
CORS - A Cost Optimized Resource Reservation Scheme for Grid

Rifat Shahriyar, Md. Mostofa Akbar, M. Sohel Rahman, Md. Faizul Bari and Shampa Shahriyar
Department of Computer Science and Engineering (CSE)

Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh

Abstract— The basic objective of grid computing is to
support resource sharing among individuals and institutions
within a networked infrastructure. Managing various re-
sources in highly dynamic grid environments is a complex
and challenging problem. Some approaches apply algo-
rithms for resource management to grid but fails to provide
any generalized solutions. Most of the approaches are based
on a simple architecture considering computer as the main
resource. But the real architecture of grid computing is a
complex one especially if we consider various resources of
a computer (e.g., processor, memory etc.) during resource
management. In grids, sometimes assurance is needed for
successful completion of jobs on shared resources. Such
guarantees can only be provided by reserving resources
in advance. So resource reservation is an integral part of
resource management system for grid. Moreover the cost
for providing resource as services will play a significant
role in near future when resource sharing will be popular
and inevitable. In this paper we provide a future reservation
supported and cost optimized novel resource management
system (CORS) for grid environment considering its real
complex architecture. We further conduct a detailed perfor-
mance evaluation with comparison on real workload traces
for grid.

Keywords: Grid Computing; Resource Reservation; Segment
Tree; Parallel Workloads Archive

1. Introduction
Grid systems have emerged as promising next-generation

computing platforms that enable the building of a wide range
of collaborative problem-solving environments in industry,
science and engineering [1]. The idea of grid computing was
initially motivated by processing power and storage intensive
applications. Its basic objective is to support resource shar-
ing among individuals and institutions within a networked
infrastructure. Resources that can be shared are processing
capacity, storage, communication networks and bandwidth,
data, software and licenses etc.

Managing various resources in highly dynamic grid en-
vironments is a complex and challenging problem. There
exist works for resource management in different areas of
computer science. Some approach uses data structures [2] [3]
[4] and algorithms [5] for resource management to apply in
grid but fails to provide any generalized solutions for grid
environment. Most of the approaches are based on a simple

architecture considering computer as the main resource in
their system. But the real architecture of grid computing is
a complex one if various resources of any computer are to be
taken into account during resource management. And indeed
as the use of grid as a computing environment increases
at a higher rate, these complex but real scenario must be
taken into account. In grids sometimes assurance is needed
for successful completion of jobs on shared resources. Such
guarantees can only be provided by reserving resources in
advance [6] [7]. So resource reservation is an integral part
of resource management system for grid. Moreover grids
are used as a voluntary service now a days. But with the
recent improvements in architecture and usage, situation is
predicated not be the same. Cost for providing resource as
services will play a significant role in near future when
resource sharing will be popular and inevitable. Clearly a
complete resource management system for grid computing
is required to support all the above mentioned features.
This gives the motivation of this work where the goal is to
provide a future reservation supported and cost optimized
novel resource management system for grid environment
considering its real complex architecture.

The main contribution of this work is a distributed,
future reservation supported and cost optimized resource
management system (CORS) for grid environment. Most of
the existing approaches are based on a simple architecture
considering computer as the main resource. But the real
architecture of grid computing is a complex one especially if
we consider various resources of a computer (e.g., processor,
memory etc.) during resource management. That means
various resources of a single computer can be shared by
many participators in grid. Our system does that which is
also one the contribution of this work. We perform a detailed
performance evaluation of our prototype and compare it with
an existing system using real workload traces. Superiority
of our scheme is established from the comparative analysis
presented on the experimental results on the workload traces.
The rest of the paper is organized as follows. Section 2 il-
lustrates our proposed resource management scheme and the
data structures used by this scheme. Section 3 contains the
experimental results along with comparative study against
the state of the art system. We briefly conclude in Section
4 describing the key contributions of this work followed by
some future research directions.



2. Proposed Resource Management
Scheme of CORS

We proposed a new resource management scheme for grid
computing environment considering the complex real life
grid architecture. In this section, a detailed description of
the system architecture of our resource management scheme
is presented with an illustrative example. The proposed data
structure is also described with example. We start with the
problem statement in the next subsection.

