
On Using a Graphics Processing Unit to Solve The Closest Substring
Problem

Jon Calhoun1,2, Josh Graham1, and Hai Jiang1
1Dept. of Computer Science, Arkansas State University, Jonesboro, AR, US

2Dept. of Mathematics and Statistics, Arkansas State University, Jonesboro, AR, US

Abstract— Finding a string that is close to another is a
common dilemma in computational molecular biology and
many other fields. The problem comes in two varieties; closest
string (CSP), and closest substring (CSSP). The computa-
tional complexity increases exponentially as the data-set size
increases. We make use of a massively parallel algorithm and
the parallel nature of a graphics processing unit (GPU) in
order to flatten the data-set size verses time curve and enable
more applications to calculate results in reasonable time. In
this paper we focus on CSSP and show that GPU devices can
be used to reduce the time needed to find the closest substring.
We examine an exact algorithm and extract independent parts
in order to form a massively parallel interpretation of the
sequential algorithm. We contribute a fast, exact, algorithm
that can solve the CSSP much faster than sequential versions.

Keywords: closest substring problem, GPU, CUDA

1. Introduction
Closest substring problem (CSSP) is a common open prob-

lem in many applications The closest substring problem was
introduced in [3] and is a key theoretical open problem in
applications such as antisense drug design, creating diagnostic
probes, and creating universal PCR primers [1]. Many applica-
tions would benefit from a faster algorithm to find the closest
substring. Some applications can accept approximations, but
others need an exact result. We focus on using GPU devices
to speed up an exact CSSP algorithm.

The CSSP is an NP-hard problem [3], and can be defined
formally.
• Let

∑
be a fixed finite alphabet.

• Let s and s′ be finite strings over
∑

.
• Let d(s, s′) denote the Hamming Distance between s and

s′.
• Given a set S = {s1, s2, . . . , sn} of strings each of length

m. Find a center string c of length L minimizing d such
that for each si in S there is a length L substring ti of
si with d(c, ti) ≤ d.

Solving the closest substring problem is moderately
difficult, but solving it efficiently has proven very difficult.
There is a tremendous amount of computation to be done
and the process is compounded by not only being required
to find a solution within the tolerance but to find the best
solution. Solving the same problem in parallel can be taxing

on one’s logical skills. Additionally, solving the problem by
hand is extremely time consuming for all but trivially sized
data-sets. This paper shows that for applications needing an
exact solution to the CSSP in a small amount of time can use
GPUs to solve the problem, and achieve significant speedups.

This paper makes the following contributions:
• An efficient exact algorithm for computing the closest

substring on GPU. We extract parallel sections of the
computation in order to have it run efficiently.

• Logical configuration for launching the algorithm as a
CUDA kernel.

• Experiment results that demonstrate the efficiency of the
algorithm.

In Section 2, Background, we will explain the various
technologies used. Following, Section 3.1, is a description
of how the CSSP can be solved on a CPU using sequential
code. After the CPU algorithm is clearly spelled out we turn
to detail the inner workings of three parallel algorithms and
their benefits and pitfalls in Section 3.2 - 3.3. In Section
4, Experimental results, we compare our GPU algorithms
to the sequential one and discuss the performance increase.
Section 5, Relatedwork, discusses works that apply the GPU
to the CSSP and related problems. A brief summary of what
was learned from interpreting Section 4 can be found in our
Conclusion, Section 6. Finally, in Section 7, Futurework,
we discuss optimizations that could be implemented that may
increase performance.

2. Background
2.1 CSSP

The CSSP is a common problem in many areas. Particularly
in computational biology, the CSP and CSSP have found
numerous practical applications such as identifying regulatory
motifs and approximate gene clusters, and in degenerate
primer design [7]. The CSSP problem is much more elusive
than the Closest String problem [6]. Many people have studied
approximation algorithms for CSSP and there has even been
work done on an evolutionary algorithm [8]. Here, we study
an exact algorithm.

Many problems in molecular biology involve finding similar
regions common to each sequence in a given set of DNA,
RNA, or protein sequences. These problems find applications
in locating binding sites and finding conserved regions in

unaligned sequences, genetic drug target identification, de-
signing genetic probes, universal PCR primer design, and,
outside computational biology, in coding theory [6]. Such
problems may be considered to be various generalizations of
the common substring problem, allowing errors [6].

