
ViFramework: A framework for networked video streaming
components

B. Kersten1, K. van Rens2, and R. Mak1
1Security and Embedded Networked Systems, Eindhoven University of Technology, The Netherlands

2ViNotion B.V. The Netherlands

Abstract— Real-time video content analysis applications for
surveillance become more and more demanding. The need
for load distribution, remote management and reusability
calls for a component framework specialized in networked
video streaming applications. Whereas lots of component
frameworks exist nowadays, frameworks targeted at net-
worked video streaming are scarce. Added requirements
imposed by video surveillance applications include real-time
computing and quick failover. The framework proposed in
this paper meets these demands by enabling the distributed
execution of video streaming applications in an efficient
and resource-aware fashion. In this paper, we present the
design of the proposed framework and evaluate a prototype
implementation. The results of this evaluation show that
this implementation is efficient and can successfully perform
failover handling, making it suitable for distributing surveil-
lance applications.

Keywords: Software component framework, video streaming,
video surveillance applications, distributed video analysis

1. Introduction
Developing applications using the Component-Based

Software Engineering (CBSE) paradigm [1] has many ad-
vantages such as high reusability, low time to market and
decreased development costs. Many software component
frameworks exist nowadays, but frameworks supporting
video streaming are rare, especially when network function-
ality is required.

Applications that need streaming video are Video Content
Analysis applications, such as the ones studied in the recent
ITEA2 research projects CANTATA [2] and ViCoMo [3].
These applications are becoming increasingly more demand-
ing. Applications that process video streams originating
from multiple cameras with computationally-intensive al-
gorithms like object detection and tracking are becoming
more common. Due to the high-volume nature of video data,
processing components often have high resource demands.
The need for distributed applications is motivated by the
need for geographical distribution and load distribution in
order to make the applications more scalable.

A framework for networked video streaming components
is needed, in order to enable component distribution over

hosts connected by a network. The framework must enable
components to be configured and composed remotely in or-
der to form an application. By supportingdynamic reconfig-
uration the framework must allow for run-time modifications
of the application’s component graph.

At design-time, the framework must provide component
developers with abstraction of tasks, such as setting up
network connections, video compression, timing and mul-
tithreading. To make the framework suitable for rapid pro-
totyping, the framework must be flexible and component
descriptions easy to adapt. At run-time, the framework
should provide network-transparent means to compose an
application. In order to allow applications to span both
LAN’s and WAN’s, the framework must support NAT-router
and firewall traversal.

Targeting at video surveillance applications, the frame-
work is subject to real-time requirements. In general, a
trade-off must be made between timeliness and guaranteed
delivery. By adjusting QoS parameters the framework must
be able to meet the real-time requirements of the applica-
tions. In host-failure situations the framework must be able
to perform quick failover, thus increasing robustness and
minimizing the amount of lost data.

This paper proposes a framework for networked video
streaming components aimed at surveillance applications.
An implementation of the proposed framework is presented
in [4] and is evaluated in this paper. Evaluation is done by
porting an existing surveillance application to the framework
after which overhead and failover time is measured.

In Section 2 the general architecture of the proposed
framework is presented. An application scenario is sketched
in Section 3. Section 4 elaborates on framework details.
Framework evaluation is presented in Section 5. Section 6
describes related work and Section 7 concludes the paper.

2. Framework Architecture
The proposed framework exists of a design-time and a

run-time part. The design-time part of the proposed frame-
work consists of means that help the component programmer
to create components that comply with the framework. This
includes an interface definition language, automatic code
generation and programming guidelines.

Before existing video content analysis algorithms can be
used as components in the framework, they are supple-

Fig. 1: High-level ViFramework architecture. A video content analysis
application consisting of four components spanning two hosts is set up.
Each dock manager manages all docks on the host it resides on and one
distribution manager controls the whole application.

mented with platform-specific software that provides addi-
tional functionality for network usage. This is called the
instrumentation procedure and results in a so-calleddock.
The term dock is borrowed from the SOFA framework
[5] and denotes a container for multiple components that
together provide functionality to the environment. Docks in-
clude a control part which controls the included components,
handles configuration and facilitates network usage, and a
functional part which is the component code.

