
Implementation and performance evaluation of new inverse
iteration algorithm with Householder transformation in terms of

the compact WY representation

Hiroyuki ISHIGAMI1, Kinji KIMURA1, and Yoshimasa NAKAMURA1

1Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

Abstract— A new inverse iteration algorithm that can be
used to compute all the eigenvectors of a real symmetric
tridiagonal matrix on parallel computers is developed. In
the classical inverse iteration algorithm, the modified Gram-
Schmidt orthogonalization is used, and this causes a bottle-
neck in parallel computing. In this paper, the use of the com-
pact WY representation is proposed in the orthogonalization
process of the inverse iteration algorithm with the House-
holder transformation. This change results in drastically
reduced synchronization cost in parallel computing. The new
algorithm is evaluated on a 32-core parallel computer, and
it is shown that the algorithm is up to 7.46 times faster than
the classical algorithm in computing all the eigenvectors of
matrices with several thousand dimensions.

Keywords: compact WY representation, Householder transforma-
tion, inverse iteration, eigenvalue decomposition

1. Introduction
The eigenvalue decomposition of a symmetric matrix, i.e.,

a decomposition into a product of matrices consisting of
eigenvectors and eigenvalues, is one of the most important
operations in linear algebra. It is used in vibrational analysis,
image processing, data searches, etc.

Owing to recent improvements in the performance of
computers equipped with multicore processors, we have
had more opportunities to perform calculations on parallel
computers. As a result, there has been an increase in the
demand for an eigenvalue decomposition algorithm that can
be effectively parallelized.

Such an eigenvalue decomposition algorithm involves a
process of transforming a real symmetric matrix into a
real symmetric tridiagonal matrix as a preconditioning step.
Therefore the problem of eigenvalue decomposition can be
reduced to that of a symmetric tridiagonal matrix. Several
eigenvalue decomposition algorithms for a real symmetric
tridiagonal matrix have been proposed. They are classi-
fied into two types. The first type of algorithm computes
simultaneously all the eigenvalues and the eigenvectors.
Algorithms of this type includes the QR algorithm [5] and
the divide-and-conquer algorithm [8]. The second type of
algorithm computes all or some eigenvalues and all or some
eigenvectors. Algorithms for computing eigenvalues includes

the root-free QR algorithm [7] and the bisection algorithm
[5]. Algorithms for computing eigenvectors includes the
MR3 algorithm [3] and the inverse iteration algorithm [10].
LAPACK (Linear Algebra PACKage) [9], a software library
for numerical linear algebra, has codes that integrate all the
above-mentioned algorithms.

The inverse iteration algorithm is an algorithm for com-
puting eigenvectors independently associated with mutually
distinct eigenvalues. However, when we use the inverse iter-
ation algorithm, we must reorthogonalize the eigenvectors if
some eigenvalues are very close to each other. Adding this
reorthogonalization algorithm increases the computational
cost. Moreover, for this reorthogonalization, we have gen-
erally used the MGS (modified Gram-Schmidt) algorithm.
However, this algorithm is sequential and inefficient for par-
allel computing. As a result, we are unable to maximize the
performance of parallel computers. Hereinafter, we will refer
to the inverse iteration algorithm with the MGS algorithm
as the classical inverse iteration algorithm.

We can also orthogonalize vectors by using the House-
holder transformation [12], and we call this orthogonaliza-
tion precess the Householder orthogonalization algorithm.
While the MGS algorithm is unstable in the sense that
the orthogonality of the resulting vectors depends on the
condition number of the symmetric tridiagonal matrix [13],
the Householder algorithm is stable because its orthogonality
does not depend on the condition number. The Householder
algorithm is also sequential and ineffective for parallel
computing, and its computational cost are higher than those
of the MGS algorithm.

In 1989, the Householder orthogonalization algorithm in
terms of the compact WY representation was proposed in
[11]. By adopting this Householder orthogonalization, stabil-
ity and effective parallelization can be achieved. Hereafter,
we refer to this algorithm as the compact WY orthogo-
nalization. In 2010, Yamamoto demonstrated the fact [13]:
When this algorithm is used in the Arnoldi process, the
computation time for parallel computation is less than that
when the MGS algorithm is used, and the orthogonality of
the eigenvectors generated using this algorithm is better than
that of the eigenvectors generated using the MGS algorithm.

