
Relentless Computing: Enabling fault-tolerant, numerically
intensive computation in distributed environments

Lucas A. Wilson and John A. Lockman III
Texas Advanced Computing Center, The University of Texas at Austin, Austin, Texas, U.S.A.

Abstract— This paper suggests a novel computational
paradigm for solving numerically intensive problems on a
distributed infrastructure. We detail the basic functionality
of this new paradigm, its ability to recover from host loss
without requiring a complete restart of the code, and how it
could allow for many heterogeneous participants to solve
a single, large-scale computational problem. We provide
results from a small demonstration run as well as provide
avenues for future research.

Keywords: Volunteer Computing, Distributed Computing, Fault
Tolerance, Distributed Hash Tables

1. Introduction
Computer-based simulation and modeling is becoming

critical for driving scientific breakthrough and discovery.
As the sensitivity and scale of simulations increase, the
computational requirements and time-to-solution also rises.
Unfortunately modern hardware – although much improved
over technologies of several years ago – does not provide
researchers with a stable execution platform for simulations
requiring weeks or months of computation to complete,
and is extremely expensive to deploy in large-scale, tightly-
coupled environments. As a result, computer-based simula-
tion for scientific discovery has remained limited to those
researchers who have access to high-performance systems
at Universities and National Laboratories.

Fully-distributed volunteer computing models, such as
the Berkeley Open Infrastructure for Network Computing
(BOINC)[1], have provided a means of performing massive-
scale computation on a limited subset of problems involv-
ing limited-to-no data sharing among participants. While
BOINC and similar volunteer computing models have suc-
cessfully computed millions of hours of user code, the types
of problems that can be executed in such an environment are
limited and cannot fully enable new scientific breakthroughs.

Distributed Hash Table (DHT) implementations, such as
Chord[2], Pastry[3], Kademlia[4], and others[5][6][7][8],
provide mechanisms for storing key/value pairs in a de-
centralized fashion, preventing the failure of any single
participant from killing the entire hash table. DHTs are com-
monly used in distributed file systems[9][10], peer-to-peer
file sharing systems[11], and domain name services[12][13].

Volunteer computing models can harness the untapped
computing potential of millions of part-time citizen scien-

tists. We propose a system that would couple this potential
with the innately fault-tolerant nature of DHTs, allowing
for the execution of programs for extremely long periods
of time, with built-in failure recovery in the event any
set of participants was unable or unwilling to continue
contributing. Additionally, proper data partitioning would
allow for problems requiring more onerous data sharing
among participants to be executed, increasing the potential
for more scientific discoveries.

This work describes a new computational paradigm: Re-
lentless computing. With Relentless Computing, traditionally
tightly-coupled, numerically-intensive parallel computations
can be performed in a decentralized, distributed environment
with high fault-tolerance. So long as any single participant
and the initial data are present to the system, computation
will continue. We will provide a basic description of Relent-
less Computing, how code is generated and managed, and
how global shared memory is implemented through DHTs.
We will also provide results from a test case solving a partial
differential equation (PDE) using finite differences, as well
as outline avenues for future research.

2. Related Work
While existing distributed computing systems, such as

BOINC[1], have been extremely useful for executing com-
pletely data-parallel computations, such as Monte Carlo
and parametric sweeps, they are ill-suited for handling
single, large-scale computations that require data sharing
among participants. On the other side of the spectrum,
Adaptive-MPI (AMPI)[14], which is based on the Charm++
framework[15], allows for the creation of medium-grained
virtualized processes which can be overloaded on a single
physical processor in order to overlap computation and com-
munication. AMPI does provide many facilities similar to
Relentless Computing, including the ability to shrink/expand
the number of computational participants and checkpointing
of virtual processors to disk. However, AMPI is not designed
to handle code written in different languages, to recover from
near-catastrophic node failure without the use of a restart file,
or to allow very fine-grained parallelism that enables con-
tributions from low-power participants (e.g. ”smart” phones,
tablets, netbooks, portable computers) without these devices
adversely effecting the overall performance of the system.