The run-time part of the framework consists of two active
entities that enable the distribution of a video streaming
application. Each host that takes part in the framework
runs one process that manages all docks on that host. On
each host, thisdock manageris the only process that can
instantiate docks. After instantiation the dock manager can
configure, start, stop and destroy a dock. Configuration
includes binding of the component’s interfaces in order to
connect them to other components.

All dock managers are connected to a central service
named thedistribution managerthat is used to gather
information about available hosts from their dock managers.
Since the distribution manager has control over all available
dock managers, it is capable of composing a networked
video streaming application, instantiating and connecting
available components. A user-interface to the distribution
manager enables end-users of the framework to manually
setup an application, although the distribution manager can
also be configured to automatically setup and manage pre-
defined applications. An overview of the high-level frame-
work architecture is depicted in Fig. 1.

When considering video streaming applications as done
in [6], three component types can be distinguished:

• Input: Components that capture video data from an
input source (e.g. a camera, a file or an Internet stream),
convert it to a common internal format, after which it
can be offered to an interface.

• Output: Components that accept the common internal

Fig. 2: Data flow diagram of the object detection and tracking application.
The control-data flow from the user interface to the PTZ-camera is optional
because the end-user may chose to manually control the PTZ-camera or not.

format from an interface and convert it to an output
format which can, for example, be a display or a video
file.

• Processing:Components that can be used to read video
data in the common internal format from an incoming
interface, process the video stream before forwarding it
to an outgoing interface in the same format.

Typically, processing components can reside on any host,
whereas in- and output-components need additional hard-
ware in order to fulfill their task and are therefore located
in the proximity of these devices (i.e. a camera or video
display). If not composed manually, it is the distribution
manager’s responsibility to setup a pre-defined application
taking into account what resources are available on the
connected hosts.

The distribution manager is capable of performing failover
by re-instantiating failed docks on other hosts and re-routing
the data through the re-instantiated docks. In the same
way, the distribution manager is capable of performing
load distribution. Because video streaming uses a lot of
network bandwidth the framework takes network capacity
into account when setting up and managing applications. It
does so by adjusting stream routes and choosing appropriate
Quality of Service (QoS) levels and compression techniques.
By using NAT-router and firewall traversal it is possible to
deploy applications that cross the borders of a LAN.

3. Application Scenario
As a proof of concept the proposed framework imple-

mentation is used to distribute an existing surveillance
application over multiple hosts. The application chosen for
this is an object-tracking application using a static and a Pan-
Tilt-Zoom (PTZ)-camera as depicted in Fig. 2. The video
stream from the static camera is used for object detection and
tracking. When an object is detected, the PTZ-camera is used
to zoom in on the target and to extract more object-specific
information. The video stream from the PTZ-camera could,
for example, be used for face recognition on the zoomed-in
object. The PTZ-camera is controlled automatically using the
coordinate information from the “Video Content Analyser”
component which analyses the video feed from the static
camera. Moreover, the end-user can at any time connect to

Fig. 3:A possible distribution scenario of the object detection and tracking
application spanning four hosts.

the user interface component and watch the incoming video
streams and application-generated metadata. Optionally,the
user can also take manual control of the PTZ-camera. This
application can be divided in up to four docks:

• Static-camera analysis: Object detection and tracking
algorithms generating PTZ-coordinates based on the
video stream provided by the static camera. Metadata
describing the objects and their locations is send to a
rule-based engine.

• PTZ-camera analysis: Controlling the PTZ camera
based on incoming PTZ-coordinates and using the
video stream from the PTZ-camera as input for a video
content analysis algorithm.

• User interface: Presentation / interaction component.
• Rule-based engine: Gathering metadata from both anal-

ysis components and informing the end-user on events
by forwarding them to the user interface.

A possible distribution of these docks is depicted in Fig. 3.

