
A Parallel Architecture Using HDF for Storing DICOM Medical Images on
Distributed File Systems

Tiago Steinmetz Soares
Informatics and Statistic Department
Federal University of Santa Catarina

Florianpolis, Brazil
Email: steinmetz@telemedicina.inf.ufsc.br

Douglas D.J. de Macedo
Post-Graduate Program of Knowledge Engineering and Management

Federal University of Santa Catarina
Florianpolis, Brazil
macedo@inf.ufsc.br

Michael A. Bauer
Department of Computer Science

University of Western Ontario, UWO
London, Canada
bauer@uwo.ca

M.A.R Dantas
Informatics and Statistic Department
Federal University of Santa Catarina

Florianpolis, Brazil
mario@inf.ufsc.br

Abstract—The Hierarchical Data Format (HDF) is an inter-
esting approach for developing scientific applications where a
large amount of data must be stored and accessed. A tele-
medicine project underway in the State of Santa Catarina
(SC), in Brazil, has developed a server called the CyclopsDCM-
Server, which adopts the HDF for the manipulation of medical
images (DICOM). This paper proposes a new approach for
the parallel implementation of I/O operations for the medical
images stored on this server. This effort was based upon the
MPI paradigm that is supported by the version 5 of the HDF.
Early experiments indicate that the proposed approach can
achieve very good performance when compared to the standard
HDF implemented in the CyclopsDCM-Server.

Keywords-Parallel I/O; HDF5; DICOM; Telemedicine;
PVFS; MPI;

I. INTRODUCTION
The success of an interactive telemedicine prototype ex-

periment veried in the 1960s [1], between the Massachusetts
General Hospital and a medical station at Bostons Logan
International Airport, led to a dissemination of the idea
of telemedicine throughout several countries. The term
telemedicine is commonly used to refer to the remote
delivery of health care, basically providing specialized health
care, medical diagnosis and monitoring through telecom-
munications technology to people who cannot access to a
medical system directly [2]. However, the capabilities of the
equipment must be transmitted at least equal in quality to
the information transmitted in the traditional setting. Indeed,
the capabilities of the technology are expanding rapidly,
becoming faster, more efficient and cheaper, enabling lower
costs for the implementation and growth of telemedicine
systems.

Researchers from the Telemedicine Laboratory at
UFSC [3], adopting the telemedicine approach, created
a telemedicine network project called Rede Catarinense

de Telemedicina (RCTM). This project aims to provide
connections among different hospitals and different cities
within the State of Santa Catarina to provide access to
exams, electrocardiograms (EKG), and imgaes from mag-
netic resonance, computed tomography, X-ray angiography
and nuclear medicine [4]. All information acquired of a
patient is sent online as DICOM images (Digital Image
COmmunications in Medicine) to a developed PACS (Picture
Archiving and Communication Systems), the CyclopsDCM-
Server [5] and could be retrieved anytime where the system
is deployed.

CyclopsDCMServer is a DICOM medical image facility
that was conceived by the Cyclops Group [6] to provide DI-
COM image storage and wide area network (WAN) access.
The CyclopsDCMServer stores all information in a ordinary
data base PostgresSQL and can handle around 8 terabytes
[4]. Summarizing, this server provides segmentation service
for the incoming information, processing and storing the
images in a centralized database.

A new DCMServer architecture was proposed to circum-
vent some of the issues of ordinary relational databases and
it has been improve since then. This architecture has two
basic applications, PVFS and HDF5. PVFS (Parallel virtual
le system) is a distributed le systems designed to scale to
petabytes of storage and provide high access rates [7]. THe
Hierarchical Data Format 5 (HDF5) is a data model for high
volume and complex data.

This paper is organized as follows. We start by describing
DICOM images (Section 2) and some HDF5 definitions
(Section 3), followed by some background about from pre-
vious work done on the system in Section 4; this describes
several important aspects of the project. In the Section 5 we
present some related work and in Section 6 the proposed
architecture. In Section 7 we present some experimental



results, with subsections related to the environment and
experiments. Finally in the Section 8 we present the con-
clusions and future work.