GRID-GUM[16] implements Glasgow Parallel
Haskell[17] on top of the Globus Toolkit[18], making



use of MPICH-G2[19] for handling the underlying process
communications. While this method helps to abstract the
parallel computation away from the programmer, the use
of MPICH-G2 makes participant shrink/expand nearly
impossible, and does not allow for fault-tolerance in the
event of near-catastrophic node failure.

The Partitioned Global Address Space (PGAS) model,
on top of which languages such as X10[20], Chapel[21]
UPC[22] and others[23][24][25] are built, provides a method
of abstracting a virtual shared memory platform on top
of distributed memory architectures. Currently, PGAS lan-
guages running on distributed memory clusters rely on
existing message-passing methods, such as MPI[26], to han-
dle the cross-node communication that synchronizes virtual
global memory and migrates process threads. Because of
this, the fault-tolerance and dynamic capabilities of PGAS
languages are limited to the capabilities of the underlying
communications framework, of which little currently exists.

Global Arrays[27] provide yet another way of abstracting
shared memory on top of a distributed memory archi-
tecture. However, memory synchronization is once again
dependent on an existing communication framework, either
MPI or ARMCI[28], which provide little-to-no capability to
shrink/expand the participant pool dynamically at runtime,
seamlessly recover from near-catastrophic host failure, or
efficiently function over high-latency, low-bandwidth net-
works.

TStreams (also called Concurrent Collections (CnC)[29])
provide a model of describing computation in terms of serial
execution components and data-flow specifications[30], in
much the same way that Relentless Computing does. While
TStreams provides facilities for creating static checkpoints,
we are not aware of any particular implementation of this
model that provides fault tolerance that enables continuing
execution in the face of hardware failures, or that is designed
with high-latency, low-bandwidth interconnects in mind.
TStreams is also not specifically designed to incorporate
low power consumer devices into the participant pool, or to
enable execution on fickle participants that may only allow
for the use of a fraction of total cycles to be consumed, for
limited amounts of time.

The Linda coordination language allows for the separation
of coordinate and computation by placing information into
an external tuple-space data store, allowing computation
from multiple languages to interact[31]. Fault tolerance
mechanisms have also been proposed for Linda[32]. Much of
the published work found by the authors on Linda is over a
decade old, and many of the principles in Linda are incorpo-
rated into Relentless Computing. Relentless computing has
been designed from the start to work on highly distributed,
Internet-connected devices of varying computation capability
with the ability to shrink/expand the participant pool at will,
as well as recover from near-catastrophic failures.

3. The Relentless Computing Model
The Relentless Computing model seeks to leverage the

untapped computing potential of various hardware resources,
all connected to the Internet by some mechanism (hardwire,
wireless, cellular). The use of high-latency, low-bandwidth
network connections requires that computation remain lim-
ited to highly partitioned, small pieces of data to allow for
reasonable read/write from/to the DHT. Programs are written
as codelets (self-contained pieces of code) chained together
by data dependency. When a hardware resource volunteers to
participate in the solving of a particular problem, the solution
is sought in a bottom-up fashion, with the participant seeking
to complete the result first. If a participant is unable to build
the result, it steps up the dependency chain until a data part
that can successfully be computed is found. Code written
for this environment are built in two pieces: (1) A set of
multi-language codelets, which can interact with each other
through global shared memory implemented in the DHT,
and (2) a descriptive framework that determines the order in
which these codelets are to run, and the data dependencies
that chain them together.

3.1 Codelets
Each codelet is a self-contained piece of code that per-

forms a set of sequential load/compute/store operations.
Because there is no direct interaction between codelets (i.e.
each codelet is independent of each other, with interaction
performed through data sharing), codelets can be constructed
in different languages. This allows for development teams
to be able to work in the languages that members are most
comfortable with, without worrying about the issues involved
in coupling different languages together in traditional soft-
ware development. Additionally, reducing the codelet size
and it’s associated data dependencies allows for out of order
execution of codelets to occur, provided the input data is
available.