4. Framework Details
4.1 Location transparency

The ViFramework provides generic means that allow the
end-users to deploy and connect docks on available host
irrespective of the underlying network topology. In order
to create thislocation transparencythe framework is built
on top of the XMPP protocol [7] originally designed for
messaging purposes. Because of its modularity and ease of
extensibility it has become a communication protocol used
by all kind of applications such as a the Peer-to-Peer desktop
grid computing substrate [8]. XMPP has very attractive
features for this framework such as presence information of
clients, possibility of NAT-router and firewall traversal and
extensive security measures like TLS ans SASL. Because
of its modularity, a light-weight framework can be created
by including only the XMPP modules that are necessary.
All this makes the XMPP protocol an excellent network
substrate for an easy to extend component-framework that
satisfies the needs of demanding video content analysis
applications.

A major drawback of the XMPP protocol when used for
the ViFramework is the lack of efficient video streaming
support. XMPP does have an extension that facilitates stream

initiation (XMPP extension number XEP-0095) that is used
for our own video streaming algorithms.

The main types of data that are communicated between
components in a networked video streaming application
are video-data, metadata and control-data. The framework
supports these data types. The metadata and control data
are assumed to be event-based and are communicated using
the XMPP protocol itself. This protocol is XML-based and
can therefore be used to send any data type that can be
represented by structured text. Streaming video is done
outside the protocol. The ability to communicate these data
types is sufficient for the application example in Fig. 3.
In general, these data types are sufficient for almost any
network video streaming application.

For video streaming three types of communication are
used dependent on the relative location of the components
that are connected to each other:

• Local: For docks that are instantiated on the same host,
shared memory is used for communication. The dock
manager manages this shared memory.

• RTP: For connections between docks that reside within
the same LAN the RTP protocol is used. Using RTP
upon UDP makes it makes possible to meet real-time
requirements because the protocol will not wait for lost
packages.

• SOCKS 5: For connection between docks that reside
on distinct LAN’s (and therefore needs to traverse a
NAT-router or firewall) no RTP connection can be setup
because this protocol is IP-address based and hosts
behind a NAT-router do not have an unique IP-address.
Furthermore, firewalls could block the ports used by
the protocol. A SOCKS 5 [9] proxy is used to setup
a SOCKS 5 byte-stream between the two components.
Such a byte-stream is based on a TCP connection and
is therefore not very suitable for applications subject to
QoS.

Typically, the real-time part of video content analysis ap-
plications resides on a LAN, whereas WAN connections
are, due to their higher delays, mostly used for monitoring,
control and notifications. For the latter tasks guaranteed
delivery is more important, which makes a SOCKS 5 byte-
stream a suitable candidate for inter-LAN connections.

For metadata communication, the XMPP protocol is used,
except for intra-host communication, for which we use
method invocation. The message passing XMPP protocol
needs an XMPP server to relay messages between hosts.
End-to-End connections can be used for intra-LAN com-
munication of metadata but this requires an extension of
the XMPP protocol (XEP-0246). Because the vast majority
of the data communicated within a typical video content
analysis application is video data, there is little to gain and
therefore, this extension is not implemented.

Fig. 4 depicts a possible network structure supported by
the framework. End-to-End RTP sessions are used for intra-

Fig. 4: Possible network structure supported by the ViFramework. End-to-
End RTP sessions are used for intra-LAN video streaming. Forinter-LAN
video streaming the XMPP server is used as SOCKS 5 proxy. Onlythe
XMPP server requires a public IP-address. Metadata communication is not
depicted in this figure.

LAN video streaming whereas the XMPP server can be used
as a SOCKS 5 proxy in order to setup a SOCKS 5 byte-
stream between two hosts in different subnets. The XMPP
Server needs to be accessible from both subnets so a public
IP-address is required.

4.2 Interface definition
The typical pipe and filter architecture pattern [10] found

in video streaming applications consists of an in- and out-
put component with one or more intermediate processing
components. The need for dynamic reconfiguration calls for
a data-centric composition technique. The proposed frame-
work allows dock builders to specify what data types the
dock requires and provides. When deploying an application
the required docks are instantiated. An interface-matching
algorithm is used to calculate, given an interface, which
interfaces can be connected to it. The result of this algorithm
can be used to automatically set up an application or can aid
the user in manually setting up the application.

