagine a collision finding function that takes an
initialization vector () and outputs two message
blocks ′ that both hash to the same value

 , ′ , . (3)

The amount of work required to find this collision is 2 . Set
 and the collision finding function will find two more

messages, and ′ , that also collide which requires
another 2 . Thus for finding -colliding pairs (Figure 6) of
message blocks that all hash to the same final value , the
attacker only has to expend 2 effort instead of the

expected 2 effort if the hash function was truly
random. This attack also leads to other serious attacks such as

the long message second-preimage attack [11] and the herding
attack [12].

Figure 6 Multicollisions in Merkle-Damgård construction

Another problem with MD based hash functions is
length extension. A message is divided into , , ⋯ ,
blocks and hashed to a value . Now choose another message
′ that divides into , , ⋯ , , blocks. Since

and share the same first blocks, the hash value is
simply the intermediate hash value after blocks when
computing ′ . This is shown in Figure 7 below. This
certainly is not a property of the ideal hash function and
creates serious problems in practice. [13]

Figure 7 Length Extension

Merkle and Damgård [8,9] proved that a collision
resistant compression function implies a collision resistant
hash function but due to internal collisions caused by the
iterative nature of MD construction, these additional attacks
are possible. A random oracle does not have these
weaknesses. These generic attacks have motivated
cryptographic researchers to find new methods of designing
hash functions.

3 State-of-the-art hash function design
The NIST SHA-3 competition began in November

2008 with the first round consisting of 51 candidate hash
functions. In August 2009, the second round cut the
competition down to 12 candidates. The final round began in
December 2010 with 5 finalists. Nearly all these candidate
hash functions can be broken down into one of three general
categories: wide-pipe, sponge functions, and HAIFA.

3.1 Wide-pipe

Wide-pipe hash function construction is designed to
overcome the multicollision attack and length extension attack

by trying to prevent internal collisions. [14] In simple terms,
this is accomplished by increasing the size of internal state of
the hash function. For an -bit output hash function with a -
bit , . (Figure 8) In order to obtain the -bit output,
an output transformation is performed on the final .
This could be just discarding bits or some other more
complicated function.

Figure 8 Wide-pipe Construction

3.2 Sponge Functions

The next class of hash function construction, sponge
functions [15], was designed in such a way to mimic a random
oracle. In general terms, a random oracle

 ∶ 	 0,1 ∗ → 0,1 (4)

maps a variable-length input message to an infinite output
string. It is also completely random; the output bits are
uniformly and independently distributed. The requirement of
a random oracle that makes it suitable for a proper hash
function security model is that identical input messages
generate identical output strings. A secure hash function with
an -bit hash value should behave exactly like a random
oracle whose output is truncated to -bits.

Again, due to the iterative nature of classic Merkle-
Damgård construction, internal state collisions exist in the
chaining values, . State collisions introduce properties that
do not exist for a random oracle such as the length extension
attack. For example, consider that and are two
messages that form a state collision. For any suffix , the
messages | and | will have identical hash values.
State collisions alone are not a problem but they do lead to a
differentiator from a random oracle. The random oracle
security model is an unreachable goal for an iterated hash
function. Instead of abandoning iterated hash functions,
Bertoni et al. [15] designed the sponge function construction
as a new security model that is only distinguishable from a
random oracle by the presence of internal state collisions.

Sponge construction consists of a fixed-length
permutation on a fixed number of bits, , shown in Figure
9 below [15]. It can be used to create a function with variable-
sized input and arbitrary length output.

Figure 9 Sponge Construction

The value is called the bitrate and the value is the
capacity. Both are initially set to zero. The input message is
first padded and split into -bit length message blocks. The
sponge construction consists of two stages, absorbing and
squeezing. In the absorbing stage, -bit sized blocks of the
input message (in Figure 9) are XORed with the first -bits
of the state, followed by an application of the permutation
function . This is repeated until all message blocks are
processed. In the squeezing stage, the first -bits are returned
as output of the sponge construction, again followed by
applications of the permutation function . The length of the
squeezing phase is user-specified depending on the desired
output length.