Codelets can be precompiled in a compilable language,
so long as they are capable of executing on the partic-
ipant hardware. Scripting languages can also be utilized,
assuming a mechanism exists to execute the script code
from the compute daemon. Runtime environments for some
scripting languages (e.g. JavaScript via SpiderMonkey[33],
Python[34], Lua[35], LISP via ECL[36], etc.) could be
embedded directly into the compute daemon to allow the
daemon to compute results directly.

3.2 Memory Management
Relentless computing environments (RCEs) create a

global shared memory space from which codelets can read
data and to which codelets can write data. This global shared
memory space is implemented as key/value tuples to the
DHT, with the key replacing the variable name/address,
and the value representing the stored data. This is simi-
lar to the tuple-space data storage methods employed in



the coordination language Linda[31]. In order to eliminate
possible side-effects associated with uncoordinated writes to
memory each codelet must be deterministic, with one set of
inputs guaranteed to produce the same output. This allows
for the possibility of multiple resources executing the same
codelet instance (perhaps because both attempted to solve
it simultaneously, or knowledge that a particular data point
had already been computed was temporarily lost). In order
to reduce memory bloat, entries in the DHT will be given
a lifetime (e.g. 24 or 48 hours). During the lifetime of the
data, codelets can use that information as input for other
computation. After that time the data will be deleted, and
any participant requiring that particular key/value pair will
be required to recompute it.

3.3 Problem Description Framework
In order to chain together multiple codelets and have them

interact with the DHT-implemented global shared memory
space, a problem description framework must exist that
allows Relentless Computing daemons to determine which
codelets to run and with which data to run them. This
framework must provide the ability to easily define inputs
and outputs, as well as specify the particular codelet to
execute for each input/output set. Additionally, a result
component must be specified so that participants know which
data elements are considered final, providing a starting point
from which execution can begin. One choice for this is to
create an extensible framework language with the Extensible
Markup Language (XML)[37]. Not only does XML provide
the extensibility to add new features and constructs easily,
it is well accepted and understood by the community and
is easily compressible, allowing for faster transmission be-
tween compute daemons.

A potential problem description for solving the 1-
dimensional heat equation using the Forward in Time, Cen-
tral in Space (FTCS) method may look like Figure 1. In
this case, we have assumed that the compute daemon can
natively interpret JavaScript code and that the boundary
values have already been inserted into the system. Each
time the codelet is executed, it requires three inputs (denoted
by the depends-on tags): the (l)eft, (m)iddle, and (r)ight
values from the previous timestep and outputs a single
value u[x][t]. Function parameters are linked to values in
the depends-on tags in order from top to bottom, so
parameter l is associated with u[x−1][t−1], m is associated
with u[x][t− 1], and r is associated with u[x+ 1][t− 1].

When a user submits a job containing a problem de-
scription and codelets to an RCE, that problem description
will then spread across the network to various participants
using a gossip protocol [38]. Once other participants are
made aware of the new problem, they can begin solving
it as well. Each participant – responsible for both starting
codelets as well as participating in the DHT – has no advance
knowledge about the current state of the problem. In order to

<problem name=heat_transfer>
<codelet name=’finite_diff’>
<result/>
<source lang=’javascript’>
<![CDATA[

function finDiff(l, m, r) {
return m + 0.25*(l - 2*m + r);

}
]]>

<parameter name=’x’ range=’0..99’/>
<parameter name=’t’ range=’1..99’/>
<depends-on name=’u[x-1][t-1]’/>
<depends-on name=’u[x][t-1]’/>
<depends-on name=’u[x+1][t-1]’/>
<output name=’u[x][t]’/>

</codelet>
</problem>

Fig. 1: Potential Problem Description

Fig. 2: Process Diagram for RCE daemon

determine which codelet to run while avoiding duplication
of effort, the computing daemon parses the work-flow in
a bottom-up fashion, beginning with the result codelet and
working its way back up the dependency chain until a codelet
that is capable of being executed (but that has yet to be
executed) is discovered. Once a codelet has been executed
and the resulting data stored in the DHT, the compute
daemon begins again with the result codelet, working back
up the dependency chain in order to take advantage of other
more recent dependencies that may have been computed in
parallel. The process diagram of an RCE daemon is shown
in Figure 2.