The demand for flexible dock definitions and the use of
the XMPP protocol makes XML an appropriate language
for dock and interface definitions and it is therefore used
as theInterface Definition Language(IDL) in the proposed
framework. At design-time, a configuration XML file is
designed for each host. At start-up, this file is read by the
dock manager which parses, amongst others, its identifier,
the XMPP server address and the available dock definitions
from this file. A dock definition contains a dock identifier, a
functionality description and a list of interfaces with their
respective QoS properties. For each dock instantiated by
the dock manager, a copy of the dock definition is made,
which can be modified by the dock manager. Changes to
these description instances can be made to, for example,
bind interfaces by adding target information to the interface
element or to set QoS properties.

Each video streaming interface can set a topic, which

<providedInterfaces>
<interface>
<videoStream topic=’PTZ’>
<qos>
<fps>
<min>5</min>
<max>15</max>
</fps>

</qos>
</videoStream>

</interface>
</providedInterfaces>

<requiredInterfaces>
<interface>
<videoStream topic=’ANY’>
<qos>
<fps>
<min>10</min>
<max>25</max>

</fps>
</qos>

</videoStream>
</interface>

</requiredInterfaces>

Fig. 5: Interface definition of two matching video streaming interfaces.
The provided interface can operate in the range specified by the required
interface. The required interface will accept streams withany topic.

can be used for stream identification and a number of
QoS parameters. Two examples of interface definitions are
listed in Fig.5. The matching algorithm checks whether the
provided interface can meet all demands of the required
interface which is the case in this figure. Metadata interfaces
are defined by the XML representation of the object they
communicate. The dock builder is able to construct any data
type for communication as long as it is representable in
XML. When, for example, the dock builder needs infor-
mation about detected cars to be communicated, interface
definitions as depicted in Fig. 6 can be specified. When
a dock with a provided interface having this specification
sends data, it fills the<carInfo> element with data and
sends it to the required interface. This representation allows
easy creation of new object types and easy extension of
existing ones.

At run-time a dock can be easily replaced by an other
dock with compatible interfaces but with potentially dif-
ferent functionality. The user receives an overview from
the framework on what connections can be made between
instantiated docks. With the proposed framework, creating
more complex component graphs is quite straightforward as
provided interfaces are able to setup connections to multiple
required interfaces. When streaming video, each of these
connections can have its own QoS properties. Moreover, this
allows run-time extension of existing applications by adding
additional processing steps, or by branching the video stream
at a certain point, in order to create a separate processing
path.

4.3 Host failure recovery
The use of the XMPP protocol as a network substrate

provides the proposed framework with information about the
presence of dock managers. The XMPP server will notify
the distribution manager when a host has gone off-line.
The distribution manager will react on such an event by
starting a recovery algorithm. This algorithm tries to re-
instantiate the docks that were running on the failing host,
on other (possibly unused) hosts, tries to reconnect them and
upon success, restarts the failed part of the application. An

<providedInterfaces>
<interface>
<metaData>
<carInfo>
<location/>
<speed/>
<direction/>

</carInfo>
</metaData>

</interface>
</providedInterfaces>

<requiredInterfaces>
<interface>
<metaData>
<carInfo>
<location/>
<speed/>
<licensePlate/>

</carInfo>
</metaData>

</interface>
</requiredInterfaces>

Fig. 6: Interface definition of two non-matching metadata interfaces.
The addition of the<direction/> element is allowed because a
provided interface might supply more data then needed. Adding the
<licensePlate/> element in the required interface will make this
interface no longer matching because the provided interface can not provide
this element.

Fig. 7: Crash recovery example. Three camera feeds are processed, each
by a dedicated host. All data gathered by the analysis algorithms are
forwarded to the server which will notify the end-user on certain events. If
Host 3 fails, the framework will try to find a host to re-instantiatethe lost
analysis dock on and reroute the video stream that was processed by the
crashed host through the new one. The end-user will be notified about this
host-failure.

example situation is depicted in Fig. 7.
The framework is designed for real-time systems and

therefore no attempt will be made to resend frames that
are lost due to host-failure. Because the framework is
targeted at surveillance applications, crash recovery should
be performed in the least amount of time possible in order
accomplish minimal data-loss.

