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ABSTRACT 
False Sharing (FS) is a notorious problem occurring in 
multiprocessor systems. It results in a performance degradation for 
multi-threaded programs. Since the architecture of a multicore 
processor is very similar to that of a multiprocessor system, the 
presence of the false sharing problem is speculated. Its effects 
should be measurable in terms of efficiency degradation in a 
concurrent environment on multicore systems.  
This article discusses the causes of the false cache line sharing 
problem in dual-core CPUs, and demonstrates how it lessens the 
system performance by measuring speed-ups and efficiency of the 
experiments in sequential compared to parallel executions. Thus, 
demonstration programs are developed to collect the execution 
results of the test program with and without false sharing on the 
specific system hardware. Certain techniques are implemented to 
eliminate false sharing. These techniques are described, and their 
effectiveness in mitigating the speed-up and efficiency lost from 
false sharing is analyzed. 
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1.0 Introduction 
The current trend of processor design is towards multicore CPUs. 
Recently, eight-core and twelve-core CPUs have been in the 
manufacturing process for both AMD and Intel [1]. Processor 
manufacturers overcome the heat-wall constraint by packing more 
than one computing module, so-called cores, into a package. 
Sometimes the chip is simply referred to as a Chip Multiprocessor 
(CMP); however, a processor can also be coined by the number of 
its cores. For example, a two core processor is called as a “dual 
core” CPU. Having many processing cores working together 
increases complexity in hardware design and software production. 
The hardware manufacturer is not the only party involved in taking 
advantage of the multiple core processors. Programmers must also 
understand how to make use of additional cores, and design the 
application by dividing processes into several sub-tasks, and assign 
them to several threads to utilize all available computing cores.  

A potential problem in multiprocessor systems that can cause poor 
performance by mistakenly updating data in a shared cache line is 
the “false sharing” problem.  Previous research on multiprocessor 
systems demonstrated huge impacts of the false sharing problem 
[5][6][8][9][12]. It can cause performance degradations of 20x on a 
four-processor system, and 100x on an 8-processor system.  
Because multiprocessor and multicore architectures are similar, we 
hypothesize that FS can occur on multicore systems too.  This paper 
demonstrates the existence of false sharing on systems with dual 
core CPUs, measures the impact of the false sharing issue, and 
compares the performance drops caused by false sharing between a 
dual core processor to a multiprocessor system. 
 

1.1. Memory hierarchy and cache elements 
Levels and types of memories are distinguished by their access 
time, capacities and complexities. Certain types of CPUs, along 
with their cache and main memory are selected as representatives to 
illustrate the memory hierarchy of multiprocessor and multicore 
systems. As false sharing is previously notorious in multiprocessor 
systems, the memory architecture of a Symmetric Multiprocessor 
(SMP) is compared with that of a Chip Multiprocessor (CMP). 
 

1.1.1 Memory architecture in Symmetric Multiprocessor  
The Symmetric Multiprocessor (SMP) is a classical configuration 
for a multiprocessor system. The memory hierarchy of SMP is 
categorized in two levels: cache memory and main memory. CPU 
access time, or latency, on the cache is far less than that from the 
main memory.  Processors use the cache memory as a local 
memory, and consider the main memory to be a remote memory. 
CPUs need to request data through a shared network, bus, or 
crossbar in order to read from and write to the main memory. A 
simple diagram of a SMP system is shown in figure 1. 
 

1.1.2 Memory architecture in Chip Multiprocessor  
Chip Multiprocessor (CMP) is a way to name multicore processors. 
The cache in a CMP system is divided into tiers similar to a SMP, 
but a CMP’s structure adds more layers of caches, e.g. a cache level 
2, interleaving the L1 cache and the main memory so as to reduce 
the latency gap between the upper and the lower memory layers as 
shown in figure 2.    



 
Figure 1. Memory hierarchy in SMP [4]  

 

 
Figure 2. Memory hierarchy in CMP 

 

The diagram shows three distinct layouts of caches. The Intel 
processor (left) implements a shared L2 and L3 cache enabling all 
cores to access shared data. AMD CPUs (middle) make use of a 
special dedicated hardware and protocol, Hyper Transport 
technology, to synchronize shared data between each core’s L2 
cache. Recently, a more advanced CPU, such as the Intel Core i5, a 
processor is composed of two levels of separate caches, and a 
shared L3 cache (right). 
 

1.1.3 Cache lines 
A cache line is the smallest unit of data that can be transferred 
between the main memory and the cache. The cache line size varies 
by processor makers; the size can be directly obtained from the 
processor’s specification sheets, or retrived by executing some 
manufacturer-provided instruction sets. All processors in our test 
hardware have a 64-byte cache line size.  
 