(a) Participants

(b) Distributed Hash Table

Fig. 3: Active Compute Collective

3.4 Managing Node Failure
In any large-scale distributed environment, node

failure is a constant risk that cannot be ignored. In
most high-performance machines and with typical
multi-thread/process computing paradigms (Pthreads,
OpenMP[39], MPI[26], Parallel Virtual Machine (PVM)[40],
PGAS languages[20][21][22][23][24][25]), the loss of a
host or process results in the simultaneous aborting of all
processes associated with a problem. This error handling
method may be sufficient in environments with relatively
high uptime guarantees. However, distributed volunteer
computing environments provide no such guarantee. As a
result, more effective fault-tolerance mechanisms must be
employed.

DHTs are by their nature relatively fault-tolerant. So long
as any single host remains, part of the DHT still exists. The
loss of any single participant does not destroy the entire
table. The compute daemons of the proposed system would
also be the DHT participants, each locally storing part of the
hash table in addition to volunteering computational cycles.

Figure 3 shows an example of a volunteer collective
working on a particular problem, for example a finite dif-
ference problem with a 3-point central difference in the

(a) Participants

(b) Distributed Hash Table

Fig. 4: Compute Collective After Node Failures

space dimension (vertical axis) and a forward difference
in the time dimension (horizontal axis). In this example,
many participants (Figure 3(a)) are working on various
parts of the problem (represented by the logical matrix in
Figure 3(b)). The leftmost column values are the initial
data, the densely striped values are already computed pieces,
and the sparsely striped values are those pieces that can
currently be computed with the data that already exists. The
boundary values are not shown in this illustration, but can
be considered initial data if the boundaries are constant.

If, before the next step can be computed, several of the
participants fall offline (Figure 4(a)), some of the data stored
in the DHT would be lost (Figure 4(b), gray values). In
this case, participants would be unable to compute all of
the values that were previously possible due to loss of input
data. Instead, they would continue on as though those values
never existed, in some cases needing to return to the input
data in order to compute the necessary intermediate values.

4. Experiment Setup
In order to test the viability of the proposed paradigm

in solving a traditional numerically intensive problem, a
prototype RCE daemon was written in Python using the En-
tangled [41] library to perform the base DHT operations. The



Table 1: Breakdown of participant contributions
Participant Contributions Percentage

0 2841 27.3
1 2629 25.3
2 2462 23.7
3 2468 23.7

Total 10400 100

prototype daemon was written to solve the one-dimensional
heat equation using the FTCS method:

ut+1
x = ut

x + r(ut
x−1 − 2ut

x + ut
x+1, r =

α∆t
∆x2

In this case, each element at time t + 1 is computed
by looking at the corresponding values of itself and its
neighbors at time t, meaning each element computed needs
three inputs from the previous time-step.

For this test, a constant heat source was placed in the
leading boundary (x = −1), while the trailing boundary was
set to 0. The initial (t = 0) temperature of the system is set
to 0. Experiments were run for a 100x100 case (100 spatial
units for 100 time-steps). For this experiment, 4 participants
(2 nodes with 2 participants each) were used. In order to
test the ability of the system to handle new participants
joining mid-computation, participant 0 was initially alone,
with participant 1 added next, followed by participants 2
and 3. A communication error (host disconnected from
then reconnected to the Internet) was introduced several
minutes into the simulation to test the RCE’s failure recovery
capability.