II. DICOM IMAGES

The Digital Imaging and Communications in Medicine
standard is one of the most universal and fundamental
standards in digital medical imaging. The DICOM standard
was defined in 1992, and was the third version of the ACR-
NEMA Standards Publication PS3. Before this standard was
established, each manufacture created their own solution for
visualization, storage and impression of digital images. The
rst ACR-NEMA standard was conceived in 1983 by the
American College of Radiology, with main principle to make
digital medical images independent of device manufactures,
creating a unique standard for medical devices and facilitat-
ing the expansion of digital images [8].

Taking many important features from earlier and other
standards, the early versions of focused on the improvement
and correction of some issues, and where those publications
provided specifications related to hardware interfaces, it
introduced a set of data format and commands for software
packages. Completed in September 1992, the third version
came with major revision, supplying increasing variety of
digital devices and their communications protocols. This
version was called DICOM 3.0, as it followed two earlier
ACR-NEMA editions; the standard is reviewed annually and
updated with new supplements if necessary [8].

Another important subject relative to DICOM is the Pic-
ture Archiving and Communication Systems. PACS consists
in hardware and software medical systems designed to run
digital medical imaging and is supported by major medical
imaging equipment manufacturers. It embraces digital image
acquisition devices, digital image archives and workstations.

The CyclopsDCMServer is both a digital image archive
system and workstation, which was develop by the Cyclops
Group. Created to work with PACS equipment as hospitals
and radiology clinics, the purpose of the server is to store
and retrieve DICOM index les from an ordinary data base
managed by a relational DBMS, such as PostgreSQL. All
communication between the server and medical equipment
is performed through TCP/IP.

Nowdays, the server supports eight of the several DI-
COM modalities, namely: computed radiography (CR);
computed tomography (CT); magnetic resonance (MR);
nuclear medicine (NM); ultrasound (US); X-ray angiogra-
phy (XA); electrocardiograms (DICOM waveform); DICOM
structured reporting (SR) [5].

III. HIERARCHICAL DATA FORMAT (HDF)

Developed by the HDF group at the University of Illinois,
initially in the 90s, the goal of HDF is to support large
scientific data; the current version is HDF5. One of the
main feature of HDF5 is that files can contain binary data as

multi-dimensional arrays and allow direct access to parts of
the file without first parsing the entire contents [9]. HDF5
is designed for storing large scientific data, including high
performance data manipulation supporting random access,
number encoding in native format, data compression, indi-
vidual data set encryption, and storage strategies for parallel
I/O and multidimensional data structures.

There are two essential structures in HDF5 which forms
the base for the library: dataset and group. Dataset is a multi-
dimensional array of datatype; HDF stores and organize all
kinds of data from atomic to composed types, similar to the
C struct construct. Other special array operations, such as
chunks, compression and extendability, are available through
the HDF library and can be applied to a dataset. The group
is similar to UNIX directories, though cycles are allowed.
Every file is started with a root group, represented as /, and
could be followed by the name of another group or a dataset.

An important feature of HDF5 is support for standard
parallel I/O interfaces. The Parallel Hierarchical Data For-
mat 5 (Parallel HDF5) required MPI/IO interface through
MPICH ROMIO [10] or a vendors MPI-IO, but it does
not offer compatibility with shared memory programming.
Implemented to get better performance in I/O procedures,
the Parallel HDF5 uses distributed le system, such as Parallel
Virtual File System (PVFS), Lustre, GPFS and specially
configured NFS.

The idea of Parallel HDF5 is to make it easy for users to
use the library and provide compatibility with serial HDF5
file. One approach is to read and write data by hyperslab [9],
i.e., a multidimensional array that can be spread by rows,
columns, patterns and chunks, and a hyperslab selection
could be a logically contiguous collection of points, or it
can be a regular pattern of points or blocks, depending on
the type used. Other important structure is the dataspace.
Through a dataspace required components of dataset or even
a attributes are defined, as well as array ranks, sizes and
types. The difference between the types of hyperslabs is the
way that each process will access data of the datasets.

IV. BACKGROUND

One project that has been underway at the Telemedicina
Laboratory at UFSC since 2008 is to explore new architec-
tures for DICOM images using distributed file systems. The
purpose of this research is to address issues of telemedicine
environments based on ordinary database systems. These
include addressing issues such as scalability, information
distribution, ability to use high performance system tech-
niques and operational costs. Among some of the procedures
used to avoid the scalability issue, the project design was
to use high performance distributed systems, like clusters
or grids [4]. The first approach taken apart from the usual
system was to store all information hierarchically, namely,
organize and store in HDF5 data format. The second step
was to use PVFS as a distributed file system.



