
Analysis of False Cache Line Sharing Effects on Multicore CPUs

Suntorn Sae-eung, M.S.
suntorn.saeeung@students.sjsu.edu

(408) 775-9883

Robert Chun, Ph.D.
Computer Science Department

San Jose State University
San Jose, CA, 95192-0249 USA

robert.chun@sjsu.edu
(408) 924-5137

ABSTRACT
False Sharing (FS) is a notorious problem occurring in
multiprocessor systems. It results in a performance degradation for
multi-threaded programs. Since the architecture of a multicore
processor is very similar to that of a multiprocessor system, the
presence of the false sharing problem is speculated. Its effects
should be measurable in terms of efficiency degradation in a
concurrent environment on multicore systems.
This article discusses the causes of the false cache line sharing
problem in dual-core CPUs, and demonstrates how it lessens the
system performance by measuring speed-ups and efficiency of the
experiments in sequential compared to parallel executions. Thus,
demonstration programs are developed to collect the execution
results of the test program with and without false sharing on the
specific system hardware. Certain techniques are implemented to
eliminate false sharing. These techniques are described, and their
effectiveness in mitigating the speed-up and efficiency lost from
false sharing is analyzed.

KEY WORDS
False Sharing, Cache Memory, Spacing, Padding

1.0 Introduction
The current trend of processor design is towards multicore CPUs.
Recently, eight-core and twelve-core CPUs have been in the
manufacturing process for both AMD and Intel [1]. Processor
manufacturers overcome the heat-wall constraint by packing more
than one computing module, so-called cores, into a package.
Sometimes the chip is simply referred to as a Chip Multiprocessor
(CMP); however, a processor can also be coined by the number of
its cores. For example, a two core processor is called as a “dual
core” CPU. Having many processing cores working together
increases complexity in hardware design and software production.
The hardware manufacturer is not the only party involved in taking
advantage of the multiple core processors. Programmers must also
understand how to make use of additional cores, and design the
application by dividing processes into several sub-tasks, and assign
them to several threads to utilize all available computing cores.

A potential problem in multiprocessor systems that can cause poor
performance by mistakenly updating data in a shared cache line is
the “false sharing” problem. Previous research on multiprocessor
systems demonstrated huge impacts of the false sharing problem
[5][6][8][9][12]. It can cause performance degradations of 20x on a
four-processor system, and 100x on an 8-processor system.
Because multiprocessor and multicore architectures are similar, we
hypothesize that FS can occur on multicore systems too. This paper
demonstrates the existence of false sharing on systems with dual
core CPUs, measures the impact of the false sharing issue, and
compares the performance drops caused by false sharing between a
dual core processor to a multiprocessor system.

1.1. Memory hierarchy and cache elements
Levels and types of memories are distinguished by their access
time, capacities and complexities. Certain types of CPUs, along
with their cache and main memory are selected as representatives to
illustrate the memory hierarchy of multiprocessor and multicore
systems. As false sharing is previously notorious in multiprocessor
systems, the memory architecture of a Symmetric Multiprocessor
(SMP) is compared with that of a Chip Multiprocessor (CMP).

1.1.1 Memory architecture in Symmetric Multiprocessor
The Symmetric Multiprocessor (SMP) is a classical configuration
for a multiprocessor system. The memory hierarchy of SMP is
categorized in two levels: cache memory and main memory. CPU
access time, or latency, on the cache is far less than that from the
main memory. Processors use the cache memory as a local
memory, and consider the main memory to be a remote memory.
CPUs need to request data through a shared network, bus, or
crossbar in order to read from and write to the main memory. A
simple diagram of a SMP system is shown in figure 1.

1.1.2 Memory architecture in Chip Multiprocessor
Chip Multiprocessor (CMP) is a way to name multicore processors.
The cache in a CMP system is divided into tiers similar to a SMP,
but a CMP’s structure adds more layers of caches, e.g. a cache level
2, interleaving the L1 cache and the main memory so as to reduce
the latency gap between the upper and the lower memory layers as
shown in figure 2.

Figure 1. Memory hierarchy in SMP [4]

Figure 2. Memory hierarchy in CMP

The diagram shows three distinct layouts of caches. The Intel
processor (left) implements a shared L2 and L3 cache enabling all
cores to access shared data. AMD CPUs (middle) make use of a
special dedicated hardware and protocol, Hyper Transport
technology, to synchronize shared data between each core’s L2
cache. Recently, a more advanced CPU, such as the Intel Core i5, a
processor is composed of two levels of separate caches, and a
shared L3 cache (right).