2.1 Optimization Problem for the Resource
Management Scheme

Grid applications can be broken down into a number of
jobs. It is the responsibility of the job broker to break down
the jobs of the applications. Each job of an application
requires some grid resources to perform their operations.
The participating computing nodes of grid usually provide
the required resources of any job at a particular cost. So
each of the resources of any computing nodes will have cost
associated with it.

Let there be n applications in the grid termed as
A1, A2 · · ·Ai · · ·An. An application Ai has a total of
CAi

jobs. Assume that the jobs of application Ai are
J1, J2 · · · Jj · · · JCAi

. The participating computing nodes of
the grids are N1, N2 · · ·Nk · · ·Nl and the resources pro-
vided by them are R1, R2 · · ·Rr · · ·Rm. We assume that
all the participating nodes will provide all the grid resources
according to availability. To make the problem description
simple, let us consider that the job Jj of the application
Ai requires W amount of the resource Rr. The available
amount of the resource Rr in the nodes N1, N2 · · ·Nl are
w1, w2 · · ·wl and the corresponding costs are c1, c2 · · · cl.
It is not always possible for a single computing node to
completely serve a resource request. In most of the cases,
a number of computing nodes jointly serve a resource
request. The serving amount from the nodes are assumed as
s1, s2 · · · sl. If a particular node Nσ does not serve the job
then the serving amount sσ = 0. Now the total cost to serve
a resource request is the sum of all individual computing
nodes’ service cost for their resource. So the total cost of
the request will be

∑l
k=1 cksk. The constraints need to be

satisfied are as follows:
1)
∑l
k=1 si = W , i.e., a particular job gets exactly W

amount of resource from the grid.
2)
∑l
k=1 wk > W , i.e., there is available resource in the

grid for a job.
Now the objective is to minimize the total cost

∑l
k=1 cksk to

serve a resource request for a job of an application. Besides
the objective of minimizing the cost it is also expected
to reduce the number of participating nodes to deliver
resource for a particular job. This will reduce the bottleneck
for remote communication to the participating nodes. This
additional objective can be formulated as follows:

minimize
∑l
k=1 f(sk) where

f(sk) =

{
1 if sk > 0
0 if sk = 0

Here f(sk) is a boolean function indicating the presence of
a node in serving a job.

2.2 Resource Management Scheme
The overall system architecture of our proposed resource

management scheme (CORS) is shown in Figure 1. The
components of the system, messages and their sequences
to run the system are described by the caption of the blocks
of Figure 1. Our proposed resource management scheme
consists of the following phases:

Start Phase: The resource management will be controlled
and coordinated by a set of computing nodes (computer)
termed as Principal Resource Manager (PRM ). The PRMs
will be selected according to the grid administrators decision
based on the configuration of the participating nodes. The
PRM will be given a list of resources by the administrators
that can be provided by the participating nodes of the grid
environment. Each resource will be given a unique id named
ResourceId for grid environment.

Initialization Phase: When a node wants to participate
in the grid it will send a message named msg_init to any
one of the PRMs. Each PRM has a list of participating
computing nodes that will be synchronized amongst all the
PRM . The PRM will accept the node and add it to the
list. The node will be given a unique id named NodeId
that will help to identify it in the grid environment. Each
participating node will have a list of resources to provide
service to the grid environment. This list will be a subset
of the list maintained by the PRM . The given NodeId for
any node is the same as the index of the node in the list
maintained by PRM . Thus we can find the reference of
any node through any of the PRMs in constant time. Each
resource of a node will be given a ResourceId which is also
the same as the index of the resource in the node’s resource
list. Thus we can find the reference of any resource of a given
node in constant time. Each node can be considered as its
own resource manager (RM ). Any participating computing
node can be selected as PRM .

Request Phase: Any application on the grid can be
broken down into a number of jobs. An application sends a
message named msg_app to job broker so that job broker
can break it down into a number of different jobs. The
jobs usually request resources from the grid. The request
will be initiated by the job broker. Job broker will forward
the request to any one of the PRMs so that the request
processing is distributed among the PRMs. The request
mainly contains resource identifier, starting time, and ending
time. The PRM will propagate the request to the all the
participating nodes. . Any single job can issue request for
multiple resources. Then the job broker can forward request



Fig. 1
ARCHITECTURE OF OUR PROPOSED SYSTEM CORS

for each resource to different PRM . So multiple PRMs
can process request for a single job.