5. Results
Data collected from a 4 participant run were graphed

based on times at which data was stored in the DHT, with
both solution values and contributing participant recorded.
In Figure 5, the left panels show the solution values to the
heat problem, while the right panels show which participant
contributed that particular element to the solution. As can
be seen, the overall problem was solved in non-linear order,
with some sections of the solution growing faster than others.
Additionally, the right panels show that work was well
distributed, with participant 0 naturally performing more op-
erations than the others, and participants 2 and 3 nearly equal
(they joined the computation at the same time) (see Table
1). Table 1 also shows total contributions of 10,400, while
the total number of cells in the 100x100 system is 10,000.
This means that 400 elements, or 4%, were recomputed for
various reasons including simultaneous attempts to calculate
a specific element, and the test communication failure that
prevented participants from querying the full DHT.

Of the 400 elements that were recomputed, 356 were
recomputed only once, while 22 were recomputed twice.
Times between recomputations varied widely, with a max-
imum time between first element computation and final

(a) 25 percent completed

(b) 50 percent completed

(c) 75 percent completed

(d) 100 percent completed

Fig. 5: RCE computing solution to 1-D heat equation

recomputation of 683.62 seconds (see Table 2 and Figure
6). The average recomputation time was 104 seconds, with
a standard deviation of 119 seconds.

6. Conclusions
We have proposed a novel computational paradigm called

Relentless Computing. This new paradigm allows users to
develop codes that solve numerically intensive problems
on more disparate and distributed resources, as well as
provide the ability for dynamic expanding and shrinking of
the participant pool. This model of computation provides
fault tolerance, in that the code will continue to execute



Table 2: Time Between Recomputations
Metric Time (secs.)

Max 683.62
Average 104.78
Std. Dev. 119.12
Median 56.82

Fig. 6: Times Between Initial and Final Recomputation for
Each Element

so long as the initial data and a single participant remain
online. Early experimental results have shown that this
paradigm provides a relatively simple way for computing
numerically intensive problems in a distributed, decentral-
ized, dynamic, and fault-tolerant fashion without requiring
excessive work from the programmer. Future work could
include development of a standardized problem description
framework language, porting of traditional scientific codes
to this paradigm, further optimization of the RCE daemon to
be more computationally efficient, and inclusion of multiple
language runtime environments into the daemon to allow
for codelets written in script and interpreted languages to be
executed directly by said daemon.

References
[1] D. P. Anderson, “BOINC: A System for Public-Resource Computing

and Storage,” in Proceedings of the 5th IEEE/ACM International
Workshop on Grid Computing, ser. GRID ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 4–10. [Online]. Available:
http://dx.doi.org/10.1109/GRID.2004.14

[2] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan, “Chord: A scalable peer-to-peer lookup
service for internet applications,” in Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols
for computer communications, ser. SIGCOMM ’01. New York,
NY, USA: ACM, 2001, pp. 149–160. [Online]. Available:
http://doi.acm.org/10.1145/383059.383071

[3] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems,” in MID-
DLEWARE 2001, ser. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2001, vol. 2218/2001, pp. 329–350.

[4] P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-Peer
Information System Based on the XOR Metric,” in Revised Papers
from the First International Workshop on Peer-to-Peer Systems, ser.
IPTPS ’01. London, UK: Springer-Verlag, 2002, pp. 53–65. [Online].
Available: http://portal.acm.org/citation.cfm?id=646334.687801

[5] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,
M. Punceva, and R. Schmidt, “P-Grid: a self-organizing structured
P2P system,” SIGMOD Rec., vol. 32, pp. 29–33, September 2003.

[6] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatow-
icz, “Tapestry: a resilient global-scale overlay for service deployment,”
Selected Areas in Communications, IEEE Journal on, vol. 22, no. 1,
pp. 41 – 53, January 2004.

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” SIGCOMM Comput. Commun.
Rev., vol. 31, pp. 161–172, August 2001.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” SIGOPS Oper. Syst. Rev.,
vol. 41, pp. 205–220, October 2007.

[9] P. Druschel and A. Rowstron, “PAST: A Large-Scale, Persistent Peer-
to-Peer Storage Utility,” Hot Topics in Operating Systems, Workshop
on, vol. 0, p. 0075, 2001.

