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Abstract— The growth in the number of components that
compose parallel computers increases their fault frequency.
Currently, in such systems faults are no longer a rare event
but a common problem, thus some sort of fault tolerance
should be provided. In general, fault tolerance protocols rely
on checkpoints. A common question surrounding checkpoint-
ing is the definition of the checkpoint interval. Checkpoint
interval models define variables which depends on applica-
tion characteristics, e.g. the time need to take a checkpoint.
The use of average values and/or statistical data to define
these variables reduces the model’s accuracy. In this paper
we propose a methodology to define in run-time the variables
value needed to calculate the checkpoint interval. While
using uncoordinated checkpoint this interval can be defined
individually for each process of the parallel application. The
variables definition relies on the measuring of the time spent
on fault tolerance tasks in run-time. Experimental evaluation
shows that the use of our methodology reduces in more than
3% the overhead introduced by fault tolerance while tested
applications are running in a faulty environment.

Keywords: MPI; fault tolerance configuration; checkpoint inter-
val; uncoordinated checkpoint.

1. Introduction
The growth in the number of components that compose

parallel computers increases is notorious for increasing their
fault frequency [1]. Currently, in such systems faults are no
longer rare events but a common problem. Some systems
such as the BlueGene/L the Mean Time Between Failures
(MTBF) is counted in days. However, the commodity clus-
ters exhibit a usual MTBF of tens of hours [2]. The natural
answer for this problem is to provide some sort of fault
tolerance for applications running on these systems. This
permits applications to finish successfully despite faults.

To write applications with native support for faults seems
to be a good option. There are many techniques that help
developers to codify fault tolerant parallel applications [3].
Many of these techniques are suitable to be used in con-
junction with MPI: a widely used message passing library

This research has been supported by the MEC-MICINN Spain under
contract TIN2007-64974.
∗Contact author to whom correspondence should be addressed.
†This paper is addressed to the PDPTA conference.

for parallel programming. However, this approach requires
the rewriting of legacy applications. Another solution is to
provide fault tolerance at the communication library level
and on the parallel environment. The combination of a
resilient parallel environment and a fault recovery technique
had been useful in MPI implementations like MPICH [4]
and Open MPI [5][6].

To save the application state and to resume its execu-
tion in case of faults is commonly known as rollback-
recovery. There are different rollback-recovery protocols
that can be useful to assure application completion [7][8].
These protocols ultimately rely on checkpoints as the main
state-saving technique or to save storage space while using
combined with message logging i.e. reducing the space
needed to store message log. The matter in question which
surrounds checkpointing is the definition of the frequency
in which checkpoints should be taken, better know as the
checkpoint interval. If the checkpoint interval is smaller o
bigger than the optimal the overhead added by the fault tol-
erance increases [9]. Because checkpointing is a widely used
technique, there have been studies regarding the definition
of its interval since the 70’s [10] until today [11].

However, these studies are far from being the ultimate
solution to the checkpoint interval. The major root cause of
this resides in the definition of the variables value used by
these models. The use of average values as input parameters
for models reduces their accuracy. During the execution,
some application characteristics may change over the time.
Thus, models will experience a loss of accuracy because the
checkpoint interval does not change to reflect such changes.
Models variables depend on the application characteristics
such as the memory footprint and the communication pat-
tern, besides the system load such as the storage and the
communication network.

In this paper we propose a methodology to define in run-
time the checkpoint interval for parallel applications. The dy-
namic definition relies on the measuring of the time spent on
fault tolerance tasks to obtain values for the checkpoint in-
terval model variables. It turns the checkpoint interval model
versatile enough to accommodate changes in the application
characteristics throughout its execution.Experimental evalua-
tion shows that the use of our methodology reduces in more
than 3% the overhead introduced by fault tolerance while
tested applications are running in a faulty environment.



The content of this paper is organised as follows. The
related work is introduced in section 2. In section 3 a
description of the model used and some improvements
made on it is presented. Results are shown in section 4.
Conclusions are stated in section 5 besides future work.