In this paper, we consider an implementation of the
compact WY orthogonalization to the inverse iteration al-

gorithm and we evaluate its performance. Thereafter, we
present a new inverse iteration algorithm for computing the
eigenvectors of a real symmetric tridiagonal matrix.

The contents of this paper are as follows. In Sec.2,
we explain the classical inverse iteration algorithm and
describe its defect. In Sec.3, we explain the Householder
orthogonalization and the compact WY orthogonalization.
In Sec.4, we present a new inverse iteration algorithm,
namely, the compact WY inverse iteration algorithm, whose
orthogonalization process is performed by compact WY
orthogonalization instead of MGS, and we explain its proper-
ties. In Sec.5, we discuss numerical experiments on parallel
computers and their results. In the experiments, we compute
eigenvectors of symmetric tridiagonal matrices with several
thousand dimensions by using the classical algorithm and
the new algorithm. It is shown that the new algorithm is up
to 7.46 times faster than the classical algorithm. Section 6
presents our conclusions.

2. Classical inverse iteration algorithm
and its defect
2.1 Classical inverse iteration

We consider the problem of computing eigenvectors of a
real symmetric tridiagonal matrix T ∈ Rn×n. Let λj ∈ R
be eigenvalues of T such that λ1 < λ2 < · · · < λn. Let
vj ∈ Rn be the eigenvector associated with λj . When λ̃j ,
an approximate value of λj , and a starting vector v

(0)
j are

given, we can compute an eigenvectors of T . To this end,
we solve the following equation iteratively:(

T − λ̃jI
)
v
(k)
j = v

(k−1)
j . (1)

Here I is the n-dimensional identity matrix. If the eigenval-
ues of T are mutually well-separated, the solution of v

(k)
j ,

Eq.(1) generically converges to the eigenvector associated
with λj as k goes to ∞. The above iteration method is
the inverse iteration method. The computational cost of this
method is of order mn when we compute m eigenvectors,
and it is less than that of other methods for eigenvalue
decomposition. In the implementation, we have to normalize
the vectors v

(k)
j to avoid overflow.

When some of all the eigenvalues are close together or
there are clusters of eigenvalues, we have to reorthogonalize
all the eigenvectors associated with such eigenvalues because
they need to be orthogonal to each other. If we apply
the MGS orthogonalization, the computational cost is of
order m2n. Therefore, when we calculate eigenvectors of
the matrix T that has many clustered eigenvalues, the total
computational cost increases significantly. In general, when
we implement the inverse iteration method on computers, we
use the MGS orthogonalization with the Peters-Wilkinson
method [10] as the standard orthogonalization process. The
MGS with the Peters-Wilkinson method is also available

on DSTEIN, the LAPACK code of the inverse iteration
algorithm for computing eigenvectors of a real symmetric
tridiagonal matrix. In the Peters-Wilkinson method, when
the distance between the close eigenvalues is less than
10−3∥T∥, we regard them as members of the same cluster
of eigenvalues, and we orthogonalize all of the eigenvectors
associated with these eigenvalues.

Figure 1 shows the inverse iteration algorithm based on
the MGS with the Peters-Wilkinson method outlined above.
We call this the classical inverse iteration method.

1: for j = 1 to n do
2: Generate v

(0)
j from random numbers.

3: k = 0
4: repeat
5: k ← k + 1.
6: Normalize v

(k−1)
j .

7: (1)：Compute v
(k)
j by using v

(k−1)
j .

8: if |λ̃j − λ̃j−1| ≤ 10−3∥T∥, then
9: for i = j1 to j − 1 do

10: v
(k)
j ← v

(k)
j − ⟨v(k)

j ,vi⟩vi

11: end for
12: else
13: j1 = j
14: end if
15: until some condition is met.
16: Normalize v

(k)
j to vj .

17: end for

Fig. 1: Classical inverse iteration algorithm. j1 means the
index j of the first eigenvalue of cluster.