2.2 GPU
In 1999, NVIDIA created and marketed the worlds first graphics

processing unit (GPU). Since then, there have been yearly break-
throughs in GPU technology. With the need to be able to make
thousands of intense calculations per second for graphic applications.
The architecture of a GPU is composed of thousands of processing
units. In order for a algorithm to run efficiently on a GPU, the
algorithm must be massively parallel. It is no surprise then, that the
hardware and capabilities of GPUs has improved dramatically since
their inception.

Programmers have been aware of the performance gain
that could be achieved if a parallel portion of a program
was executed on the GPU, but it was not until NVIDIA
released there Compute Unified Device Architecture (CUDA)
language that the job of programming GPUs became more
intuitive. Before then to access the computational resources,
a programmer had to cast his or her problem into native
graphics operations so the computation could be launched
through OpenGL or DirectX API calls [5].

2.3 CUDA
CUDA is NVIDIA’s parallel computing language. It enables

dramatic increases in computing performance by harnessing
the power of the GPU. When NVIDIA introduced the GeForce
8800 GTX in November 2006 the CUDA architecture debuted.
This architecture included several new components designed
strictly for GPU computing and aimed to alleviate many of the
limitations that prevented previous graphics processors from
being legitimately useful for general-purpose computation [4].

CUDA is the most widely adopted programming plat-
form for GPU development. CUDA applications running on
NVIDIA graphics processors enjoy superior performance per
dollar and performance per watt than implementations built
exclusively on traditional central processing technologies [4].
In the CUDA programming model, GPUs which are called
devices, execute highly parallel portions of an application,
called kernels which are made up of many threads working
cooperatively. CUDA permits the programmer to use different
memory spaces explicitly. Examples of these different memory
spaces include: global, shared, constant, and texture memory.
Each space has its own performance advantages and penalties.

NVIDIA introduced the Fermi architecture recently. Fermi
brings in many new capabilities. In this paper we make use
of the increased maximum number of threads and blocks to
perform more cooperative computations. We also benefit from
the faster atomic actions and large memory present in Fermi
graphic cards.

3. Algorithms
In order to ease the following discussions we define some

terms.

• Let a window be any substring of length L from a given
string.

• Let a pitch be special window from the first string that
other notes are compared against.

• Let a note be the window from a string that is closest to
the pitch.

• Let a chord be a set of notes, one per string, closest to
a pitch.

• Let the chord distance be the sum of all note distances
in a chord from the pitch.

• Let the root be the average of a chord.

3.1 CPU algorithm (CPU)
The strategy for finding the closest substring on the CPU

consist of taking each pitch from the first string, comparing it
against all windows, in all other strings and finding the closest
window in each string. This window is then deemed a note
and is part of the chord based on the pitch taken from the first
string.

Given Figure 1, we want to find that something very close
to “gcc” occurs in every string.

Fig. 1
EXAMPLE INPUT.

We do so by fixing a pitch in string 1 and comparing all
others against it. Then we move to pitch 2 and so on. As
demonstrated in Figure 2.

Fig. 2
ILLUSTRATION OF EXECUTION.

From the search we get the best chord, shown in Figure 3.

Fig. 3
BEST CHORD FROM DATA SET.

In Figure 4, we average the chord to determine the closest
substring. In this example, the second character of each of the
notes is c, c, and t respectively. In the averaging process c
will be chosen because it occurs more often than any other
character.

Fig. 4
EXAMPLE OF AVERAGING A CHORD TO FIND A ROOT NOTE.

To solve the problem more formally,

• Let S = {s1, s2, ..., sn} be the set of all strings.
• Let

∑
be a fixed finite alphabet.

• Let Si = {si1 , si2 , ..., sin} be the set of all windows in
Si | ∀ sijk ∈

∑
.