1.2 Multiprocessor/multicore cache coherency 
For a multiprocessor system, all processors typically have their own 
caches, and machine vendors must ensure that data across 
processors are coherent. A protocol must be used to enforce data 
consistency among all the cores’ caches so that the system correctly 
processes valid data; this protocol is called a “cache coherency” 
protocol. The protocol manages data to be updated appropriately 
using a write-back policy, resulting in decent overall performance 
by reducing the number of main memory updates.  
 

1.3 False cache line sharing 
False cache line sharing or false sharing in short is a form of cache 
trashing caused by a mismatch between the memory layout of write-
shared data across processors and the reference pattern to the data. 
It occurs when two or more threads in parallel programs are 
assigned to work with different data elements in the same cache 
line. In other words, false sharing is a side effect in a 
multiprocessor system due to cache coherency.  

Although the multiprocessor’s system scale seems quite different 
from that of a small personal computer, the internal architecture of a 
multiprocessor is comparable to a multicore microprocessor chip in 
terms of the number of processors and memory hierarchy. A 
computer with dual-core, quad-core, or octal-core processors is now 
considered as a type of multiprocessor system. Thus, it would seem 
to be susceptible to a false sharing problem as well. 

A multiprocessor system must maintain data coherency across 
CPUs. When a processor makes a change on its cache, other 
processors must be aware of the change, and determine whether its 
copy of data in cache needs to be reloaded or not. The cache 
coherency protocol defines rules to maintain data updates among 
processor groups with a minimal number of requests to the main 
memory, thereby optimizing system performance.  

False sharing occurs when threads from different processors 
modify variables which reside on the same cache line. In case of 
Intel’s processors, when the processor invalidates a cache line with 
an outdated value, it fetches an updated value from the main 
memory into its cache line to maintain data validity. Figure 4 and 5 
demonstrate two threads with false sharing on SMP and CMP 
systems respectively. Threads 0 and 1 update variables that are 
adjacent to each other located on the same cache line. Although 
each thread modifies different variables, the cache line keeps being 
invalidated every iteration. As a result, the number of the main 
memory access increases considerably, and causes great delays due 
to the high latency in data transfers between levels of the memory 
hierarchy. The false sharing problem is ocassionally referred to as 
“cache line ping-pong [9].” 
 

 
Figure 4. False cache line sharing on SMP [5] 

 
Figure 5. False cache line sharing on CMP [5] 



2.0 Prior Work  
Many researchers point out the great performance degradation 
caused by the false sharing problem on multiprocessor 
environments. Fewer papers performed tests on multicore CPUs 
since they are a relatively new architecture. The hypothesis in this 
paper is that false sharing would happen in a multicore system as it 
does in a multiprocessor one because it has many common 
components, yet the degree of impact may be different. More details 
will be discussed in the experiment and the result section. 
 

2.1 Concurrent Hazards: False sharing 
Butler did an experiment on a multiprocessor system to measure 
false sharing effects in [6]. The test system is composed of four 
dual core CPUs, total 8 processing units. The best case speed-up at 
the eight-threaded execution shows a 100x difference compared to 
the worst case. The paper employed certain techniques to eliminate 
false sharing effects. 
 

2.2 Latency of conflict writes on Multicore Architecture 

Dr. Josef discussed the latency penalty caused by FS [7]. The work 
shows that the amount of latency declines when the array allocated 
is between 128 Kbytes and 2Mbytes in size, which fits on cache 
level two. At this threshold of the array size, the high latency that 
would have been caused by the false sharing problem disappears. It 
is because shared L2 cache is a “true” sharing cache, and both cores 
can access data without cache invalidation, thereby eliminating 
false sharing. In brief, the experiment proved that shared cache 
between cores can eliminate the adverse impact stemming from 
false sharing. 
 

3.0 Experiment Design 
The experiment results are obtained from the execution time of a 
designated program onto three systems with different types of dual 
core CPUs.  There are five test cases which have the same goal of 
completing an equally specified workload; however, different 
running schemes are set up to reveal the existence of the false 
sharing problem.  
 

3.1 False sharing avoidance techniques 

Since false sharing results from two or more cores using data in the 
same cache line, one way to get rid of it is to eliminate any sharing 
in the same cache line. Hence, certain techniques are proposed in 
order to avoid data sharing by modifying the data arrangement in 
the cache line. 
 

3.1.1 Spacing technique  
The Spacing technique is an approach used to split a contiguous 
allocated space. In an array, a set of variables is typically reserved 
in a chunk to take advantage of locality of reference. For instance, 
when four variables are declared in an array, an allocation 
consisting of four integer-sized adjoining memory blocks is made. 
Using the Spacing technique splits the shared data among the 
reserved array by shifting the offset between each contiguous array 
element so that each element resides on a separate, different cache 
line. 
In figure 6a, integers D1, D2, D3 and D4 reside in the same cache 
line. With the implementation of the Spacing technique, false 
sharing on array data can be avoided as shown in figure 6b. 