2.2 The defect of the classical inverse iteration
algorithm

The inverse iteration is a prominent method for computing
eigenvectors, because we can compute eigenvectors indepen-
dently and this process is easily parallelized. When we use
the classical inverse iteration on parallel computers, we can
parallelize it even if some clusters exist.

Let us consider the Peters-Wilkinson method in the clas-
sical inverse iteration. When the dimension of T is greater
than 1000, most of the eigenvalues are regarded as being in
the same cluster [3].

In this case, we have to parallelize the inverse iteration
with respect to not the cluster but the loop described from
lines 1 to 17 in Figure 1. This loop includes the iteration
based on Eq.(1) and the orthogonalization of the eigenvec-
tors. This orthogonalization process becomes a bottleneck
of the classical inverse iteration with respect to the com-
putational time. The MGS algorithm is mainly based on a
BLAS level-1 operation such as the inner product operation
and the AXPY operation, and it is a sequential algorithm.
Because of this, when we compute all the eigenvectors in
parallel computers, the number of synchronizations is of
order m2. Therefore, the MGS algorithm is ineffective on
parallel computing.

In conclusion, the classical inverse iteration is an inef-
fective algorithm for parallel computing because the MGS
algorithm is used in its orthogonalization process

3. Other orthogonalization algorithms
3.1 Householder orthogonalization

The Householder orthogonalization, based on the House-
holder matrices, is one of the alternative orthogonaliza-
tion methods. When some vectors v, d ∈ Rn satisfy
∥v∥2 = ∥d∥2, there exists the symmetric matrix H satisfying
HH⊤ = H⊤H = I , Hv = d defined by

H = I − tyy⊤, y = v − d, t =
2

∥y∥22
. (2)

The transformation by H is called the Householder trans-
formation. We can orthogonalize some vectors by using the
Householder transformations. The algorithm of the House-
holder transformations is shown in Figure 2. The vector
yj is the vector in which the elements from 1 to (j − 1)
are the same as the elements of v′

j and the elements from
(j + 1) to n are zero. The vector ej is the jth vector of
an n-dimensional identity matrix. In this paper, we call this
algorithm the Householder orthogonalization.

1: for j = 1 to m do
2: Generate vj from q1, · · · , qj−1.
3: v′

j =
(
I − tj−1yj−1y

⊤
j−1

)
· · ·

(
I − t2y2y⊤

2

) (
I − t1y1y⊤

1

)
vj .

4: Compute yj and tj by using v′
j .

5: qj =
(
I − t1y1y⊤

1

) (
I − t2y2y⊤

2

)
· · ·

(
I − tjyjy

⊤
j

)
ej .

6: end for

Fig. 2: Householder orthogonalization algorithm.

The orthogonality of the vectors qj generated by the
Householder orthogonalization does not depend on the con-
dition number of the matrix T . Therefore, the Householder
orthogonalization is more stable than the MGS. On the other
hand, being similar to the MGS, it is a sequential algorithm
that is mainly based on a BLAS level-1 operation. Its
computational cost is higher than that of the MGS. Thus the
Householder orthogonalization algorithm is an ineffective
algorithm in parallel computing.

3.2 Compact WY orthogonalization
In 2010, Yamamoto presented the Householder orthog-

onalization in the Arnoldi process in terms of the compact
WY representation [13]. This study suggests that the House-
holder orthogonalization becomes capable of computation
with a BLAS level 2 operation in terms of the compact WY
representation [11]. Yamamoto also showed that the compu-
tation time for orthogonalization on parallel computers has
decreased with the use of the Householder orthogonaliza-
tion algorithm in terms of the compact WY representation,
compared to this computational time in the case of the MGS
algorithm [13]. Although Yamamoto mainly shows the new

representation of orthogonalization in [13], in this paper, we
show the implementation of this orthogonalization to the
inverse iteration algorithm, and we evaluate its performance.