1.1.3 Cache lines
A cache line is the smallest unit of data that can be transferred
between the main memory and the cache. The cache line size varies
by processor makers; the size can be directly obtained from the
processor’s specification sheets, or retrived by executing some
manufacturer-provided instruction sets. All processors in our test
hardware have a 64-byte cache line size.

1.2 Multiprocessor/multicore cache coherency
For a multiprocessor system, all processors typically have their own
caches, and machine vendors must ensure that data across
processors are coherent. A protocol must be used to enforce data
consistency among all the cores’ caches so that the system correctly
processes valid data; this protocol is called a “cache coherency”
protocol. The protocol manages data to be updated appropriately
using a write-back policy, resulting in decent overall performance
by reducing the number of main memory updates.

1.3 False cache line sharing
False cache line sharing or false sharing in short is a form of cache
trashing caused by a mismatch between the memory layout of write-
shared data across processors and the reference pattern to the data.
It occurs when two or more threads in parallel programs are
assigned to work with different data elements in the same cache
line. In other words, false sharing is a side effect in a
multiprocessor system due to cache coherency.

Although the multiprocessor’s system scale seems quite different
from that of a small personal computer, the internal architecture of a
multiprocessor is comparable to a multicore microprocessor chip in
terms of the number of processors and memory hierarchy. A
computer with dual-core, quad-core, or octal-core processors is now
considered as a type of multiprocessor system. Thus, it would seem
to be susceptible to a false sharing problem as well.

A multiprocessor system must maintain data coherency across
CPUs. When a processor makes a change on its cache, other
processors must be aware of the change, and determine whether its
copy of data in cache needs to be reloaded or not. The cache
coherency protocol defines rules to maintain data updates among
processor groups with a minimal number of requests to the main
memory, thereby optimizing system performance.

False sharing occurs when threads from different processors
modify variables which reside on the same cache line. In case of
Intel’s processors, when the processor invalidates a cache line with
an outdated value, it fetches an updated value from the main
memory into its cache line to maintain data validity. Figure 4 and 5
demonstrate two threads with false sharing on SMP and CMP
systems respectively. Threads 0 and 1 update variables that are
adjacent to each other located on the same cache line. Although
each thread modifies different variables, the cache line keeps being
invalidated every iteration. As a result, the number of the main
memory access increases considerably, and causes great delays due
to the high latency in data transfers between levels of the memory
hierarchy. The false sharing problem is ocassionally referred to as
“cache line ping-pong [9].”

Figure 4. False cache line sharing on SMP [5]

Figure 5. False cache line sharing on CMP [5]

2.0 Prior Work
Many researchers point out the great performance degradation
caused by the false sharing problem on multiprocessor
environments. Fewer papers performed tests on multicore CPUs
since they are a relatively new architecture. The hypothesis in this
paper is that false sharing would happen in a multicore system as it
does in a multiprocessor one because it has many common
components, yet the degree of impact may be different. More details
will be discussed in the experiment and the result section.

2.1 Concurrent Hazards: False sharing
Butler did an experiment on a multiprocessor system to measure
false sharing effects in [6]. The test system is composed of four
dual core CPUs, total 8 processing units. The best case speed-up at
the eight-threaded execution shows a 100x difference compared to
the worst case. The paper employed certain techniques to eliminate
false sharing effects.

2.2 Latency of conflict writes on Multicore Architecture

Dr. Josef discussed the latency penalty caused by FS [7]. The work
shows that the amount of latency declines when the array allocated
is between 128 Kbytes and 2Mbytes in size, which fits on cache
level two. At this threshold of the array size, the high latency that
would have been caused by the false sharing problem disappears. It
is because shared L2 cache is a “true” sharing cache, and both cores
can access data without cache invalidation, thereby eliminating
false sharing. In brief, the experiment proved that shared cache
between cores can eliminate the adverse impact stemming from
false sharing.

3.0 Experiment Design
The experiment results are obtained from the execution time of a
designated program onto three systems with different types of dual
core CPUs. There are five test cases which have the same goal of
completing an equally specified workload; however, different
running schemes are set up to reveal the existence of the false
sharing problem.

3.1 False sharing avoidance techniques

Since false sharing results from two or more cores using data in the
same cache line, one way to get rid of it is to eliminate any sharing
in the same cache line. Hence, certain techniques are proposed in
order to avoid data sharing by modifying the data arrangement in
the cache line.