• Let d be the maximum distance.
• Let L be the length of the substrings.
• Let q be the number of windows in a single string.
• Let P = {p1, p2, ..., pq} be all the pitches from s1.
• Let T = {t1, t2, ..., tq} be the set of all chords.
• Let Ti = {ti1 , ti2 , ..., tiq} be the set of notes composing

a chord.
• Let B = {b1, b2, ..., bq} be the set of all chord distances.
• Let Tij = {tij1 , tij2 , ..., tijL} be the set of characters in

a single note.
• Let C = {c1, c2, ..., cL} be the characters composing

closest substring.
• Let ϕ(op1, op2, ..., opn) denote picking the most common

element from a collection.
• Let + denote character concatenation.
• Let d(s1, s2) denote the hamming distance between s1

and s2.
• Let k ∈ N, [1, q]

if ∃ ti ∈ T | (∀tij ∈ ti ∃ sij ∈ si | d(pk, sij) ≤ d∧

d(pk, sij) ≤ d(pk, Si)) ∧ | (bi ≤ B)

then c = ϕ(ti11 , ti21 , ..., tiq1) + ϕ(ti12 , ti22 , ..., tiq2) + ...+

ϕ(ti1L , ti2L , ..., tiqL)

Applying big-O analysis to the algorithm yields, O((k −
1)n2) where k is the number of lines, and n is the number of
windows in a string. A sequential pseudocode algorithm for
the CPU can be seen if Figure 5.

Fig. 5
CPU ALGORITHM PSEUDOCODE.

3.2 Purely parallel GPU algorithm (PP-GPU)
An observation can be made about the sequential algorithm,

each window’s hamming distance to a certain pitch in the data
set is completely independent of all the others. This observa-
tion implies that the parallel nature of the CUDA language
can be exploited while calculating the hamming distance of
all the windows with respect to pitches. An illustration of this
is shown in Figure 6. If looking strictly at parallel computation
even the process of computing the hamming distance itself can
be incorporated into our CUDA algorithm (PP-GPU).

Fig. 6
PP-GPU ALGORITHM DESIGN.

3.2.1 PP-GPU

Initially our strategy was to exploit the parallel nature of
CUDA by calculating each window’s hamming distance to
every pitch concurrently, while at the same time calculating the
hamming distance in parallel. The kernel grid was aligned to
perform the error calculation in one kernel. The X direction of
the grid being the number of windows per row, x = q, signify-
ing which window in the row we are, and the Y direction being
number of rows, not including the row of pitches, multiplied
by the number of windows per row, y = numRows ∗ q. The
Y direction was aligned in such a way so that the blocks
Y coordinate modulo number of rows, not including the row
of pitches, provides the row in the data set, the window that
this block simulates, by = blockIdx.y%numRows and the
blocks Y coordinate divided by number of rows, not including
the row of pitches, yields the pitch we are to perform the
hamming distance on i = blockIdx.y/numRows. If the block
index was (0, 4) in the 3 x 7 data set listed above, in Figure
6, then the block corresponds to the following where the pitch
is on the first row and the window is on the second as shown
by Figure 7.

Fig. 7
BLOCK INDEXING SAMPLE.

Threads in each block calculate the hamming distance in
parallel. A pseudo code version of the algorithm shown in
Figure 8.

Fig. 8
PP-GPU ALGORITHM PSUEDOCODE.

Although this idea provides the greatest amount of
parallelism, due to hardware limitations this algorithm proved
to be the slowest of the GPU based algorithms. The hardware
limitation was with either a large data set and/or a small
window size the number of blocks to be placed in the grid
out grew the maximum grid limit imposed by CUDA. This
required the kernel to be launched several times. With each
kernel invocation there is time wasted making the kernel call
and with a data set of 512 x 512 characters and window sizes
of 15 characters the grid in the Y direction needed 254, 976
blocks. However CUDA only supports 65, 535 blocks in
the Y direction on the grid [2], thus resulting in the kernel
needing to be called 4 times, and that number increases to 16
with a 1024 x 1024 data set with the same sized windows.

3.2.2 PP-GPU*

Discovering the hardware limitation gain we attempted to
remove multiple kernel launches in an attempt to increase
performance by shrinking the number of blocks in the Y
direction with the use of a for loop that iterates over the
windows in a row. This design came to be known as (PP-
GPU*). Incorporating this idea into the above algorithm design
we can lay out the grid as to align the Y direction with the
rows of the data set while the X is aligned on pitches we are
to find a hamming distance to. Each block is still calculating
the hamming distance in seemingly parallel. A pseudo code
algorithm is shown in Figure 9.