2. Related Work
In the last years many fault tolerance MPI implementa-

tions has been designed. In general, those implementations
rely on a rollback-recovery protocol. Such protocols are
based on checkpointing, message logging, or both combined
[7]. The era in which parallel applications are unable to finish
due to faults in the parallel machine has gone.

However, due to the overhead introduced by fault toler-
ance tasks, especially by the recovery phase, researchers start
to work on adaptive fault tolerance [12][13][14]. Adaptive
fault tolerance requires information such as status and error
reports about the machine in which applications are running.
Indeed, a framework has been designed [15] to provide
such information to fault tolerance libraries. This permits the
creation of runtime strategies to dynamically reconfigure the
parallel environment to avoid application being affected by
faults [16].

Furthermore, there is a lack of studies regarding the
configuration of the fault tolerant strategy according to spe-
cific applications characteristics. Working on this direction,
Chen and Ren have published a study about the impact of
the checkpoint interval on soft real-time applications [14].
Moreover, recently Jones et al. have published a work about
the impact of a misconfigured checkpoint interval on the
application efficient [9]. Despite of this, there are too few
studies about the dynamic definition of the fault tolerance
configuration according to specific application requirements.

3. The Methodology to Define the Check-
point Interval in Run-Time

Our propose to define the checkpoint interval in run-
time rests on two foundations: first on a checkpoint interval
model and second on the measurement of the time needed to
perform fault tolerant tasks. The second provides the values
for the variables used by the first.

To help familiarise the reader with the checkpoint interval
model used in this paper, the following list provides useful
definitions:
α as the mean time to interrupt (MTTI) for a given

system, which is the inverse of the fault probability.
σ as the checkpoint interval used to run the applica-

tion.
tc as the time spent on a checkpoint operation includ-

ing the storage time.
tl as the time needed to load a checkpoint from

storage, not the rework time.

∆lp as the time added to message delivery due to the
logging procedure.

∆lr as the time spent on processing the message log
after a fault.

φ as the factor which represents the inter-process
dependency [17].

To define the value of these variables, we propose a
monitoring mechanism of the fault tolerant tasks performed
during application execution. The diagram shown in figure
1 depicts such a mechanism.

The time needed to perform a checkpoint operation (tc) is
measured by the timer depicted in events 1 and 2 of the di-
agram. The inter-process dependency factor is calculated by
analysing sources and destinations of messages exchanged
with other processes and is depicted in the diagram by event
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Fig. 1: Diagram of the methodology used to define model
variables values in run-time.



4. The message logging overhead depends on the logging
protocol used [7].

In this paper we will analyse the overhead introduced by a
pessimistic receiver-based message logging. The time added
to message delivery due to the logging procedure (∆lp) is
measured by the timer depicted in events 3 and 4. When
the message logging operation is performed on the receiver
process, as shown in figure 2, in case of faults, only the faulty
process is involved in recovery. Since messages do not need
to be replayed, the time needed to process the message log
(∆lr) tends to be unappreciable. Thus, the value of the ∆lr

variable can be considered as zero [19].
The time needed to load a checkpoint (tl) cannot be mea-

sured using our methodology if no fault occurs. However,
as a first approximation we consider this time equal to the
time needed to perform a checkpoint. It does not reduces the
checkpoint interval model accuracy because variables related
to the recovery phase, with the exception of the rework time,
tend to be inappreciable [10].

After all variables values needed by the checkpoint inter-
val model had been already defined in run-time it is possible
to use the following checkpoint interval model to calculate
the checkpoint interval.

For a system with a known MTTI, the following
equation[1] estimates the wall-clock time Test required to run
an application (which originally takes Tp time to conclude)
in a faulty environment with fault tolerance:

Test = Tp

[
1 +

φσ2 + σ(2φtl + φtc + 2φ∆lr − tc + 2∆lp)

α(2σ + 2tc)

+
2tc(φtl + φ∆lr + α− tl − ∆lr + ∆lp)

α(2σ + 2tc)

]
(1)

1The definition of the checkpoint interval model used in this paper
can be found in http://caos.uab.es/˜lfialho/ic/parallel_
model.pdf.
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Fig. 2: Overhead introduced by a pessimistic receiver-based
message logging protocol during a fault-free execution (∆lp)
and during the recovery phase (∆lr).