Since the DICOM server normally supports drivers only
for standard DBMSs, it was necessary to create some-
thing similar to these drivers. The HDF5 Wrapper Library
(H5WL) was created for this purpose. As the name suggests,
this library contains a wrapper object which is used to create,
locate, collect and store information related to DICOM
images using HDF5 files. When the CyclopsDCMServer
requires a creation of new HDF5 file for H5WL, this is
created using PVFS.

Two important entities were introduced to help reading
data. The first entity consists of information related to the
image, such as name of the patient, dimension of the image
and other characteristics. The second is the image entity
which represents the binary information created by PACS
equipment (e.g., computed tomography (CT) or magnetic
resonance (MR) images.

Figure 1. Hierarchical data sctrucuted [4]

Another feature is how the hierarchical data structured is
organized. An example of the structure is shown in Figure 1,
where the data is organized around six layers: root, hospital,
patient, study, series and image.

When a client sends an image to the CyclopsDCMServer,
the image is captured and the hierarchy is created through
calls to the H5WL methods, creating groups that provide
information that is used to identify the image inside the file.
The biggest component of a DICOM file is the image, which
is the leaf of the structure. Basically, the structure image
is a compressed image (JPEG) [8] and is responsible for
representing the DICOM image.

This architecture, proposed by Macedo [1], has virtues
and weakness. Based on 25 experiences with the system, it
showed an average improvement in storage of about 16%
when compared with the usual system using DBMSs.

However, in term of retrieval operations, there was a drop
in performance, with average decrease in performance of
around 21%. This was due to mechanisms used to provide

similar behavior to that of standard DBMSs when retrieving
information. This paper addresses this problem by proposing
an extension to the architecture to take more advantage of a
parallel environment. This architecture is detailed in Section
VI.

V. RELATED WORK

There is little published work in the telemedicine field
which uses HDF5 to store images, as most medical image
servers come with drivers only for ordinary data bases. The
three works below are similar to the current work in that
they use parallel I/O as a solution for I/O bottlenecks access
for large amounts of stored data.

The research work presented in Nikhil Laghave [11], is
very similar to our work. This work is focused on the use of
a parallel I/O library for scalability issues involving fermion
dynamics for nuclear structure (MFDn). This work used the
HDF5 parallel version for parallel I/O, testing with collective
and independent models. As result, there was a gain in the
efficiency of input/output of large datasets and the cost of
using parallel I/O was less than sequential I/O for sufficiently
large datasets.

In particle-based accelerator simulation groups, it is possi-
ble to find some HDF5 work. The work of A. Adelmann [12]
focused on using parallel I/O for particle simulations which
involved vast quantities of data and dimensional arrays.
He used parallel I/O performance for MPI code as well
parallel HDF5. He compared read and write performance
in simulations between Parallel HDF5, mpi-io and one file
per process. HDF5 showed good performance in writing,
though mpi-io showed better results.

H. Yu [13] presented interesting work, though he did not
use parallel HDF as solution for his problem, but rather
a similar paradigm. His works dealt with large earthquake
simulations which require terabytes of storage space and
encountered I/O bottleneck issues. He developed his own
parallel I/O strategies through MPI I/O to address his needs
and was able to remove the I/O bottleneck and also hide
pre-processing costs.

VI. PARALLEL ARCHITECTURE

One of the great features available in HDF5 and was
not considered in Macedos approach, is the support for
MPI communication for parallel processing. As a possible
solution to the bottleneck of retrieving data, we provide
additional features using the Parallel HDF5 library. The
main propose is to get better performance using parallel
data access to HDF files stored in the PVFS distributed
file system. The Parallel HDF5 library requires a parallel
MPI/IO interface and, when working with MPI, it is neces-
sary to design it to be used in a cluster environment. Another
important requisite is the necessity to use the mpirun shell
script to run any MPI application, which attempts to hide the
differences in starting jobs for various devices from the user



[14]. For this, it is necessary to create a additional procedure
to work with the CyclopsDCMServer. This procedure should
be called every time when is required to retrieve or store
some medical information.