Now, we consider the Householder orthogonalization in
Figure 2 and we introduce the compact WY representation.
First, we define Y1 = y1 ∈ Rn×j and T1 = t1 ∈ R1×1.
Next, we define matrices Yj ∈ Rn×j and upper triangular
matrices Tj ∈ Rj×j recursively as follows:

Yj =
[
Yj−1 yj

]
, Tj =

[
Tj−1 −tjTj−1Y

⊤
j−1yj

0 tj

]
. (3)

In this case, the following equation holds

H1H2 · · ·Hj = I − YjTjY
⊤
j . (4)

As shown by Eq.(4), we can rewrite the product of the
Householder matrices H1H2 · · ·Hj in a simple block ma-
trix form. Here I − YjTjY

⊤
j is called the compact WY

representation of the product of the Householder matrices.
Figure 3 shows the orthogonalization algorithm. Hereinafter,
we refer to this orthogonalization algorithm as the compact
WY orthogonalization.

1: for j = 1 to m do
2: Generate vj from q1, · · · , qj−1.
3: v′

j =
(
I − Yj−1T

⊤
j−1Y

⊤
j−1

)
vj .

4: Compute yj and tj by using v′
j .

5: (3)：Update Yj and Tj by using tj , yj , Tj−1 and Yj−1.
6: qj =

(
I − YjTjY

⊤
j

)
ej .

7: end for

Fig. 3: Householder orthogonalization algorithm in terms of
the compact WY representation.

3.3 Comparison of the orthogonalization algo-
rithms

The compact WY orthogonalization has a stable orthog-
onality arising from the Householder transformations, and
its mathematical calculation is mainly performed by BLAS
level-2 operations such as the product of a matrix and a
vector and a rank-1 update operation. As a result, this orthog-
onalization has more stable and sophisticated orthogonality,
and it is more effective for parallel computing than the
MGS. Table 1 displays the differences in performance of
the three orthogonalization methods, considered in the above
sections. In this table, “House” denotes the Householder
orthogonalization and “cWY” denotes the compact WY
orthogonalization. Computation denotes the order of the
computational cost. Synchronization denotes the order of the
number of synchronizations. Orthogonality denotes the norm
∥Q⊤Q−I∥, where Q = [q1, . . . , qn]. ϵ denotes the machine
epsilon and κ denotes the condition number of a matrix.
These are the results obtained from [1] and [13].

Table 1: Comparison of the orthogonalization methods [1]
[13].

methods Computation Synchronization Orthogonality

MGS O(2m2n) O(m2) O(ϵκ(A))
House O(4m2n) O(m2) O(ϵ)
cWY O(4m2n) O(m) O(ϵ)

4. Inverse iteration method with the
compact WY orthogonalization

In this section, we present a new inverse iteration algo-
rithm. This new algorithm is described in Figure 4 and is
based on DSTEIN, a LAPACK code of the classical inverse
iteration. We change the orthogonalization process from the
MGS to the Householder transformation in terms of the
compact WY representation. In other words, we rewrite
the MGS algorithm (from line 4 to 15 in Figure 1) to the
compact WY orthogonalization algorithm shown in Figure
3.

Next, we explain an application of the compact WY
orthogonalization to the classical inverse iteration. For the
DSTEIN algorithm, we need not know the index jc which
denotes the jc-th eigenvalue of the cluster in computing
the jc-th eigenvector. However, we must know the index
for the compact WY orthogonalization when we compute
and update Tj , Yj . To overcome the above difficulty, we
introduce a variable jc on line 9, and we can recognize it.

This introduction of jc enables us to execute the intended
program. However, we do not get accurate results because
the compact WY orthogonalization algorithm includes many
equations with a comparatively large number of elements
such as YjcT

⊤
jc
Y ⊤
jc

and YjcTjcY
⊤
jc

and they may cause
overflow. To overcome this difficulty, we have to normalize
v
(k)
j on line 6, and this normalization excludes overflow.
Finally, to reduce the computational cost, we transform

parts of the equations. There are some examples in Figure
4 for jc = 1, i.e., j = 2 in Figure 3.

In the original DSTEIN algorithm, we need not know that
λj1 (j1 = j − 1) is the first eigenvalue of the cluster. How-
ever, we must compute y1 and t1. Therefore, at the starting
point of the computation of the eigenvector associated with
the second eigenvalue, we compute y1 and t1. At this time,
because T1 is a 1 × 1 matrix, i.e., a scalar, we can omit
the computation of some of Eq.(3) and only compute them.
In addition, because we normalize v

(k−1)
j on line 6 so that

v
(k−1)
j = q1, we need not compute y1 again. As shown in

lines 15 and 17, to save the computation step that is required
when using BLAS, we change the formula from the matrix-
vector operations to the vector operations. In addition, we
implemented another formula because of the benefit of using
BLAS computations to reduce the computational cost in line
23.