Search Phase: PRM will forward the request to each
participating nodes by sending messages to the nodes. The
messages sent to the nodes from PRM are generally
named as msg_query. This is a parameterized message
and based on the parameter a node replies with specific
resource information, cost associated with a specific resource
and available amount of specific resource in a given time
frame. Some of the participating nodes may not provide
the searched resource and they will be out of the search
immediately. They will ignore the message. The nodes that
provide the searched resource will receive the message. For
each resource of each computing node, there will be an
appropriate data structure to hold the information of used and
available amount of resources in specific time frames. Then
queries and corresponding updates will be carried out by the
node in its own data structures. The data structure maintained
by each participating node will not be replicated or copied
to the PRM . The PRM will have only the reference of the
nodes in the list and through that reference it can virtually
have knowledge of the nodes’ data structure. In this way
multiple PRMs can have access to the most recent state
of all of the resources without any space overhead. This
is the main computation phase of our proposed resource

management scheme.
Reply Phase: After searching, the results will be returned

to the PRM by the nodes. Each request will contain a
request_time associated with it. PRM will wait for the
result for a specified threshold amount of time from the
request_time. Job broker will also wait for the replies from
PRMs for a specified threshold amount of time from the
request_time for the job that requires multiple resources.
The result contains the notification whether the specific
request can be served by this node or not. After getting the
search result from all the nodes PRM will have a list of
candidate nodes to serve the resource request. Now PRM
needs to select the set of nodes that minimizes the total
cost to serve the request. As we will show this problem
can be mapped to well known fractional knapsack problem.
The application of fractional knapsack problem in resource
management is a novel idea for grid which we introduce here
to guarantee cost minimization. Clearly the set of selected
nodes will ultimately serve the request.

Reservation Phase: Once PRM has the list of selected
nodes, it then sends a message named msg_update to each
of the selected node to reserve required resource and update
the data structure of the node. Upon receiving the message
the node tries to update its data structure. If the update is
successful then it will send a confirmation message named



msg_confirm to the PRM in reply. But sometimes up-
dating may fail due to unavailability of resource as follows.
The PRMs work in distributed manner. In the Search phase
only available resource is searched but no update is made.
So it may happen that another job acquires this specific
resource of the node through any other PRM . That is why
a confirmation ensures successful resource reservation.

For each resource of each computing node, there must be
an appropriate data structure to hold the information of used
and available amount of resources in specific time frames.
Each element of the data structure will represent the (starting
time, ending time, available amount) information for any
resource. We know that the tree data structures are very much
efficient for searching, inserting and deleting of elements.
The segment tree structure, introduced by Bentley [8], is
a balanced binary tree data structure that is used to store
segments or intervals. We can map reservation supported
resource management problem of our system to the segment
tree with a little modification. The s and t, with s < t, of
the segment tree V (s, t) can be mapped into the starting
time and ending time of a session where starting time <
ending time. We add a field (available resource amount of a
segment) to each leaf node. So each leaf node in the segment
tree will contain starting time, ending time and amount of
specific resource available (between the starting time and
ending time). Leaves of the segment tree contain all the
segments and the available resource amount. The internal
node of the tree contains only the interval of its child node.
The space usage of segment tree is O(nlogn) where n is the
total number of nodes and searching for a specific interval
requires O(logn+k) time, where k is the number of reported
segments. It does not depend on the number of intervals.

2.3 Fractional Knapsack Problem
In the fractional knapsack problem we are given a set I of

n items having weights w1, w2, . . . wn and costs c1, c2, . . . cn
respectively. We need to select items from I , with weight
limit K, such that the resulting cost (value) is maximum.
Most of the Knapsack variants are NP-Hard problems and
the greedy solution to these problem leads to suboptimal
or approximate solution but a greedy strategy does provide
optimal solutions to the fractional knapsack problem [9]. We
map the optimization problem for the resource management
scheme to fractional knapsack problem. A resource of a node
can be considered as an item and its associated cost can be
considered as value. We need to sort the resources of the
nodes by increasing cost per unit resources as we need to
minimize the total cost.