In the equation above, the fault detection latency has
been omitted. This variable can be safely omitted because
it depends on the fault detection mechanism implemented
by the fault tolerance architecture. If we suppose the use of
a heartbeat/watchdog system, then the higher the heartbeat
frequency, the smaller the detection time. Moreover, the
heartbeat communication does not impose a considerable
overhead on the system. In addition, there is always the pos-
sibility of using the application communication as another
fault detection mechanism [18].

The checkpoint interval that minimises the fault tolerance
overhead of the aforementioned model is:

σ =

√
φtc(tc + 2α− 2tl − 2∆lr)

φ
− tc (2)

and the inter-process dependency factor is defined by the
following equation:

φglobal =

∑N
1 P (n)

N2
(3)

where P (n) is the function which defines the number of
processes that depend on the process n including itself. N
is the total number of processes in the parallel application.

There is an issue with the whole model presented related
to the definition of the inter-process dependency factor.
Equation 3 reflects this inter-process dependency factor for
the entire application. This factor should be redefined to
represent the dependency of an individual process in relation
to other processes. Below we present our propose to the
redefinition of this factor:

φ =
P (n)

N
(4)

and finally, the value for this factor is defined in run-
time based on the application monitoring. As in previous
equation, P (n) is the function which defines the number
of processes that have sent to or received messages from
process n, including itself. N is the total number of processes
in the parallel application.

Our methodology is based on measurements taken during
the most recently checkpoint cycle. When the application
changes its behaviour, i.e. the communication pattern, or its
memory footprint, after one checkpoint cycle the checkpoint
interval will already be adapted to the new application
characteristics. Moreover, except during the start-up and fi-
nalisation it is expected that applications do not change their
behaviour or memory footprint too frequently in comparison
to the checkpoint interval [20].

4. Experimental Evaluation
To evaluate our proposal, three experiments were de-

signed. In the first experiment we depict the adaptation of
the checkpoint interval to changes in the process size and we



also demonstrate the influence of the communication pattern
on the inter-process dependency factor (φ). The second
experiment depicts the reduction in the overhead introduced
by fault tolerance while using our methodology to define the
checkpoint interval in run-time. Finally, the third experiment
shows the accuracy of the inter-process dependency factor
defined in run-time.

Experiments run in an 8-node cluster. Each node was
equipped with two Dual-Core Intel Xeon processors running
at 2.66GHz, 12 GBytes of main memory, and a 160 GBytes
SATA disk for local storage. Nodes were interconnected
via two Gigabit Ethernet interfaces. One of these networks
was used for storage while the other was used for process
communication. RADIC/OMPI [6] was used as a fault
tolerant MPI library.

To create a fault scenario processes are killed during the
application execution. The fault moment is defined by the
MTTI (α) and its distribution along the MTTI is defined
using the MT19937 PRNG algorithm [22]. The processes
to be killed is selected using the same algorithm. After the
fault has been injected the node is available to be reused by
a recovered process.

4.1 Checkpoint Interval Adaptation
Model variables such as tc and tl depends on the amount

of memory used by application processes. And processes
on the same application may present different memory foot-
prints. This occurs because processes compute different data
or processes play different roles in the parallel application.

To depict the adaptation of the checkpoint interval to the
process memory footprint we have used the NAMD molec-
ular dynamics application [21]. NAMD is implemented over
a Master/Worker paradigm where workers also communicate
between themselves; the master process requires more mem-
ory in comparison to the workers. The experiment has been
executed using with a fault frequency (α) of 3600 seconds
and the heartbeat frequency (td) was set to 1 second. Values
for tc, tl, ∆lp, and ∆lr were measured during the execution.
For this application we have manually calculated the inter-
process dependency factor (φ) and its value is 1.

Dashed lines in figures 3 depict the checkpoint interval
used throughout the application execution. Figure 3(a) refers
to the master process, while figure 3(b) refers to a worker
process. Figure 3 depicts only one worker processes, how-
ever others present a similar behaviour.