3.1.2 Padding technique  
Besides the Spacing technique, Padding is another technique to 
reduce false sharing effects by filling a cache line with a pad.  

A variable declaration requires an extra piece of information to 
manage memory space for the variable. When an array is declared, 
the operating system needs to define metadata that contains the 
array information. Metadata uses space just right before actual data, 
and consists of pointers and header information. For example, every 
array in .NET require metadata such as SZARRAY, which stores 
size information of the array. Whenever a thread read from or writes 
to an element, there is a read of the metadata happening before that 
of the actual array. Using Spacing technique does not separate 
metadata from the array; they still reside on the same cache line as 
in figure 6b. Therefore, false sharing is happening between the 
metadata and the first array element. To eliminate sharing on 
metadata, the cache line is padded so that the first element is shifted 
to the next cache line. Figure 6c illustrates the cache line structure 
using Padding. 

 
Figure 6. Cache line structure of Spacing, and Padding arrays 

 

3.1.3. Combined Spacing and Padding technique 
Using a Spacing-only or a Padding-only technique would not 
overcome the false sharing problem [6]. Therefore, the combination 
of both techniques is the best way to completely avoid false sharing 
by isolating each elements onto a single cache line. Figure 7, for 
example, shows a cache line layout of four array elements, 
including metadata. 

 
Figure 7. Cache line structure of combined Padding                    

and Spacing technique 



3.2 Testing code 
The testing code, which is adapted from [6], demonstrates existence 
of the false sharing problem. The processing time of the program 
with the false sharing problem is compared to the program without 
the problem. The identical experiment is executed on three 
hardware configurations to compare the performance loss among 
different systems. The size of the Padding and Spacing variables are 
defined to be 64 bytes, which is equal to a size of one cache line, to 
ensure that every element is shifted off onto a separate cache line. 
The data arrangement is the crucial focus in order to avoid false 
sharing with five testing cases:  SEQ, PAR, PAR_SPC, PAR_PAD 
and PAR_SPC_PAD.  

The following code fragments show how each testing case declares 
the data array, sets an offset, and executes the workload. 

 
… 

 
… 

 
 

For example, suppose that a system consists of a four core processor 
working on four integer elements; each core works on an array 
element. In the Parallel FS case (PAR), all four threads work on the 
contiguous array elements as shown in figure 11a. The array data is 
arbitrarily defined to start at the memory address 156. Generally an 
integer requires four bytes of memory space; therefore, four integers 
can be allocated in one cache line. Figure 8a show cache diagram of 
PAR case that false sharing occurs on cache lines. Meanwhile, 
figure 8b illustrates how PAR_SPC_PAD case avoids false sharing 
effects by isolating each array element onto separate cache lines.  

 
Figure 8. Cache line structures of Parallel FS (PAR) and Parallel 

FS + Spacing and Padding remedies (PAR_SPC_PAD) 

4.0 Hardware specifications 
The experiment performs on three specified types of multicore 
processors: Intel Core2 Duo T5270, AMD Turion64 X2 TL-58, and 
Intel Core i5 520M.  
 

Table 1. Processors’ specifications of testing systems  
 

 
 

 

5.0 Experiment Results 
The experiments results are collect and analyzed to understand how 
false sharing happens, and how much performance degradation it 
causes. The runtime values of five different test cases with varied 
data layouts and running schemes are collected. All five cases are 
assigned to complete the same amount of workload so that they can 
be compared in terms of performance. The details of data 
arrangement in each case are as follows. 

1. Sequential (SEQ)—a sequential execution of the assigned 
workload on one core. 

2. Parallel FS (PAR)—an execution of the assigned workload on 
all available cores in parallel. The amount of workload is 
divided equally for every core. There will be data contention in 
cache lines. The runtime on this case is expected to be 
influenced by false sharing. 

3. Parallel FS + Spacing remedy (PAR_SPC)—an execution of 
the assigned workload on all available cores in parallel. The 
amount of workload is divided equally for every core. 
Additionally, this case applies the Spacing technique to avoid 
false sharing effects on the array elements. 

4. Parallel FS + Padding remedy (PAR_PAD)—an execution of 
the assigned workload on all available cores in parallel. The 
amount of workload is divided equally for every core. This 
case implements the Padding technique to prevent false 
sharing occurring on the array metadata. 

5. Parallel FS + Spacing and Padding remedies 
(PAR_SPC_PAD)—an execution of the assigned workload on 
all available cores in parallel. The amount of workload is 
divided equally for every core. Moreover, this case combines 
Spacing and Padding techniques so as to completely eliminate 
false sharing effects on the array elements and metadata.  