4.4 Resource Management
To enable automatic deployment of new applications,

dynamic reconfiguration of existing application and host
failure recovery the distribution manager needs information
about the available resources (e.g. CPU, memory, network
bandwidth) on each connected host. To enable load balanc-
ing, also information about the current resource usage is
required from each connected host. Resource information
is gathered by the dock managers and forwarded to the
distribution manager. This enables resource management on
two levels; at host-level and at system-level.

Ideally, the dock manager process is the only process
running on each host apart from mandatory OS processes.
Because of the low resource usage of OS processes it can
be assumed the dock manager has all the host’s resources at
its disposal. As future work, this could be forced by running

the dock manager in a virtual machine. The dock manager
will spawn a new thread for each dock it instantiates. At this
point resource reservations can be made for this new dock.
Docks are allowed to spawn new threads themselves. In the
current implementation, host-level resource management is
left to the operating system.

At system-level, the distribution manager has knowl-
edge about the available and used resources of each host.
Therefore, it can make educated decisions when deploying
new docks. For example, when the new analysis dock is
instantiated in the host failure recovery situation of Fig.7,
the distribution manager will opt for the unused host, rather
than a host that is already doing heavy computation.

Resource requirements for video content analysis algo-
rithms are often data-dependent [11]. This requires the
framework to respond to a sudden increase in resource re-
quirements. If a host cannot meet the resource requirements
of its docks, the distribution manager needs to redistribute
the application in a more appropriate way.

So, to make its global deployment decisions, we see that
the distribution manager needs resource information that is
as accurate and recent as possible. As stated in [12], large
applications that constantly send resource information toa
central service create an extensive network usage overhead.
This makes an implementation in which the dock managers
send resource usage updates to the distribution manager at
a high fixed rate not well scalable and therefore unsuitable
for a video-streaming framework. In [12] a solution for this
problem is proposed. This solution divides resource usage in
three usage-levels and only sends on level transitions. The
ViFramework uses a similar, but more extensive solution to
solve this problem.

For each resource (e.g. CPU usage) a new value will
only be reported if it exceeds a user-defined threshold
with respect to the last reported value and only when this
situation persists for a user-definable duration. Fig. 8 shows
an example resource graph. This solutions enables a trade-
off to be made by the end-user of the framework between
network bandwidth usage and information granularity. It is
an improvement over [12] because it provides the end-user
with more detail when needed and it prevents large data
bursts when resource usage oscillates between two usage-
levels.

5. Framework Evaluation
In order to evaluate the proposed framework, the computa-

tional overhead and the time needed for host failure recovery
were measured. Because data compression and streaming,
although configurable by the framework are not dependent
on the framework, no network usage measurements for
applications deployed on multiple hosts are carried out. Fur-
thermore, after application initialization, the only framework
related network traffic is resource usage information, which
is negligible.

Fig. 8: Left: Host CPU usage registered by the dock manager | Right:
Resource graph received from the dock manager at the distribution manager.

Table 1: Overhead Measurements
Cpu usage Min Avg Max

Standalone1 58% 60% 62%

Frameworked1 65% 67% 70%

Standalone2 84% 87% 89%

Frameworked2 95% 97% 99%

5.1 Evaluation method

An application was created that reads a video from file,
appliesobject detectionon the video and writes the resulting
video to a display. The video used has a resolution of
640x480 at 15 frames per second. For framework eval-
uation the application is divided into three docks (read,
process, write) which are all deployed on the same host.
The frameworked application and the standalone application
were both executed on the same host.

The test host contains a quadcore Intel® Core™ i7 870
processor at 2.93 Ghz with 2 GB of RAM. The operating
system used is Linux 2.6.36-26.