3.1.1 Spacing technique
The Spacing technique is an approach used to split a contiguous
allocated space. In an array, a set of variables is typically reserved
in a chunk to take advantage of locality of reference. For instance,
when four variables are declared in an array, an allocation
consisting of four integer-sized adjoining memory blocks is made.
Using the Spacing technique splits the shared data among the
reserved array by shifting the offset between each contiguous array
element so that each element resides on a separate, different cache
line.
In figure 6a, integers D1, D2, D3 and D4 reside in the same cache
line. With the implementation of the Spacing technique, false
sharing on array data can be avoided as shown in figure 6b.

3.1.2 Padding technique
Besides the Spacing technique, Padding is another technique to
reduce false sharing effects by filling a cache line with a pad.

A variable declaration requires an extra piece of information to
manage memory space for the variable. When an array is declared,
the operating system needs to define metadata that contains the
array information. Metadata uses space just right before actual data,
and consists of pointers and header information. For example, every
array in .NET require metadata such as SZARRAY, which stores
size information of the array. Whenever a thread read from or writes
to an element, there is a read of the metadata happening before that
of the actual array. Using Spacing technique does not separate
metadata from the array; they still reside on the same cache line as
in figure 6b. Therefore, false sharing is happening between the
metadata and the first array element. To eliminate sharing on
metadata, the cache line is padded so that the first element is shifted
to the next cache line. Figure 6c illustrates the cache line structure
using Padding.

Figure 6. Cache line structure of Spacing, and Padding arrays

3.1.3. Combined Spacing and Padding technique
Using a Spacing-only or a Padding-only technique would not
overcome the false sharing problem [6]. Therefore, the combination
of both techniques is the best way to completely avoid false sharing
by isolating each elements onto a single cache line. Figure 7, for
example, shows a cache line layout of four array elements,
including metadata.

Figure 7. Cache line structure of combined Padding

and Spacing technique

3.2 Testing code
The testing code, which is adapted from [6], demonstrates existence
of the false sharing problem. The processing time of the program
with the false sharing problem is compared to the program without
the problem. The identical experiment is executed on three
hardware configurations to compare the performance loss among
different systems. The size of the Padding and Spacing variables are
defined to be 64 bytes, which is equal to a size of one cache line, to
ensure that every element is shifted off onto a separate cache line.
The data arrangement is the crucial focus in order to avoid false
sharing with five testing cases: SEQ, PAR, PAR_SPC, PAR_PAD
and PAR_SPC_PAD.

The following code fragments show how each testing case declares
the data array, sets an offset, and executes the workload.

…

…

For example, suppose that a system consists of a four core processor
working on four integer elements; each core works on an array
element. In the Parallel FS case (PAR), all four threads work on the
contiguous array elements as shown in figure 11a. The array data is
arbitrarily defined to start at the memory address 156. Generally an
integer requires four bytes of memory space; therefore, four integers
can be allocated in one cache line. Figure 8a show cache diagram of
PAR case that false sharing occurs on cache lines. Meanwhile,
figure 8b illustrates how PAR_SPC_PAD case avoids false sharing
effects by isolating each array element onto separate cache lines.

Figure 8. Cache line structures of Parallel FS (PAR) and Parallel

FS + Spacing and Padding remedies (PAR_SPC_PAD)

4.0 Hardware specifications
The experiment performs on three specified types of multicore
processors: Intel Core2 Duo T5270, AMD Turion64 X2 TL-58, and
Intel Core i5 520M.

Table 1. Processors’ specifications of testing systems

5.0 Experiment Results
The experiments results are collect and analyzed to understand how
false sharing happens, and how much performance degradation it
causes. The runtime values of five different test cases with varied
data layouts and running schemes are collected. All five cases are
assigned to complete the same amount of workload so that they can
be compared in terms of performance. The details of data
arrangement in each case are as follows.

1. Sequential (SEQ)—a sequential execution of the assigned
workload on one core.

2. Parallel FS (PAR)—an execution of the assigned workload on
all available cores in parallel. The amount of workload is
divided equally for every core. There will be data contention in
cache lines. The runtime on this case is expected to be
influenced by false sharing.

3. Parallel FS + Spacing remedy (PAR_SPC)—an execution of
the assigned workload on all available cores in parallel. The
amount of workload is divided equally for every core.
Additionally, this case applies the Spacing technique to avoid
false sharing effects on the array elements.

4. Parallel FS + Padding remedy (PAR_PAD)—an execution of
the assigned workload on all available cores in parallel. The
amount of workload is divided equally for every core. This
case implements the Padding technique to prevent false
sharing occurring on the array metadata.