[10] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-
area cooperative storage with CFS,” in Proceedings of the eighteenth
ACM symposium on Operating systems principles, ser. SOSP ’01.
New York, NY, USA: ACM, 2001, pp. 202–215.

[11] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The Bittorrent
P2P File-Sharing System: Measurements and Analysis,” in Peer-to-
Peer Systems IV, ser. Lecture Notes in Computer Science, M. Castro
and R. van Renesse, Eds. Springer Berlin / Heidelberg, 2005, vol.
3640, pp. 205–216.

[12] V. Ramasubramanian and E. G. Sirer, “The design and implementation
of a next generation name service for the internet,” in Proceedings of
the 2004 conference on Applications, technologies, architectures, and
protocols for computer communications, ser. SIGCOMM ’04. New
York, NY, USA: ACM, 2004, pp. 331–342. [Online]. Available:
http://doi.acm.org/10.1145/1015467.1015504

[13] Y. Doi, “DNS Meets DHT: Treating Massive ID Resolution Using
DNS Over DHT,” Applications and the Internet, IEEE/IPSJ Interna-
tional Symposium on, vol. 0, pp. 9–15, 2005.

[14] C. Huang, O. Lawlor, and L. V. KalÃl’, “Adaptive MPI,” in Languages
and Compilers for Parallel Computing, ser. Lecture Notes in Com-
puter Science, L. Rauchwerger, Ed. Springer Berlin / Heidelberg,
2004, vol. 2958, pp. 306–322.

[15] L. V. Kale and S. Krishnan, “CHARM++: a portable concurrent object
oriented system based on C++,” in Proceedings of the eighth annual
conference on Object-oriented programming systems, languages, and
applications, ser. OOPSLA ’93. New York, NY, USA: ACM, 1993,
pp. 91–108.

[16] G. M. A. D. Al Zain, P.W. Trinder and H.-W. Loidl, “Managing
heterogeneity in a grid parallel haskell,” Scalable Computing: Practice
and Experience, vol. 7, pp. 9–25, September 2006.

[17] J. G. Hall, C. Baker-Finch, P. Trinder, and D. J. King, “Towards an
operational semantics for a parallel non-strict functional language,” in
Proceedings of the International Workshop on the Implementation of
Functional Languages (IFL’98), September 1998. [Online]. Available:
http://mcs.open.ac.uk/djk26/apset/transitionsystem.ps

[18] I. Foster and C. Kesselman, “Globus: A metacomputing infrastruc-
ture toolkit,” International Jounral of High Performance Computing
Applications, vol. 11, pp. 115–128, 1997.

[19] N. T. Karonis, B. Toonen, and I. Foster, “MPICH-G2: A Grid-
enabled implementation of the Message Passing Interface,” Journal
of Parallel and Distributed Computing, vol. 63, no. 5, pp. 551
– 563, 2003, special Issue on Computational Grids. [Online].
Available: http://www.sciencedirect.com/science/article/B6WKJ-
48BKT9V-1/2/6462834e0f7d0175d57043bbf3df8a80

[20] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an object-oriented
approach to non-uniform cluster computing,” in Proceedings of the
20th annual ACM SIGPLAN conference on Object-oriented program-



ming, systems, languages, and applications, ser. OOPSLA ’05. New
York, NY, USA: ACM, 2005, pp. 519–538.

[21] B. Chamberlain, D. Callahan, and H. Zima, “Parallel Programmability
and the Chapel Language,” Int. J. High Perform. Comput. Appl.,
vol. 21, pp. 291–312, August 2007. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1286120.1286123

[22] T. El-Ghazawi and L. Smith, “UPC: unified parallel C,” in Proceedings
of the 2006 ACM/IEEE conference on Supercomputing, ser. SC ’06.
New York, NY, USA: ACM, 2006.

[23] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krish-
namurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken,
“Titanium: a high-performance java dialect,” Concurrency: Practice
and Experience, vol. 10, no. 11-13, pp. 825–836, 1998.