2.4 An Illustrative Example
Consider a grid environment where two Principal Re-

source Managers (PRM ) are working named PRM1

and PRM2. The provided resource list is R =
{R1, R2, R3 . . . Rn}. The participating node list is N =

Fig. 2
OVERALL SYSTEM SCENARIO OF CORS

{N1, N2, N3 . . . Nn}. Figure 2 depicts the overall scenario
of the system. Here we can see the resource provided by
a specific node N1. For each resource of N1 there is a
segment tree to maintain the available amount of resources
in a specific time frame.

Fig. 3
NODE AND ITS DATA STRUCTURE

Let us consider that Application A1 contains three jobs
termed J1, J2 and J3. Now J1 requires 25 units of resource
R1 for the time frame of (25, 45). At this point J1 will send
the request to the PRMs. Recall that PRM have a synchro-
nized list of participating nodes. It will forward the query to
the participating nodes. Figure 3 depicts the scenario of the
nodes and corresponding resource R1. Here separate time
intervals and corresponding available amount of resource is
shown with the leaf nodes. As can be seen that Node N1, N2,
N3 and N4 are providing resource R1. The corresponding
data structure is also shown in the figure. Here the query
will be (R1, 25, 45). Assume that the query is passed to each
node data structure, the reply is listed in Table 1. After the
search is completed, PRM will receive the above candidate
list to serve the request for R1. Subsequently the nodes are
selected according to the fractional knapsack solution, as



Table 1
CANDIDATE NODES AND AVAILABLE AMOUNT

Node Amount Details Cost
N1 10 minimum amount of

time frame (20, 40) 4.0
and (40, ∞)

N2 5 amount of time
frame (20, 50) 4.25

N3 15 amount of time
frame (15, ∞) 3.75

N4 20 amount of time
frame (25, 60) 3.5

Table 2
SELECTED NODES FROM THE CANDIDATE LIST

Node Amount Cost
N4 20 20 × 3.5 = 70
N3 5 5 × 3.75 = 18.75

Minimum Total Cost 88.75

shown in Table 2. So an add request will be sent to N3 and
N4 and their corresponding segment tree will be updated as
shown in Figure 4. The updated resource usages are shown
in black shades. This concludes the resource reservation for
the job. The application will then start running according to
its starting time using these reserved resources. The details of
the algorithms related to our proposed resource management
scheme CORS and their complexity is not provided here due
to page limitation. Their details can be found here [10].

Fig. 4
NODE AND ITS DATA STRUCTURE

3. Experimental Results
In this section we present the experimental results of

our proposed system.Through experiments we study the
behaviour of our approach and evaluate its performance
based on some performance metrics and also compare the
performance of our approach to an existing system. A

simulator of the system is implemented using Java. The
simulation is run using a computer having Intel Pentium-
IV Dual Core 1.60GHz processor, 2 GB of memory and
Windows XP operating system. We need to implement
a new simulator because no existing simulator considers
the complex grid architecture. In the existing simulators
computer is considered as the only resource but in our
system we need to consider various hardware and software
of a computer as resources.

Node Selection Rules: The following rules are considered
for assigning priority in selecting the next node to serve the
request.

• Max-Res: This rule prioritizes the nodes that have
maximum available resources. In this way number of
connection establishment can be reduced.

• Min-Res: This rule prioritizes the nodes that have
minimum available resources. In this way number of
connection establishment can be increased.

• Min-Cost: This rule prioritizes the nodes that leads to
the minimization of total cost.

Measurement Metrics: The metrics considered for eval-
uation are TotalConnection and TotalCost. We have also
considered total memory consumption and running time.
TotalConnection: The term TotalConnection means the num-
ber of nodes required to completely serve a request. The
requesting node needs to connect to these nodes. That is
why we termed it as TotalConnection.
TotalCost: The term TotalCost means the total cost required
to completely serve a request. This is the summation of all
the individual cost of different nodes that serves the request.