5.2 Overhead

Video content analysis algorithms are most often compu-
tationally intensive, making it important that the framework
overhead in terms of CPU usage is minimized. Furthermore,
because of real-time requirements, the processing delay the
framework introduces should also be minimal. To measure
the overhead the framework imposes, a standalone applica-
tion is compared to the same application in the proposed
framework but deployed on only one host. While the algo-
rithm was running, the CPU usage was measured for three
minutes. Two runs were made, the second run executing a
more demanding version of the object detection algorithm.

The results of the measurements are presented in Table 1.
Both runs indicate a framework overhead of about12%.
For most target applications this overhead is considered
acceptable, and can be improved as the current framework
implementation is still a rapid prototype.

Table 2: Failover Measurements
Metric: Value:

Measurements 20

Min. time 467 ms

Avg. time 584 ms

Max. time 830 ms

Avg. frame-loss 9

5.3 Failover automation
On host failure the framework tries to re-instantiate a

failing dock as quickly as possible in order to lose a minimal
amount of data. Because of real-time requirements, no data
is retransmitted, so the longer it takes to take over the
functionality of the failing host, the more data will be lost. In
this benchmark the three docks of the evaluation application
were deployed on two hosts. The reading and writing docks
are deployed on one host and the object detection dock is
deployed on the other. The dock performing object detec-
tion is deliberately interrupted by killing its dock manager
process. The time between this point and the point where
the second host has taken over the dock on the failed host
is measured in order to calculate data-loss. The results are
presented in Table 2 and show that fast recovery is possible
using the proposed framework. Losing slightly more that
half a second of data on average is acceptable for most
surveillance applications.

6. Related Work
In [5] the advanced component system SOFA 2.0 is pre-

sented which was created in order to overcome limitations of
formerly existing component-based systems. Due to the lack
of video streaming support and the service-oriented nature
of SOFA 2.0 this component system is considered unsuitable
for real-time video streaming applications. Nevertheless, this
work inspired some aspects of the proposed framework such
as docks being instrumented components and the dynamic
re-configuration of deployed applications.

In [13] the OpenDDS component framework is presented
which supports complex data flows and dynamic reconfigu-
ration. The drawbacks of OpenDDS are; the lack of video
streaming support, the absence of security algorithms and
problems with NAT router and firewall traversal. Another
problem is the inflexibility of the framework when designing
components for rapid prototyping, dynamic data types, for
instance, are not supported.

In [14] the GStreamer framework is presented that focuses
on audio and video streaming applications. The framework
aims at creating single machine multimedia applications
by composing existing components called plug-ins. The
frameworks lacks presence information which is a main
feature of the proposed framework and has no built-in means
that support dynamic reconfiguration.

In [8] a network substrate for desktop grid computing
namedOrbweb is presented. This work describes the effort
that is made to extend the XMPP protocol in order to meet
the substrate needs. This substrate uses XMPP for NAT and
firewall traversal and takes advantage of the available se-
curity protocols embedded in XMPP. Orbweb is considered
unsuitable because no functionality for real-time applications
is available.

In [6], Westerink proposes a flexible framework for build-
ing multi-media streaming applications. This framework
identifies the general architectural structure of streaming
applications and using this knowledge to create an easy-to-
use framework which is used for some existing applications.
The framework proposed by Westerink is targeted at creating
single machine applications from existing components, and
therefore not suitable to be used as a networked component
framework.

7. Conclusion
In this paper the ViFramework, a framework for net-

worked video streaming components targeted at surveillance
applications, is presented. This framework provides dock
component builders with flexible means to specify docks
using XML as definition language. The end-users are pro-
vided with easy-to-use tools to create complex application
architectures from the available docks. The combination
with the XMPP protocol enables the framework to deploy
an application on a WAN by using firewall and NAT-
router traversal. This enables remote monitoring, control
and notifications. Basic resource monitoring on host-level
is performed. Gathered information is communicated to a
distribution manager in a smart and configurable manner in
order to enable application wide load balancing.