5. Parallel FS + Spacing and Padding remedies
(PAR_SPC_PAD)—an execution of the assigned workload on
all available cores in parallel. The amount of workload is
divided equally for every core. Moreover, this case combines
Spacing and Padding techniques so as to completely eliminate
false sharing effects on the array elements and metadata.

5.1 Experiment results
Speed-up and efficiency are calculated from the runtime. Both
numbers are computed as relative parallel performance based upon
the sequential runtime by following equations [3].

 Speed-up(x) = sequential runtime / parallel runtime (1)
 Efficiency (%) = (speed-up / number of cores) *100 (2)

Table 2 amasses all experiment results which are speed-ups,
efficiency as well as performance degradation computed in terms of
loss efficiency. Values of each hardware configurations are
relatively compared based upon sequential execution figures.

Table 2. Experiment results summary

Figure 9. Intel Core2 Duo T5270 speed-ups and efficiency

Figure 10. AMD Turion64 X2 TL-58 speed-ups and efficiency

Figure 11. Intel Core i5 520M speed-ups and efficiency

5.1.1 Intel Core2 Duo T5270
Figure 9 (left) show speed-up ratios of the four parallel cases
calculated based upon the Sequential case (SEQ) speed-up (1.0x).

The speed-up ratios demonstrate that false sharing has the most
influences on PAR case execution (0.51x), and less impacts on the
two cases with remedial techniques, PAR_SPC (0.76x) and
PAR_PAD (0.99x). The PAR_SPC_PAD case obtains a practical
value at 1.75x in speed.
Theoretically, two cores should accelerate system performance for
two times (2x). However, the speed-up ratio in practical does not
reach the theoretical value since some system resources are used to
fork working threads, and synchronize data among those threads. A
speed-up ratio range of 1.5x to 1.9x is considered practical in the
level of parallelism with two processing cores [2].
Efficiency is a fairly good indicator to measure performance per
processing unit. The Sequential case is a base value with 100%
efficiency. For two cores working in parallel, the system must run
two times faster than single core to achieve full efficiency. Figure 9
(right) shows the efficiency with a similar pattern to speed-up
ratios, PAR at 25.48%, PAR_SPC at 37.85%, PAR_PAD 49.43%,
and PAR_SPC_PAD at 87.58%. The amount of lost efficiency
results from the different degrees of false sharing impact. The more
false cache line sharing occurs, the lower performance it obtains.

5.1.2 AMD Turion64 X2 TL-58
Consider the speed-up of the PAR case, it does not scale well (0.5x)
compared to the sequential case (1.0x). When the PAR case is
employed with the Spacing technique to become the PAR_SPC, the
speed-up augments to be 0.73x. The PAR_PAD also produces a
greater speed-up (0.63x) compared to the PAR case as shown in
figure 10 (left).

False sharing turns down speed-ups of the three mentioned cases in
different degrees. However, the Parallel FS + Spacing and Padding
remedies case (PAR_SPC_PAD) gains a promising speed-up at
1.97x, which is virtually close to an ideal value at 2.0x.

Among all parallel cases, only the PAD_SPC_PAD gains high
efficiency at 98.34% as shown in figure 10 (right). The efficiency in
any other cases reflects the different performance degradation by
different degrees of false sharing effects.

5.1.3 Intel Core i5 520M
Figure 11 (left) shows speed-up ratios on the Intel Core i5 520M
test system. The Parallel FS (PAR) case represents the poor
performance execution with 0.57x in speed, or around two times
slower than the sequential case. An improvement takes place on the
PAR_SPC case (0.98x) and the PAR_PAD case (1.06x). The
PAR_SPC_PAD case gains the highest speed-up at 2.17x.

Intel Core i5’s efficiency has a similar pattern to two previous test
systems. The efficiency of the PAR_SPC_PAD is noticeable with a
“superlinear” number (108.57%), which efficiency exceeds 100%
[3]. When a program which makes use of data stored in a share
cache is repeatedly executed, its performance will substantially
boost up because of memory locality. Another factor to reach a
superlinear value is capablility of executing many concurrent
threads. Intel Core i5 520M processor comes up with Hyper-
Threading technology; each core can execute two threads at a time.
Therefore, it increases probability for threads to take advantage of
memory locality.

5.2 Performance drops caused by false sharing
From table 1, performance drops caused by false sharing is
observed by efficiency losses.