As the figures depict, processes use a small amount of
memory in the startup phase. As a consequence of this
the model calculates a short checkpoint interval initially.
However, after the startup phase the application increases its
memory footprint. After the second checkpoint the check-
point interval changes to reflect the changes on the process
memory footprint. Tables in figure 3(a) and 3(b) summarise
the checkpoint instances and sizes for the master and a
worker process, respectively.

To depict the adaptation of the checkpoint to the inter-
process dependency factor we have used a dynamic ma-
trix multiplication application built under a Master/Worker
paradigm where workers only communicate with the master
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Execution Instant Process Size Checkpoint Interval
0.31 seconds 339.96 MB 340.56 seconds

358.45 seconds 1261.75 MB 775.93 seconds
1245.35 seconds 1270.05 MB 779.04 seconds
2132.25 seconds 1272.37 MB 779.41 seconds

(a)

Execution Instant Process Size Checkpoint Interval
0.19 seconds 70.57 MB 157.35 seconds

160.95 seconds 1026.79 MB 689.77 seconds
934.97 seconds 1056.99 MB 693.29 seconds

1708.81 seconds 1060.23 MB 693.87 seconds
(b)

Fig. 3: The continuous line shows the memory footprint of the NAMD (a) master and (b) worker processes running the
“stmv” workload; values are shown on the left axes. The dashed line represents the checkpoint interval used; values are
shown on the right axes. The rhombus points depict checkpoint instances. Tables depict first four values of the checkpoint
size and the calculated next checkpoint interval for each type of process according to the execution instant.
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Execution Instant Process φ Checkpoint Interval
0.84 seconds 0.34375 2,949.62 seconds

3,658.74 seconds 1.00000 1,436.16 seconds
5,823.01 seconds 1.00000 1,433.98 seconds
7,928.74 seconds 1.00000 1,439.21 seconds

10,054.94 seconds 1.00000 1,433.73 seconds
(a)

Execution Instant Process φ Checkpoint Interval
0.31 seconds 0.34375 286.52 seconds

286.84 seconds 0.25000 336.68 seconds
623.52 seconds 0.25000 334.99 seconds
960.20 seconds 0.25000 337.09 seconds

1,296.88 seconds 0.25000 336.96 seconds
(b)

Fig. 4: The continuous line shows the value of φ for the matrix multiplication (a) master and (b) process; values are shown
on the left axes. The dashed line represents the checkpoint interval used; values are shown on the right axes. The rhombus
points depict checkpoint instances. Tables depict first five values of φ and the calculated next checkpoint interval for each
type of process of the matrix multiplication execution according to the execution instance.

process. This parallel application was executed using 8
nodes.

Considering the equation 3, the initial value for the φ
variable is 0.34375. This value represents a global view of
the relationship established between all processes on this
parallel application. The fault frequency (α) has been defined
as 3600 seconds and the heartbeat frequency (td) has been set
to 1 second. Values for tc, tl, ∆lp, ∆lr, and φ are measured
during the execution. Equation 4 has been used to define in
run-time the value of φ for each process.

Continuous lines in figure 4 depict the calculated values
for the φ in run-time for the master 4(a) and for a worker
4(b) process, respectively. In addition, the dashed line on
these figures depict the values of the checkpoint interval
during the application execution as well as the checkpoints
instances.

As shown in figure 4(a), the initial value of 0.34375 was
redefined to 1. This occurs because between the first and the
second checkpoint the master process communicated with all
7 workers. As a consequence of this increase in the value of
φ, the model has changed the checkpoint interval. Similarly,
in figure 4(b) the decrease in the value of φ increases the
time between checkpoints for a worker process.

Figure 4 depicts only one worker process, however, other
worker processes present similar behaviour. The huge dif-
ference between the checkpoint interval calculated for the
master and for the worker process is caused by the difference
in the memory footprint of these processes.

4.2 Reduction in the Overhead
The next experiments depict the performance gain in

using our methodology to define the checkpoint interval
in run-time. This experiment compare the performance of
our proposal with a static configuration in a faulty and
fault-free scenario. The comparison was made using the
aforementioned NAMD and dynamic matrix multiplication
applications. In this experiment only one fault was injected
in each execution. The moment of the fault differs from
one execution to other. The fault is distributed along the
application execution according to the MT19937 PRNG
algorithm. Each experiment has been executed at least in
16 times and values are the average of all data that fall in a
95% confidence interval.