Fig. 9
PP-GPU* ALGORITHM PSEUDOCODE.

PP-GPU attempted to perform as many calculations as
possible in parallel after experimentation was performed in
order to optimize the kernel. An optimized version PP-GPU*
did remove the hardware limitations and increased the speedup
shown in Experimental Results, but more performance was
possible. The parallel calculation of the hamming distance
was discarded and the layout and functions of the grid, block
structure was redesigned.

3.3 Streamlined GPU algorithm (S-GPU)
Upon seeing that hardware limitations will be hit if we take

advantage of every bit of parallelism present in the problem,
we re-engineered and streamlined the algorithm. The resulting
algorithm takes the most efficient parallel ideas and discards
those that only caused increased overhead when implemented
on current hardware.

The main idea behind the streamlined algorithm is that
in order to find the closest substring, all chords must be
calculated and compared in order to determine which one has
the smallest chord distance. Each chord finding operation is
independent of each other. Looking further, within each chord
finding operation, each note finding operation is independent.
These facts point us toward a parallel algorithm in which all
chords can be found simultaneously, and within each chord
finding operation, all notes can be found concurrently.

The aforementioned description leads to an implementation
of an algorithm that essentially eliminates the outer two for
loops of the CPU algorithm, by doing them concurrently. We
chose to have each CUDA block calculate the best chord
associated with a single pitch, each CUDA thread of the
block will search one string for the closest note concurrently.
This allows us to take advantage of the CUDA programming
model that allows threads to cooperate. In CUDA, when a
kernel is called the caller must specify the number of blocks
that will execute the kernel and the number of threads that
each block should contain. Our kernel uses the number of
windows possible in a string to be the number of blocks,
specifically numBlocks = q. The number of threads is
directly proportional to the number of strings, specifically
numStrings = numThreads. The chosen configuration
allows for notes of a chord to share their distances so that
a chord distance can be calculated, CUDA threads allow this

kind of cooperation. This configuration lends itself well to the
problem and increases parallelism without adding additional
memory requirements. Figure 10 shows a simplified version
of the algorithm in pseudocode.

Fig. 10
S-GPU ALGORITHM PSEUDOCODE.

This, Streamlined GPU algorithm results in less memory
use on the device. Simply put, the memory use went from
using n2 amount of memory to store intermediate results with
PP-GPU, to using only n memory for intermediate results on
both PP-GPU* and S-GPU. Where n is the size of the data-
set. This decrease is tremendous when considering inputs for
n are typically large. It should also be pointed out that S-
GPU cuts the size of the results generated from the kernel
form n2 to n. This is good news considering that the transfer
from CPU to GPU memory has historically been a bottleneck.
The streamlined algorithm also allows for one kernel to do all
necessary calculations, rather than multiple kernels which was
required in the PP-GPU algorithm. These improvements result
in a faster algorithm.

4. Experimental results

4.1 Test hardware

All experiments were preformed on the following system:

• CPU: 2x Intel Xeon X5660 @ 2.80GHz

– 6 core 12 threads per CPU

• Memory: 24 GB
• GPU: Tesla C2070 @ 1.15 GHz

– Driver version: 260.19.26

4.2 Experiments

4.2.1 Experiment 1

Compared to another exact version (running sequentially),
we achieved a 18x speedup for an input file of size 1024 x
1024 with a length of 3 as shown in Figure 11.

Fig. 11
COMPARISON OF ALGORITHMS CPU AND S-GPU:

L = 3, d = 3

By successfully flattening the time vs. data-set size function
it is possible for some applications to get timely results
whereas before results would have been prohibitively expen-
sive. The accuracy of the algorithm is unchanged. It still can
deduce the closest substring with precise accuracy.