1: for j = 1 to n do
2: Generate v

(0)
j from random numbers.

3: k = 0
4: repeat
5: k ← k + 1.
6: Normalize v

(k−1)
j .

7: (1)：Compute v
(k)
j by using v

(k−1)
j .

8: if |λ̃j − λ̃j−1| ≤ 10−3∥T∥, then
9: jc ← j − j1.

10: if jc = 1 and k = 1， then
11: Compute Y1 = y1 and T1 = t1 by using vj1−1.
12: end if
13: Normalize v

(k)
j .

14: if jc = 1, then
15: v′

2 ← v2 − t1⟨y1,v
(k)
j ⟩y1.

16: Compute y2 and update Y2 by using v′
2.

17: Compute t2 and T1,2 = −t2t1⟨y1,y2⟩ and update T2.
18: else
19: v′

jc+1 =
(
I − YjcT

⊤
jc
Y ⊤
jc

)
v
(k)
j .

20: Compute yjc+1 and tjc+1 by using v′
jc+1.

21: (3)：Update Yjc+1 and Tjc+1 by using tjc+1, yjc+1,
Tjc and Yjc .

22: end if
23: v

(k)
j ←

(
I − Yjc+1Tjc+1Y

⊤
jc+1

)
ejc+1.

24: else
25: j1 ← j.
26: end if
27: until some condition is met.
28: Normalize v

(k)
j to vj .

29: end for

Fig. 4: Algorithm of the compact WY inverse iteration.

5. Numerical experiments
In this section, we describe some numerical experiments

performed using DSTEIN and DSTEIN-cWY in parallel
computers, and we compare the computation time. DSTEIN
is implemented in the classical inverse iteration algorithm,
and DSTEIN-cWY is implemented in the new inverse iter-
ation algorithm presented in the previous section.

5.1 Contents of the numerical experiments
In this subsection, we report computations of all the eigen-

vectors associated with eigenvalues of some matrices by us-
ing DSTEIN and DSTEIN-cWY on parallel computers, and
we compare the calculation time. In these experiments, we
compute the approximate eigenvalues by using LAPACK’s
program DSTEBZ, which is capable of computing them by
using the bisection method. We record the calculation time
for DSTEIN and DSTEIN-cWY using TIME, which is the
internal function of Fortran and returns an integer number
of times.

In the experiments, we use two computers equipped with
multicore CPUs, and we implement those algorithms by
using GotoBLAS2 [6], which is implemented to parallelize
BLAS operations by assigning them to each CPU core. Table
2 shows the specifications of two computers.

All the matrices in the experiments are the glued-
Wilkinson matrices W †

g , which are real symmetric and have

Table 2: The specification of Computer 1 and 2
Computer 1 Computer 2

AMD Opteron 2.0GHz Intel Xeon 2.93GHzCPU 32cores(8cores×4) 8cores(4cores×2)
Memory 16GB 32GB

Compiler Gfortran-4.4.5 Gfortran-4.4.5
LAPACK LAPACK-3.3.0 LAPACK-3.3.0

BLAS GotoBLAS2-1.13 GotoBLAS2-1.13

dimensions on the order of thousands. More precisely, W †
g

consists of the block matrix W †
21 ∈ R21×21 and the scalar

parameter δ ∈ R1×1 and is defined as follow:

W †
g =

W †
21 δ
δ W †

21 δ

δ
. . .

. . .
. . .

. . . δ
δ W †

21

, (5)

where W †
21 is defined by

W †
21 =

10 1
1 9 1

1
. . .

. . .
. . . 0

. . .
. . .

. . . 1
1 10

, (6)

and δ satisfies 0 < δ < 1 and is also the semi-diagonal
element of W †

g . Since W †
g is real symmetric tridiagonal and

its semi-diagonal elements are nonzero, all the eigenvalues of
W †

g are distinct and real, and they are divided into 11 clusters
of close eigenvalues. When δ is small, the distance between
the minimum and maximum eigenvalues in any cluster is
small. In our experiments, we set δ = 10−4.