Comparison with Sulistio’s Resource Management
Scheme on Real Workloads: We compare our system CORS
with an existing system for resource management in grid
computing. The work done by Sulistio et al. [11] is the most
appropriate to compare because it is the most recent work on
resource reservation for grid. This work provides a new data
structure for reservation using the Calendar Queue. There is
no cost based framework exists for resource reservation in
grid and this is also true for Sulistio’s system. So we need to
assume a default cost model. We developed Sulistio’s system
to minimize the TotalConnection by giving priority to the
next device to be selected according to the rule Max-Res
described before. It is guaranteed that Sulistio’s system’s
TotalConnection will be minimized. On the other hand in our
system we have been successful to achieve minimum cost
solution to serve a grid request at the cost of a very small
or no increase of TotalConnection from the minimum. Here
we present results using real workload data for grid. Parallel
Workloads Archive [12] contains an archive of information
regarding the workloads on parallel machines and grids. It
contains raw workload logs from various machines around
the world. We choose three workloads, namely DAS2-fs0,
LPC-EGEE and SDSC-BLUE. Details of the workloads
are available at [12]. The main reason behind choosing



Fig. 5
TOTALCONNECTION REQUIRED FOR WORKLOAD DAS2FS0 USING

SULISTIO’S SYSTEM AND OUR PROPOSED SYSTEM CORS

Fig. 6
TOTALCONNECTION REQUIRED FOR WORKLOAD LPC-EGEE USING

SULISTIO’S SYSTEM AND OUR PROPOSED SYSTEM CORS

these three is that these workloads have been considered
by Sulistio in their simulation.

Evaluation with Respect to TotalCost and TotalConnec-
tion: We simulate our proposed system CORS and Sulistio’s
system using the above mentioned three workloads consid-
ering 50 sample applications.

In Figure 5 to Figure 7 we observe that the TotalConnec-
tion of Sulistio’s system and our proposed system are equal
for most of the applications. There are differences in Total-
Connection for a few applications [3 applications in Figure
5 and 4 applications in Figure 7]. Here difference occurs
for those applications whose jobs require huge amount of
resources compared to the other applications of the same grid
environment. We observe the presence of larger connection
in Figure 7 compared to the other figures. It is also observed
that in Figure 7 there are applications with various connec-
tion requirements. This justifies the high capacity of SDSC-
BLUE and its multipurpose use by high, medium and low
profile users in terms of resource requirement. In Figure 8 to
Figure 10 we observe that the TotalCost of Sulistio’s system
is much greater than our proposed system as we expected.

Analysis of the Result: TotalCost of our system is guar-
anteed to be minimum as we use fractional knapsack to

Fig. 7
TOTALCONNECTION REQUIRED FOR WORKLOAD SDSC-BLUE USING

SULISTIO’S SYSTEM AND OUR PROPOSED SYSTEM CORS

Fig. 8
TOTALCOST REQUIRED FOR WORKLOAD DAS2FS0 USING SULISTIO’S

SYSTEM AND OUR PROPOSED SYSTEM CORS

minimize the total cost. But the interesting point is the
margin of difference with the cost of Sulistio’s system. The
TotalCost of our proposed system is much less than Sulistio’s
system for all the workloads. TotalConnection of our system
will not be minimum because we consider minimizing the
TotalCost. But we tried to maintain TotalConnection as small
as possible so that the increasing TotalConnection does not
be a bottleneck. It is observed from the presented charts that
we achieve the goal to maintain the difference as minimum
as possible. For almost all the workloads TotalConnection for
Sulistio’s system and our proposed system are the same. This
is because the nodes that provide the resources in a grid en-
vironment are mostly of same configurations and the jobs of
the applications in a grid normally requires similar amount of
resources. Grid applications are normally broken down into
similar type of jobs by the job broker so that the application
gets fair share of the resources. The details of how the job
broker works is out of the scope of this research. However to
justify the TotalConnection scenarios we briefly review it. In
the grid environments most of the applications are similar
in nature. So the job broker usually breaks down all the
applications to same types of jobs where each job requires
similar amount of resources. In such cases TotalConnection