[24] E. Allen, D. Chase, J. Hallett, V. Luchango, J.-W.
Maessen, S. Ryu, G. S. Jr., and S. Tobin-Hochstadt, “The
Fortress Language Specification,” 2008. [Online]. Available:
http://labs.oracle.com/projects/plrg/Publications/fortress.1.0.pdf

[25] R. W. Numrich and J. Reid, “Co-array Fortran for parallel program-
ming,” SIGPLAN Fortran Forum, vol. 17, pp. 1–31, August 1998.

[26] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: portable parallel
programming with the message-passing interface. Cambridge, MA,
USA: MIT Press, 1994.

[27] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global arrays: a
portable "shared-memory" programming model for distributed mem-
ory computers,” in Proceedings of the 1994 ACM/IEEE conference
on Supercomputing, ser. Supercomputing ’94. New York, NY, USA:
ACM, 1994, pp. 340–349.

[28] J. Nieplocha and B. Carpenter, “ARMCI: A Portable Remote Memory
Copy Libray for Ditributed Array Libraries and Compiler Run-
Time Systems,” in Proceedings of the 11 IPPS/SPDP’99 Workshops
Held in Conjunction with the 13th International Parallel Processing
Symposium and 10th Symposium on Parallel and Distributed Process-
ing. London, UK: Springer-Verlag, 1999, pp. 533–546. [Online].
Available: http://portal.acm.org/citation.cfm?id=645611.662053

[29] K. Knobe, “Ease of use with concurrent collections
(CnC),” in Proceedings of the First USENIX conference on Hot
topics in parallelism, ser. HotPar’09. Berkeley, CA, USA:

USENIX Association, 2009, pp. 17–17. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1855591.1855608

[30] K. Knobe and C. D. Offner, “TStreams: How to Write a Parallel
Program, Tech. Rep. HPL-2004-193,2004. [Online]. Available:
http://www.hpl.hp.com/techreports/2004/HPL-2004-193.pdf

[31] N. Carriero and D. Gelernter, “Linda in context,” Commun.
ACM, vol. 32, pp. 444–458, April 1989. [Online]. Available:
http://doi.acm.org/10.1145/63334.63337

[32] D. E. Bakken and R. D. Schlichting, “Supporting fault-tolerant
parallel programming in linda,” IEEE Trans. Parallel Distrib.
Syst., vol. 6, pp. 287–302, March 1995. [Online]. Available:
http://portal.acm.org/citation.cfm?id=203121.203132

[33] Mozilla.org, “SpikerMonkey (JavaScript-C) Engine,”
http://www.mozilla.org/js/spidermonkey/. [Online].
Available: http://www.mozilla.org/js/spidermonkey/

[34] Python.org, “Python Programming Language - Official Website,”
http://python.org/. [Online]. Available: http://python.org/

[35] Lua.org, “The Programming Language Lua,”
http://www.lua.org/. [Online]. Available: http://www.lua.org/

[36] ECL, “ECL - A Common-Lisp Implementation,”
http://ecls.sourceforge.net/. [Online]. Available:
http://ecls.sourceforge.net/

[37] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau,
“Extensible markup language (XML) 1.0,” W3C recommendation,
vol. 6, 2000.

[38] B. Pittel, “On spreading a rumor,” SIAM J. Appl. Math.,
vol. 47, pp. 213–223, March 1987. [Online]. Available:
http://portal.acm.org/citation.cfm?id=37387.37400

[39] L. Dagum and R. Menon, “OpenMP: an industry standard API for
shared-memory programming,” Computational Science Engineering,
IEEE, vol. 5, no. 1, pp. 46 –55, Jan.–Mar. 1998.

[40] V. S. Sunderam, “PVM: A framework for parallel distributed com-
puting,” Concurrency: Practice and Experience, vol. 2, no. 4, pp.
315–339, 1990.

[41] “Entangled: DHT and tuple space based on Kademlia.” [Online].
Available: http://entangled.sourceforge.net/