Computing eigenvalues and eigenvectors of the glued-
Wilkinson matrix is one of the benchmark problems of
eigenvalue decomposition. For example, in [2] and [4], the
glued-Wilkinson matrix was used to evaluate the perfor-
mance of the algorithm.

5.2 Results of the experiments
Table 3 shows the results of the experiments on Computer

1 that were mentioned in the previous section, and Table
4 shows the results of the experiments on Computer 2. In
addition, Figure 5 illustrates the results in Tables 3 and 4
through graphs. The dotted line corresponds to Table 3 and
the straight line to Table 4.

From Table 3 and 4, we see that, on both Computers 1
and 2, all the eigenvectors of the glued-Wilkinson matrix
W †

g with dimensions of the order of several thousand are
computed in parallel.

It is noted that DSTEIN-cWY is faster than DSTEIN.
We see that the change from MGS to the compact WY
orthogonalization on the DSTEIN code in parallel computing
results in a significant reduction in computation time. We
introduce a barometer t/tcwy of the reduction effect by
using the program DSTEIN-cWY which depends on n, the
dimension of W †

g . On Computer 1, the maximum value
of t/tcwy is 7.46 for n = 7, 350 and t/tcwy = 6.71 for
n = 10, 500. On Computer 2, the maximum value of t/tcwy

is 3.16 for n = 4, 200 and t/tcwy = 2.03 for n = 10, 500.
Considering these facts, even if the dimension of W †

g is
larger than that in these examples, we cannot expect that
the computation time can be further shortened by using
DSTEIN-cWY. In the following section, we discuss this
computation time phenomenon.

5.3 Discussion on numerical experiments
It is shown that DSTEIN-cWY is faster than DSTEIN

for any dimension n of the glued-Wilkinson matrix both on
Computers 1 and 2. As mentioned earlier, according to the
theoretical background in section 3.3, this result shows that
the compact WY orthogonalization is an effective algorithm
in parallel computing.

The cause of this is related to the time required for
floating-point arithmetic and for synchronization in parallel
computing. The floating-point computation time increases
with increasing n because the elements of the computation
increase. In comparison, the synchronization cost does not
change significantly even if n becomes larger. Therefore,
in parallel computing, DSTEIN, which contains MGS (for
which the number of synchronizations is large), creates a
huge bottleneck for the synchronization cost when n is small.
This bottleneck gradually becomes less when n is larger.
However, DSTEIN-cWY has a smaller bottleneck for the
synchronization cost because the compact WY orthogonal-
ization requires less synchronization, and the floating-point
computation time increases to a value greater than that of
DSTEIN. This reduction effect is seen in Table 3 and 4.

6. Conclusions
In this study, we present a new inverse iteration algorithm

for computing all the eigenvectors of a real symmetric
tridiagonal matrix. The new algorithm is equipped with the
compact WY algorithm in the orthogonalization process.
We have performed numerical experiments for computing
eigenvectors of certain real symmetric tridiagonal matrices
that have many clusters with several thousand dimensions by
using two types of inverse iteration algorithms on parallel
computers. The results show that the compact WY inverse
iteration is more efficient than the classical one owing to the
reduction in computation time.

The main reason for this outcome is the parallelization
efficiency with respect to computation time. The paralleliza-
tion efficiency of the compact WY orthogonalization is

Table 3: DSTEIN and DSTEIN-cWY on Computer 1. Here, n is the dimension of the glued-Wilkinson matrix, t and tcwy

are computation time (sec.) by DSTEIN and DSTEIN-cWY on Computer 1, respectively.
n 1050 2010 3150 4200 5250 6300 7350 8400 9450 10500

t 2 9 25 55 106 178 276 400 560 758
tcwy 1 2 5 10 16 25 37 57 81 113

t/tcwy 2.00 4.50 5.00 5.50 6.63 7.12 7.46 7.02 6.91 6.71

Table 4: DSTEIN and DSTEIN-cWY on Computer 2. Here, n is the dimension of the glued-Wilkinson matrix, t and tcwy

are computation time (sec.) by DSTEIN and DSTEIN-cWY on Computer 2, respectively.
n 1050 2010 3150 4200 5250 6300 7350 8400 9450 10500

t 1 3 8 19 37 67 109 159 225 309
tcwy 1 1 3 6 13 25 45 73 107 152

t/tcwy 1.00 3.00 2.67 3.16 2.84 2.68 2.42 2.17 2.10 2.03

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1050 2100 3150 4200 5250 6300 7350 8400 9450 10500