Fig. 9
TOTALCOST REQUIRED FOR WORKLOAD LPC-EGEE USING

SULISTIO’S SYSTEM AND OUR PROPOSED SYSTEM CORS

Fig. 10
TOTALCOST REQUIRED FOR WORKLOAD SDSC-BLUE USING

SULISTIO’S SYSTEM AND OUR PROPOSED SYSTEM CORS

for Sulistio’s system and our proposed system are the same.
Sometimes there are exceptions in the workloads where a
big sized application requiring huge amount of resource is
broken down into a single job. This might happen due to
the constraint that the application cannot to broken down
into small jobs. Now consider a scenario where a particular
node with the comparatively higher cost has the highest
available resource. According to our proposed algorithm
this particular node will not be chosen for consuming all
the resources. But the Sulistio’s algorithm will consume
this resource to maintain TotalConnection minimum. That
is why we observe substantial difference in TotalConnection
in several exceptional cases. But generally it is observed
that this difference is negligible. The memory consumption
and running time of our proposed system CORS is also
better than Sulistio’s system. That means CORS memory
consumption is lower and running time is less than that
of Sulistio’s system. The main reason behind this is the
use of appropriate data structures and efficient algorithms
in our proposed system. Due to page limitation the details
of memory consumption and running time are not provided
here. The details can be found here [10].

4. Conclusion
The main contribution of this work is a cost optimized

complete resource management system with reservation sup-
port for grid computing. Resource management is not a new
research area for grid computing but still there are lot of
challenges and unsolved problems. Managing resources with
negotiation is one of the open issues in grid resource man-
agement. Sometimes effective negotiation for flexible quality
of service (QoS) can ensure more accepted jobs in grid
system with full resource utilization. We have introduced
a cost optimization model for resource management in grid
computing. Future works can be done here to incorporate
negotiation for cost between resource provider and resource
requester (applications or jobs). The computing nodes that
provide resource for grid also run local applications in their
own operating environment. Works can be done how to
optimally balance the distribution of resources for local and
grid applications so that the local applications can not be
affected by its services provided to the grid. Future works
can also be done on resource management by considering the
topology of the grid. In that case communication bandwidth
requirement and latency will affect the resource management
techniques.

References
[1] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann Publishers, San Francisco, CA,
1998.

[2] L.-O. Burchard, “Analysis of data structures for admission control of
advance reservation requests,” IEEE Transactions on Knowledge and
Data Engineering, vol. 17, no. 3, pp. 413–424, 2005.

[3] A. Brodnik and A. Nilsson, “Static data structure for discrete advance
bandwidth reservations on the internet,” Computer Research Reposi-
tory(CoRR), vol. cs.DS/0308041, 2003.

[4] Q. Xiong, C. Wu, J. Xing, L. Wu, and H. Zhang, “A linked-
list data structure for advance reservation admission control,” in
In Proceedings of 3rd International Conference on Networking and
Mobile Computing(ICCNMC), 2005, pp. 901–910.

[5] I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt, and
A. Roy, “A distributed resource management architecture that supports
advance reservations and co-allocation,” in In Proceedings of the
International Workshop on Quality of Service, 1999, pp. 27–36.

[6] W. Smith, I. Foster, and V. Taylor, “Scheduling with advanced
reservations,” in In Proceedings of IEEE International Parallel and
Distributed Processing Symposium(IPDPS)Š00, 2000, pp. 127–132.

[7] L. Yuan, C.-K. Tham, and A. L. Ananda, “A probing approach for
effective distributed resource reservation,” in QoS-IP 2003: Proceed-
ings of the Second International Workshop on Quality of Service in
Multiservice IP Networks. London, UK: Springer-Verlag, 2003, pp.
672–688.

[8] J. Bentley, “Solution to klee’s rectangle problems,” Techical Report,
Carnegie-Mellon University, Pittsburgh, 1975.

[9] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms.
Computer Science Press, 1978.

[10] R. Shahriyar, “http://teacher.buet.ac.bd/rifat/MSC.pdf,” A Distributed
Optimized Resource Reservation Scheme for Grid Computing, M.Sc.
Engg. Thesis, Bangladesh University of Engineering and Technology,
2010.

[11] A. Sulistio, U. Cibej, S. K. Prasad, and R. Buyya, “Garq: An efficient
scheduling data structure for advance reservations of grid resources,”
International Journal of Parallel, Emergent and Distributed Systems,
vol. 24, no. 1, pp. 1–19, 2009.

[12] P. W. Archive, “http://www.cs.huji.ac.il/labs/parallel/workload.”