As shown in figure 5(a) the use of the fault tolerance pro-
vided by the RADIC/OMPI library introduces an overhead
of about 25% in a fault-free execution and about 34% in a
faulty scenario.

As shown in table in figure 5 there is a modest reduction
in the overhead while the checkpoint interval is calculated
in run-time. This occurs because there is no significative
change in the NAMD processes characteristics, except for
the memory footprint in the start-up phase. However, as
shown in figure 5(b) the matrix multiplication application
presents different results.

In the fault-free environment the execution using statically
configured checkpoint interval presents a smaller overhead
than the execution running with in run-time configuration.
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App Statically Configured Configured in Run-Time
Fault-free Faulty Fault-free Faulty

NAMD 25.4% 25.1% 34.5% 33.6%
MM 18.1% 24.6% 35.4% 31.1%

Fig. 5: Comparison of the (a) NAMD and (b) a matrix
multiplication execution time using different fault tolerance
configuration strategies on different environments.

This is because the initial global value of φ increases the
checkpoint interval for the master process. This reduces
the number of checkpoints performed. In this situation, the
overhead introduced by a fault increases. This can be verified
when we compare the total wall time clock in a faulty
environment for the configurations made statically and in
run-time.

4.3 The Accuracy of the Inter-Process Depen-
dency Factor Defined in Run-Time

To verify the accuracy of our model we executed the NAS
[23] LU class B with 8 processes modified to iterate 300,000
times. This modified version of the LU has been executed
using different global values for the φ, from 0.9 to 0.2. Table
1 shows the correct value of this factor individually and
globally for this application.

Analysing the curve in figure 6 and the data present in the
table it is possible to guess that the optimum value for the φ
for this execution should be a value between 0.45 and 0.60.
Despite of the small difference between the global and the
individualised values for the φ, to use of a precise value for
this factor reduces in more than 3% the overhead introduced

Table 1: Values for the inter-process dependency factor for
the entire LU application and for each process individually.

Process Rank (Global Value) P (n) φ

Running with 8 processes 0.56250
0, 3, 4, 7 4 0.50000
1, 2, 5, 6 5 0.62500

65000
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Inter-Process Dependency Factor (!)
Defined in run-time Fixed global value
No Fault Tolerance

0.5625

Overhead Using Overhead Using
φ Fixed a Defined in Difference

Global Value Run-Time Value
0.2 36.2% 32.8% 3.38%
0.3 35.8% 32.6% 3.27%
0.4 35.5% 32.4% 3.16%
0.5 35.2% 32.1% 3.11%
0.6 35.4% 32.2% 3.17%
0.7 35.7% 32.4% 3.28%
0.8 36.1% 32.7% 3.39%
0.9 36.5% 33.0% 3.43%

Fig. 6: Comparison between static and in run-time config-
ured values of the inter-process dependency factor.

by the fault tolerance tasks for this application.

5. Conclusions
Checkpoint interval models used to rely on input vari-

ables based on average values. This reasoning is valid for
applications running for a long time on systems that present
a high fault frequency. However, this is not the common
environment faced by parallel application users. This paper
has presented a methodology to dynamically define the input
variables used by models based on measurements performed
during the application execution.

We propose the monitoring of processes that compose the
parallel application to achieve the values for the variables
used by checkpoint interval model. We monitor the time
needed to perform fault tolerant tasks as well as the number
of peers each process communicates with.

This instrumentation allow the definition of the check-
point interval in run-time with a high degree of precision,
process by process. The use of this methodology reduces in
about 3% the overhead introduced in the execution time for
applications running in faulty environments.

5.1 Future Work
The overhead added to the application execution by the

monitoring mechanism tends to be unappreciable. However,



it is necessary to quantify this overhead.
The use of uncoordinated checkpointing is the only solu-

tion that allows the use of different checkpoint intervals for
each application process. However, the use of uncoordinated
checkpointing assisted by message logging may not be the
solution that presents the lowest overhead. There is the
need to analyse if a sender-based message logging or a
coordinated checkpointing solution present better results.
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