The PAR case suffers from false sharing the most. The system
performance drops by three fourth of the speculated efficiency,
which caused efficiency loss 70-75%. The PAR_SPC case and the
PAR_PAD case also have significant performance degradation
approximate 50-70%, but less deficit compared to the PAR case.
The PAR_SPC_PAD case performs efficiently, especially on the
Core i5 520M processor. The case has a small number of losses on
all three systems: Intel Core2 Duo T5270 at 12.48%, AMD Turion
64 X2 at 1.66%, and no loss for Intel Core i5 520M (8.57% in
surplus).

5.3 False sharing impacts comparison on multiprocessor and
dual core systems
The previous research points out the severity of the false sharing
impact on multiprocessor systems in two orders of magnitudes (-
100x) [6]. However, the experiment results in this paper
demonstrate the worst case of performance degradation by a factor
of four (-4x). An important observation is the degree of impact on a
multiprocessor system is far aggressive than that on a dual core
system. The suspicious factor is memory hierarchy.

Figure 12. Cache Ping-ponging on multi-level memory

in a multiprocessor system

Figure 13. Cache Ping-ponging on multi-level memory

in a dual core system

Figure 12 and 13 show multi-level memory hierarchies of a
multiprocessor system and an Intel dual core processor system.
Supposed that the program similar to the one that runs in the test
experiment is executed in a multiprocessor system, false sharing
occurs on the system. In the PAR case, the array elements in a
cache line are updated by many processors; false sharing results in
considerably numbers of cache line invalidation. When a processor
writes a new value to its array elements, the whole cache line needs
to be written back to the main memory, and reload to all processors’
caches, known as cache Ping-Pong in figure 12. The CPUs’ read
and write operations befall between their caches and the (shared)
main memory, in other words, between the cache and the main
memory hierarchy. Since the processors need to access to the main
memory through a shared bus, the system suffers from cache misses
penalty. The amount of CPU waiting time substantially increases by
the cache miss penalty as a following equation [10]:

Cache miss penalty (X bytes) = main memory access latency
+ X bytes/data receive rate (3)

Cache miss penalty is computed by adding up a delay of main
memory access and data transfer time from main memory to cache
memory. The data transfer rate depends on the shared memory bus.
Because the bus is used by all processors to access to main memory
and peripheral devices, transfer time of the bus has much higher
latency than that of an internal bus between caches and CPUs.
Therefore, the substantial amount of increasing time caused by
cache miss penalty results in significant performance reduction
stemmed from the false sharing problem.

The similar scenario of false sharing occurs on a dual core system.
Cache Ping-Ponging also happens in the system as shown in figure
13. Yet, the cache invalidation in the dual core system takes place in
between the L1 cache and the shared L2 cache, instead in between
the cache and the main memory in multiprocessor systems. The on-
die caches are local memories having low latency. Data transfers
among caches do not require bus transactions as data transfers
between cache and main memory. Thus, the severity of false
sharing on a dual core system does not cause significant
performance degradation as it does on a multiprocessor system.

6.0 Conclusion
The study of false sharing effects on dual-core CPUs demonstrates
the existence of false sharing on multicore CPUs. The issue
apparently degrades overall performance in a concurrent execution.

(1) In the test case with false sharing occurs, PAR, on dual core
processors, the efficiency degrades by approximately 70-
75%. In other words, the test program works slower than
speculated by four times; it runs at 25-30% efficiency
instead of 100% efficiency.

(2) For the partially false sharing remedial cases, PAR_SPC
and PAR_PAD, have certain runtime improvements to be
30-50% efficiency. However, the false sharing impact still
stalls the two test cases, and leads to significant efficiency
loss.

(3) On the best case, PAR_SPC_PAD, completely avoids false
sharing, and obtains performance at nearly 100% efficiency.

All three test systems, Intel Core2 Duo T5270, AMD Turion64 X2,
and Intel Core i5 520M processors, are consistently suffering from
false sharing effects resulting in performance drops at 50%-75%
efficiency.

On one hand, programmers can be optimistic for improvements on
multicore CPUs since the ratio of performance drops caused by the
false sharing problem on a dual core system is not as high as that on
a multiprocessor system. The findings in this paper indicates
performance of a dual core system drops approximately by a factor
of four (-4x). Unlike the false sharing impact on a multiprocessor
system, the previous research reported the performance loss as high
numbers as one hundred times (-100x) on an eight processor
system. The different degrees of the false sharing impacts stem
from the different memory architectures between those two
systems. The shared cache implementation on Intel dual core
processors alleviates the adverse impact caused by false sharing.
For AMD processors, although each core has a separate L2 cache
which is subject to have false sharing problems, the processor
handles the data synchronization among caches on all cores by
using MOESI coherency protocol and dedicated data paths, the
synergy of the two parts are named as Hyper Transport technology.
In brief, both Intel and AMD have deliberately come up with the
intelligent designs to cope with the data sharing issue across cores.