It is noteworthy that Parallel HDF5 has support for PVFS
through MPICH ROMIO. In this case, our first task is to
build the environment using MPICH2 [12] with ROMIO for
PVFS. With the environment built, the second task is to
create the application which it will be responsible for reading
and writing a dataset into a file.

Figure 2 illustrates how the architecture works. The func-
tionality, basically, is the same as described in the previous
section, the difference is inside of the H5WL. Instead of
having the H5WL responsible for reading and writing the
binary information created by PACS, it will be treated as
a new parallel application. The parallel application will be
initiated by H5WL calling mpirun shell script.

Independent of a read or write function, when H5WL
calls the MPI application, all communication between them
will be made by socket connections. The communication is
done by the master process (represented by MPI process
zero) and H5WL for passing function parameters like the
location that is the target of an operation (group path),
the image buffer and the number of MPI processes. The
difference between the functions is the way that the server
and MPI applications will communicate. For write functions,
the H5WL will first receive the DICOM file, create a new
hierarchy of the image based on DICOM file layers (Figure
1), get the path location for new image (JPEG image) and
then call mpirun procedure to start the MPI application.
The MPI application has functionally to read and write a
buffer, without being concerned whether the image exists
or not, as that is the responsibility of H5WL. The master
process will first communicate with H5WL to retrieve the
function to perform, get the location (group) of image in the
HDF5 structure and the arguments for the job. If it is a write
function, it will need the stream of images to be stored. In
case of a read function, the application will only need the
path group as parameters, and it will return to server all
buffers read from the HDF file.

Independent of the job, the master process has to define
the access properties, model and size for each process. The
Parallel HDF5 library has available two types of properties
(collective and independent data access) and four hyperslab
model (Contiguous Hyperslab, Regularly Spaced Data, Pat-
tern and Chunk) [9]. Then the master node has to distribute
the memory buffer (write function) or file location to each
process. Finally, once the jobs have executed, the main
process will return to the wrapper the status of reading or
writing the buffer.

VII. EXPERIMENTAL RESULTS

Our experiments are based on the Parallel HDF5 archi-
tecture, adapted to use PVFS, and sequential CyclopsD-

CMServe. The Parallel HDF5 properties used for read and
write on the MPI application is: independent data access
model and Contiguous Hyperlasb, which entail distributing
the buffer by rows as show in the Figure 3.

It is important to note that our results do not take into
consideration external factors, like computers using the same
network

Figure 3. Contiguous Hyperlasb

A. Environment

The environment used for the experiments consist of a
four node cluster, as specified in Table 1. The cluster is
non-dedicated and is used just for experiments and belongs
to Telemedicine Laboratory. The connection network is 100
Mbs Ethernet. The operating system installed on all nodes
is CentOS with kernel 2.6.18. PVFS is used on only one
metadata node. Each has a PVFS client for access to the
PVFS file system and each node is also a MPI executioner
and has an MPI application in its own file system for access
to HDF file found in Parallel Virtual File System.

Name CPU Memory HD
Node1 AMD athlon x2 2.1 GHz 2 Gb 20 Gb
Node2 AMD athlon x2 2.8 GHz 3 Gb 20 Gb
Node3 Intel PentiumR Dual 1.80 GHz 1 Gb 20 Gb
Node4 Intel Core i5 3.2 GHz 3 Gb 20 Gb

Table I
ENVIRONMENT

B. Experiments

Experiments were conducted with CyclopsDCMServer
sequential and parallel architecture. The experiments involve
only comparison of writing a new DICOM file in HDF
file; future comparisons will compare file retrieval. This
experiment measures the time spent write an image buffer
into a HDF data set and was done 25 times with different
DICOM files for each test. The selection of the files used
was random, but the same files were used for the parallel
process. The time collected is the time required to write
an image, ignoring other information, like patient name,



Figure 2. The architecture proposed

hospital and etc. The reason that this measure was chosen
is because an image represents most of a DICOM file, i.e.,
could be over ninety percent and is normally nearly 50 Mb.
These images were created by CT equipment that generates
monochromatic images with 512 512 pixels with 16 bits
per pixel.