T
im

e(
se

c.
)

n : Dimension of matrix

DSTEIN-cWY
DSTEIN

 0

 50

 100

 150

 200

 250

 300

 350

 1050 2100 3150 4200 5250 6300 7350 8400 9450 10500

T
im

e(
se

c.
)

n : Dimension of matrix

DSTEIN-cWY
DSTEIN

Fig. 5: Dimension n of the glued-Wilkinson matrix and the computation time by DSTEIN and DSTEIN-cWY. the above
graph corresponds to Computer1 and the below Computer 2, respectively.

greater than that of the MGS orthogonalization where the
classical inverse iteration is used. As the number of cores of
the CPU increases, the parallelization efficiency increases.

In future studies, we will try to apply the new inverse
iteration algorithms to other types of matrix eigenvector
problem, such as eigenvectors of a real symmetric banded
matrix, or singular vectors of a bidiagonal matrix.

Acknowledgements.
The authors thank Professor Yusaku Yamamoto of Kobe

University for providing several helpful suggestions.

References
[1] J. W. Demmel, L. Grigori, M. Hoemmen and J. Langou,

Communication-optimal parallel and sequential QR and LU factor-
izations, LAPACK Working Notes, No.204, 2008.

[2] J. W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel, Perfor-
mance and accuracy of LAPACK’s symmetric tridiagonal eigensolvers,
SIAM J. Sci. Comput., Vol. 30, No. 3, pp. 1508-1526, 2008.

[3] I. S. Dhillon, A new O(n2) algorithm for the symmetric tridiagonal
eigenvalue/eigenvector problem, Ph.D. thesis, Computer Science Divi-
sion, University of California, Berkeley, California, available as UC
Berkeley Technical Report UCB//CSD-97-971, 1997.

[4] I. S. Dhillon, B. N. Parlett, and C. Vömel, Glued matrices and the
MRRR algorithm, SIAM J. Sci. Comput., Vol. 27, No. 2, pp. 496-510,
2005.

[5] G. Golub and C. van Loan, Matrix Computations, Johns Hopkins Univ.
Press, 1996.

[6] GotoBLAS2, http://www.tacc.utexas.edu/tacc-projects/gotoblas2/.
[7] M. Gu and S. C. Eisenstat, A stable algorithm for the rank-1 modifi-

cation of the symmetric eigenproblem, Computer Science Department
Report YALEU/DCS/RR-916, Yale University, New Haven, CT, 1992.

[8] M. Gu and S. C. Eisenstat, A divide-and-conquer algorithm for the
symmetric tridiagonal eigenproblem, SIAM J. Mat. Anal. Appl., Vol.
16, pp. 172-191, 1995.

[9] LAPACK, http://www.netlib.org/lapack/.
[10] G. Peters and J. Wilkinson, The calculation of specified eigenvectors

by inverse iteration, contribution II/18, in Linear Algebra, Handbook
for Automatic Computation, Vol. II, Springer-Verlag, Berlin, pp. 418-
439, 1971.

[11] R. Schreiber and C. van Loan, A storage-efficient WY representation
for products of Householder transformations, SIAM J. Sci. Stat.
Comput., Vol. 10, No. 1, pp. 53-57, 1988.

[12] H. Walker, Implementation of the GMRES method using Householder
transformations, SIAM J. Sci. Stat. Comput., Vol. 9, No. 1, pp. 152-
163, 1988.

[13] Y. Yamamoto, Parallelization of orthogonalization in Arnoldi process
based on the compact WY representation, Proceedings of the Annual
Conference of JSIAM, pp. 39-40, 2010 (in Japanese).