3.3 HAIFA

The HAsh Iterative FrAmework (HAIFA) [16] design
solves many of the internal collision problems associated with
the classic MD construction design by adding a fixed
(optional) salt of -bits along with a (mandatory) counter of
-bits to every message block in the iteration of the hash

function. Wide-pipe and HAIFA are very similar designs. The
counter keeps track of the number of message bits hashed
so far. The HAIFA design is both prefix- and suffix-free and
as a consequence is collision resistant and indifferentiable
from a random oracle. [17] This design is also proven secure
against 2nd-preimage attacks if the underlying compression
function behaves like an ideal primitive. [17] Figure 10 below
shows the construction of the compression function. This can
also be expressed as

 , , , . (5)

Figure 10 HAIFA Construction

4 Discussion
This paper covered three general secure hash function

construction methods represented by various hash functions
specifications in the NIST SHA-3 competition. All of these
are general descriptions and do not represent an actual hash
function. Instead, these construction methods serve the
purpose of describing general solutions to some serious attacks
against classic Merkle-Damgård hash function construction.

5 References

[1] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu,
"Finding Collisions in the Full SHA-1," in Proceeding of
CRYPTO'05, vol. 3621, 2005, pp. 17-36.

[2] Marc Bevand, "MD5 Chosen-Prefix Collisions on
GPUs," in Black Hat USA, Las Vegas, 2009.

[3] Alfred J. Menezes, Paul C. van Oorschot, and Scott A.
Vanstone, Handbook of Applied Cryptography.: CRC
Press, 1996.

[4] National Institute of Standards and Technology,
"Announcing Request for Candidate Algorithm
Nominations for a New Cryptographic Hash Algorithm
(SHA-3) Family," Federal Register, vol. 72, no. 212, pp.
62212-62220, November 2007.

[5] Mihir Bellare and Phillip Rogaway, "Random oracles are
practical: a paradigm for designing efficient protocols," in
Proceedings of the 1st ACM conference on Computer and
Communications Security, 1993, pp. 62-73.

[6] Gideon Yuval, "How to Swindle Rabin," Cryptologia,
vol. 3, no. 3, pp. 187 - 191, 1979.

[7] William Stallings, Cryptography and Network Security:
Principles and Practices 5th Ed., 4th ed.: Prentice Hall,
2010.

[8] Ivan Damgård, "A Design Principal for Hash Functions,"
in Proceedings of CRYPTO '89, vol. 435, 1989, pp. 416-
427.

[9] Ralph Merkle, "One Way Hash Functions and DES," in
Proceedings of CRYPTO'89, vol. 435, 1989, pp. 428-446.

[10] Antoine Joux, "Multicollisions in Iterated Hash
Functions. Application to Cascaded Constructions," in
Proceedings of CRYPTO'04, vol. 3152, 2004, pp. 306-
316.

[11] John Kelsey and Bruce Schneier, "Second Preimages on
n-Bit Hash Functions for Much Less than 2^n Work," in
Proceedings of EUROCRYPT'05, vol. 3494, 2005, pp.
474-490.

[12] John Kelsey and Tadayoshi Kohno, "Herding Hash
Functions and the Nostradamus Attack," in Proceedings
of EUROCRYPT'06, vol. 4404, 2006, pp. 183-200.

[13] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno,
Cryptographic Engineering: Design Principles and
Practical Applications.: Wiley Publishing, Inc., 2010.

[14] Steven Lucks, "Design Principles for Iterated Hash
Functions," Cryptology ePrint Archive, 2004. [Online].
http://eprint.iacr.org/2004/253

[15] Guido Bertoni, Joan Daemon, Michael Peeters, and Gilles
Van Assche, "Sponge Functions," in ECRYPT Hash
Function Workshop, 2007.

[16] Eli Biham and Orr Dunkelman, "A Framework for
Iterative Hash Functions - HAIFA," Cryptology ePrint
Archive, 2007. [Online]. http://eprint.iacr.org/2007/278

[17] Andreeva, Elena; Mennink, Bart; Preneel, Bart, "Security
Reductions of the Second Round SHA-3 Candidates,"
Cryptology ePrint Archive, 2010. [Online].
http://eprint.iacr.org/2010/381