4.2.2 Experiment 2

Fig. 12
COMPARISON OF ALGORITHMS CPU, PP-GPU(*), AND S-GPU:

L = 16, d = 4

Fig. 13
OVERALL ALL SPEEDUP OF GPU ALGORITHMS:

L = 16, d = 4

Although PP-GPU attempted to preform the calculations of
finding the hamming distances and chord errors in parallel,
this action did not equate in much of a performance gain when
compared to S-GPU. Its design was more fine grain than S-
GPU, and thus needed more synchronization and collaboration
to preform the calculation. The original design also facilitated
the need for multiple kernel invocations which also contributed
to the degradation in performance. The hardware fixed version
PP-GPU* does provide a speed up of about 1.5x over its
predecessor (PP-GPU) which had an overall speed up of 4.5x,
and an speedup of 6.8x when compared to the CPU. S-GPU
improved on this by utilizing a less fine grained approach
to the problem allowing for the removal of key bottlenecks.
In experiments, S-GPU ran 1.9x faster than PP-GPU* and
achieved an overall speed up of 13x. It can be inferred from the
results that more threads preforming small jobs is not always
conducive to better performance, rather a smaller number
of threads preforming sightly more work produced the best
results in our experiments.

5. Related work
There has been much work done in areas closely related

to CSSP. Problems such as multiple sequence alignment have
experienced heavy research as of late.

Some have attempted to apply GPU algorithms to speedup
multiple sequence alignment [9]. Although sequence align-
ment and CSSP are related they are not the same. CSSP is
a more general problem. Perhaps ideas formed here can be
adapted and applied to multiple sequence alignment tools such
as Clustal. Perhaps ideas here can be applied to other areas in
which forms of CSSP are represented.

Related work specific to CSSP has also been done. There
have been many novel optimizations to approximation algo-
rithms [1]. These algorithms generally perform much faster
than an exact algorithm. The downside of course is that
the results obtained are not verified. Our research focused
on optimizing an exact algorithm, one who’s result can be
verified.

An approximate evolutionary algorithm for CSSP has been
studied [8]. The algorithm attempts to change itself to make
its results more accurate over time.

6. Conclusion
GPU devices can be used to efficiently solve the CSSP using

parallel algorithms and GPU technology. For applications that
require solving the CSSP or any of its relatives, efficient GPU
algorithms can be developed that will permit computations that
were previously too expensive.

Using parallel GPU algorithms and smart parallelization
strategies we were able to greatly speedup the process of cal-
culating the closest substring. The many existing applications
that use a form of the CSSP can make use of GPUs to make
their calculations faster. New applications could be built that
previously could not due to the time required to calculate the
closest string.

7. Future work
The algorithm can be expanded to work on larger data

sets. The process of locating the lowest chord distance can
be parallelized. The algorithm can be further optimized by
using parallel minimization of the chord distances. This could
result in an additional speedup for large data sets. The process
of finding the chord distances can also be optimized using a
parallel addition rather than the, sequential at worst, atomic
add function included in the CUDA toolkit.

References
[1] Bin Ma. “A Polynomial Time Approximation Scheme for the Closest

Substring Problem (2000)” In Proceedings of the 11th Annual Symposium
on Combinatorial Pattern matching, 2000, pp. 97-107

[2] ”NVIDIA CUDA C Programming Guide”. Internet:
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/
docs/CUDA_C_Programming_Guide.pdf November 9,2010 [March 21,
2011]

[3] K. Lanctot, M. Li, B. Ma, S. Wang, L. Zhang. Distinguish string search
problems, Proceedings of the Tenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 633-642, San Francisco, 1999

[4] J. Sanders, E. Kandrot, CUDA By Example: An Introduction to General-
Purpose GPU Programming. Addison-Wesley Professional, 2010

[5] D. B. Kirk, W. W. Hwu, Programming Massively Parallel Processors: A
Hands-on Approach. Morgan Kaufmann, 2010.

[6] Ming Li, Bin Ma, and Lusheng Wang. “On The Closest String and
Substring Problems” eprint ARXIV 2000.

[7] Markus Chimani, Matthias Woste, Sebastian Bocker “A Closer Look at
the Closest String and Closest Substring Problem” 2011 Workshop on
Algorithm Engineering and Experiments (ALENEX) 2011.

[8] Holger Mauch. “Closest Substring Problem - Results from an Evolution-
ary Algorithm,” in Neural Information Processing, 1st ed., vol 3316. Ed.
Nikhil Pal, Ed. Nik Kasabov, Ed. Rajani Mudi, Ed. Srimanta Pal, Ed.
Swapan Parui, 2004, pp. 205-211.

[9] Andrew Bellenir, Christian Trefftz, Greg Wolffe, "Graphics Processor
Based Implementation of Bioinformatics Codes", 2008.