On the other hand, the programmers must still be aware of
performance degradation caused by false sharing. For dual core
processor system, a parallel version of the program working four
times slower is considered unacceptable since it runs even slower
than sequential version running on a single core processor. The
false sharing problem, therefore, is a major potential issue in
parallel programming on multicore CPUs.
We proposed and demonstrated implementation of Spacing and
Padding techniques to avoid false sharing. These approaches
remedy, or totally eliminate, the false sharing impact. Nevertheless,
the implementation of Spacing and Padding techniques barters with
memory space. For instance, on the dual core test systems, the
amount of memory used in the PAR case is 8 bytes of the array plus
the metadata size, which can be rounded up to be 16 bytes. The
modified array size in the PAR_SPC_PAD case becomes three
cache lines, or 192 bytes, two cache lines for two elements and one
cache line for metadata. Thus, the cost to avoid false sharing is
rather expensive.

7.0 Future Work
The processors with four cores, six cores, and eight cores will be a
standard for personal computers in the foreseeable future. Also, the
internal architecture of processors keeps changing to handle inter-
core communication efficiently. For Intel Core-i7, data on each core
is synchronized through inter-core connection paths known as Intel
Quick Path technology [1]. AMD Phenom X4 Quad-core uses
Hyper Transport 3.0 technology maximizing throughput to be
51.2Gbit/second [11]. All break-through technologies are invented
to tackle data synchronization among cores. However, does the new
cutting edge technology really work on all types of applications
without the false sharing issue? If it does, that is good news for
programmers. This paper shows the existence of false sharing on
dual core CPUs, and it could imply that false sharing would still
occur on a more-than-two-core processor. In case the problem does
exist, how much is the impact on a quad core CPU? How much is
the performance loss on an eight core or a sixteen core processor?
The evaluation of the false sharing impact on such many cores
CPUs will be subject to further research in the future.

8. References
[1] AMD, Intel ready 'many core' processors. Web site: http://
news.cnet.com/8301-13924_3-10471333-64.html

[2] Pase, M. D., Eckl, M.A. 2005. A Comparison of Single-Core
and Dual-Core Opteron Processor Performance for HPC. IBM
Corporation. Web site: ftp://ftp.software.ibm.com/eserver/
benchmarks/wp_Dual_Core_072505.pdf
[3] The Code Project. Butler, N. Superlinear: an investigation into
concurrent speed-up. Web site: http://www.codeproject.com/
KB/threads/Superlinear.aspx
[4] Loshin, D., Effective Memory Programming. McGraw-Hill.

[5] Chandler, D., Reduce False Sharing in .NET. Web site: http://
software.intel.com/en-us/articles/reduce-false-sharing-in-net/

[6] The Code Project. Butler, N. Concurrent Hazards: False
Sharing. Web site: http://www.codeproject.com/KB/threads/
FalseSharing.aspx

[7] Weidendorfer, J., et al. 2007. Latencies of Conflicting Writes on
Contemporary Multicore Architectures. Springer Berlin Heidelberg,
vol. 4617, pp. 318-327.

[8] Bolosky, W. J., Scott, M. L. 1993. False sharing and its effect on
shared memory performance. In USENIX Systems on USENIX
Experiences with Distributed and Multiprocessor Systems - Volume
4 (Sedms'93), Vol. 4. USENIX Association, Berkeley, CA, USA, 3-
3.
[9] Cebix. Cache Line Ping-Pong. Web site:
http://everything2.com/title/cache+line+ping-pong
[10] Adve, S. CS433g final exam Web site: http://
www.cs.uiuc.edu/class/fa05/cs433g/assignments/Fall_2004_Final_
Solution.pdf
[11] Hyper Transport Consortium. HyperTransport 3.1
Specification. Web site: http://www.hypertransport.org/
default.cfm?page=HyperTransportSpecifications31
[12] Torrellas, J., Lam, H.S., Hennessy, J.L., False sharing and
spatial locality in multiprocessor caches. In Computers, IEEE
Transactions, vol.43, no.6, pp.651-663, Jun 1994. doi:
10.1109/12.286299