Figure 4. Contiguous Hyperlasb

Figure 4 compares the performance between serial Cy-
closDCMServer and our integrated parallel architecture.
Our architecture shows better performance than the serial
with the average writing time for parallel method being
0.0107176 seconds, while the average writing time for the
serial was 0.01539956 seconds an improvement of around
30 percent. The minimal elapsed times were 0.013812s and
0.009815s for serial and parallel respectively, while the
maximal elapsed times were 0.019435s and 0.012735s for
serial and parallel.

VIII. CONCLUSION AND FUTURE WORKS

In this paper, was introduced an extension to the archi-
tecture for the CyclopsDCMServer that was introduced by
Macedo et al. [1]. The focus of this paper was to introduce
a new parallel architecture designed to reduce the bottleneck
I/O issues in the serial architecture. Experiments involving
writing compared the serial and parallel I/O in the same
environment and show that the parallel architecture resulted
in a thirty percent improvement.

As future work, there is a need to compare the retrieval
of a DICOM image from an HDF file using the parallel
architecture. It is not clear how this will perform since this
uses H5WL which will not perform as well as a standard
DBMS.

Another important experiment is to measure the perfor-
mance of the complete operations of receiving a DICOM
file, wrapping and storing it, and the reverse operation of
retrieving and unwrapping it. Others future work includes
analyzing the significance of the number of MPI nodes
on reading and writing and to measure the communication
between H5WL and master mpi node.

As seen in the Section 6, many researchers that have
similar issues have used parellel I/O to avoid bottleneck I/O
problems and have obtained similar results. Given this and
considering the features available in HDF, one can expect
to see gains in other future work involving the retrieval of
stored information.

REFERENCES

[1] D. de Macedo, H. Perantunes, L. Maia, E. Comunello, A. von
Wangenheim, and M. Dantas, “An interoperability approach
based on asynchronous replication among distributed internet
databases,” in Computers and Communications, 2008. ISCC
2008. IEEE Symposium on, 2008, pp. 658 –663.



[2] W. Hersh, U. S. A. for Healthcare Research, Quality, and
O. H. S. U. E. based Practice Center, Telemedicine for the
Medicare population: Update. Citeseer, 2006.

[3] “Laboratorio de telemedicina,” Access:, January 2011.
[Online]. Available: http://www.telemedicina.ufsc.br

[4] D. De Macedo, A. Von Wangenheim, M. Dantas, and H. Per-
antunes, “An architecture for dicom medical images storage
and retrieval adopting distributed file systems,” International
Journal of High Performance Systems Architecture, vol. 2,
no. 2, pp. 99–106, 2009.

[5] “Cyclops project,” Available at:http://www.cyclops.ufsc.br
. Access: 2011., January 2011. [Online]. Available:
http://www.cyclops.ufsc.br

[6] “Cyclops group,” Access:, December 2011. [Online].
Available: http://cyclops.telemedicina.ufsc.br

[7] “Pvfs,” Access:, January 2011. [Online]. Available:
http://www.pvfs.org

[8] O. Pianykh, Digital Imaging and Communications in
Medicine (DICOM): A practical introduction and survival
guide. Springer Verlag, 2008.

[9] “Hdfgroup,” Available at:http://www.hdfgroup.org . Ac-
cess: 2011., January 2011. [Online]. Available:
http://www.hdfgroup.org

[10] “Romio,” Access:, March 2011. [Online]. Available:
http://www.mcs.anl.gov/research/projects/romio/

[11] N. Laghave, M. Sosonkina, P. Maris, and J. Vary, “Benefits
of parallel i/o in ab initio nuclear physics calculations,”
Computational Science–ICCS 2009, pp. 84–93, 2009.

[12] A. Adelmann, R. Ryne, J. Shalf, and C. Siegerist, “H5part: A
portable high performance parallel data interface for particle
simulations,” in Particle Accelerator Conference, 2005. PAC
2005. Proceedings of the. IEEE, 2006, pp. 4129–4131.

[13] H. Yu, K. Ma, and J. Welling, “A parallel visualization
pipeline for terascale earthquake simulations,” in Supercom-
puting, 2004. Proceedings of the ACM/IEEE SC2004 Confer-
ence. IEEE, 2005, p. 49.

[14] “Mpirun,” Access:, March 2011. [Online]. Available:
http://www.mcs.anl.gov/research/projects/mpi/www/www1/mpirun.html