A failover algorithm enhances the robustness of the frame-
worked application. Evaluation of this algorithm shows that
failover is achieved within acceptable time. Measurements
show that framework has an acceptable computation over-
head. Overall the measurements of the presented prototype
implementation show that it is efficient and suitable for video
surveillance applications.

8. Future work
Future functionality of the proposed framework will in-

clude resource usage profiling of docks on the available hosts
as is done by Korostelev et. al in [15]. This will enable the
distribution manager to predict what resources a certain dock
will use on a host. Using this information the distribution
manager can deploy applications more efficiently. The dock
manager will also perform resource allocation instead of the
operating system which is responsible for this in the current
implementation.

The current implementation only supports end-to-end con-
nections. More interface types are to be developed to enable

other communication constructs such as publish-subscribe
and multi-cast.

For now it is assumed that all docks are pre-compiled on
the hosts used by the framework. ADock Repositorywill be
developed that allows run-time uploading of docks to hosts.
This facilitates adding “blank” hosts to the system on which,
on demand, appropriate docks can be installed.

Optimizations to the framework can be made in order to
reduce CPU usage overhead.

Acknowledgment
The research reported in this paper has been done in the

context of the first author’s master’s project. The project has
been carried out at ViNotion B.V. and the support received
from the company and its staff is gratefully acknowledged.
Furthermore, we thank Johan Lukkien and Egbert Jaspers
for their comments on an earlier version of this paper.

References
[1] G. T. Heineman and W. T. Councill,Component-Based Software Engi-

neering: Putting the Pieces Together. Addison-Wesley Professional,
June 2001.

[2] CANTATA, “Content aware networked systems towards advanced
and tailored assistance,” URL, 2011, http://www.hitech-projects.com/
euprojects/cantata/.

[3] ViCoMo, “Visual context modeling,” URL, 2011, http://www.vicomo.
org/.

[4] B. Kersten, “Instrumentation of networked video streaming compo-
nents (to appear),” Master’s thesis, Eindhoven Universityof Technol-
ogy, April 2011.

[5] T. Bures, P. Hnetynka, and F. Plasil, “Sofa 2.0: Balancing advanced
features in a hierarchical component model,”Software Engineering
Research, Management and Applications, ACIS International Confer-
ence on, vol. 0, pp. 40–48, 2006.

[6] P. Westerink and F. Schaffa, “A high level flexible framework for
building multi-platform multi-media streaming applications,” in Wire-
less and Optical Communications Conference (WOCC), 2010 19th
Annual, May 2010, pp. 1 –5.

[7] XMPP, URL, 2011, http://www.xmpp.org/.
[8] S. Schulz, W. Blochinger, and M. Poths, “Orbweb - a network

substrate for peer-to-peer desktop grid computing based onopen
standards,”J. Grid Comput., vol. 8, no. 1, pp. 77–107, 2010.

[9] “Socks protocol version 5,” URL, 2011, http://tools.ietf.org/html/
rfc1928.

[10] M. Shaw and D. Garlan,Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, Apr. 1996.

[11] I. David, B. Orlic, R. H. Mak, and J. J. Lukkien, “Towardsresource-
aware runtime reconfigurable component-based systems,”Services,
IEEE Congress on, vol. 0, pp. 465–466, 2010.

[12] L. Rizvanovic and G. Fohler, “The matrix - a framework for
real-time resource management for video streaming in networks
of heterogenous devices,” inThe International Conference on
Consumer Electronics 2007, January 2007. [Online]. Available:
http://www.mrtc.mdh.se/index.php?choice=publications&id=1164

[13] OpenDDS, URL, 2010, http://www.opendds.org/.
[14] GStreamer, URL, 2011, http://gstreamer.freedesktop.org/.
[15] A. Korostelev, J. Lukkien, J. Nesvadba, and Y. Qian, “Qos

management in distributed service oriented systems,” inProceedings
of the 25th conference on Proceedings of the 25th IASTED
International Multi-Conference: parallel and distributed computing
and networks, ser. PDCN’07. Anaheim, CA, USA: ACTA Press,
2007, pp. 345–352. [Online]. Available: http://portal.acm.org/citation.
cfm?id=1295581.1295637