 

5.1 Experiment results 
Speed-up and efficiency are calculated from the runtime. Both 
numbers are computed as relative parallel performance based upon 
the sequential runtime by following equations [3].  
 

             Speed-up(x) = sequential runtime / parallel runtime      (1) 
             Efficiency (%) = (speed-up / number of cores) *100       (2) 
 

Table 2 amasses all experiment results which are speed-ups, 
efficiency as well as performance degradation computed in terms of 
loss efficiency. Values of each hardware configurations are 
relatively compared based upon sequential execution figures.  



Table 2. Experiment results summary 

 

 

 
Figure 9. Intel Core2 Duo T5270 speed-ups and efficiency 

 

 
Figure 10. AMD Turion64 X2 TL-58 speed-ups and efficiency 

 

 

Figure 11. Intel Core i5 520M speed-ups and efficiency 

5.1.1 Intel Core2 Duo T5270 
Figure 9 (left) show speed-up ratios of the four parallel cases 
calculated based upon the Sequential case (SEQ) speed-up (1.0x).  

The speed-up ratios demonstrate that false sharing has the most 
influences on PAR case execution (0.51x), and less impacts on the 
two cases with remedial techniques, PAR_SPC (0.76x) and 
PAR_PAD (0.99x). The PAR_SPC_PAD case obtains a practical 
value at 1.75x in speed. 
Theoretically, two cores should accelerate system performance for 
two times (2x). However, the speed-up ratio in practical does not 
reach the theoretical value since some system resources are used to 
fork working threads, and synchronize data among those threads. A 
speed-up ratio range of 1.5x to 1.9x is considered practical in the 
level of parallelism with two processing cores [2].  
Efficiency is a fairly good indicator to measure performance per 
processing unit. The Sequential case is a base value with 100% 
efficiency. For two cores working in parallel, the system must run 
two times faster than single core to achieve full efficiency. Figure 9 
(right) shows the efficiency with a similar pattern to speed-up 
ratios, PAR at 25.48%, PAR_SPC at 37.85%, PAR_PAD 49.43%, 
and PAR_SPC_PAD at 87.58%. The amount of lost efficiency 
results from the different degrees of false sharing impact. The more 
false cache line sharing occurs, the lower performance it obtains. 
 

5.1.2 AMD Turion64 X2 TL-58 
Consider the speed-up of the PAR case, it does not scale well (0.5x) 
compared to the sequential case (1.0x). When the PAR case is 
employed with the Spacing technique to become the PAR_SPC, the 
speed-up augments to be 0.73x. The PAR_PAD also produces a 
greater speed-up (0.63x) compared to the PAR case as shown in 
figure 10 (left).  

False sharing turns down speed-ups of the three mentioned cases in 
different degrees. However, the Parallel FS + Spacing and Padding 
remedies case (PAR_SPC_PAD) gains a promising speed-up at 
1.97x, which is virtually close to an ideal value at 2.0x.  

Among all parallel cases, only the PAD_SPC_PAD gains high 
efficiency at 98.34% as shown in figure 10 (right). The efficiency in 
any other cases reflects the different performance degradation by 
different degrees of false sharing effects. 
 

5.1.3 Intel Core i5 520M 
Figure 11 (left) shows speed-up ratios on the Intel Core i5 520M 
test system. The Parallel FS (PAR) case represents the poor 
performance execution with 0.57x in speed, or around two times 
slower than the sequential case. An improvement takes place on the 
PAR_SPC case (0.98x) and the PAR_PAD case (1.06x). The 
PAR_SPC_PAD case gains the highest speed-up at 2.17x. 

Intel Core i5’s efficiency has a similar pattern to two previous test 
systems. The efficiency of the PAR_SPC_PAD is noticeable with a 
“superlinear” number (108.57%), which efficiency exceeds 100% 
[3]. When a program which makes use of data stored in a share 
cache is repeatedly executed, its performance will substantially 
boost up because of memory locality. Another factor to reach a 
superlinear value is capablility of executing many concurrent 
threads. Intel Core i5 520M processor comes up with Hyper-
Threading technology; each core can execute two threads at a time. 
Therefore, it increases probability for threads to take advantage of 
memory locality. 



5.2 Performance drops caused by false sharing 
From table 1, performance drops caused by false sharing is 
observed by efficiency losses. 

The PAR case suffers from false sharing the most. The system 
performance drops by three fourth of the speculated efficiency, 
which caused efficiency loss 70-75%. The PAR_SPC case and the 
PAR_PAD case also have significant performance degradation 
approximate 50-70%, but less deficit compared to the PAR case. 
The PAR_SPC_PAD case performs efficiently, especially on the 
Core i5 520M processor. The case has a small number of losses on 
all three systems: Intel Core2 Duo T5270 at 12.48%, AMD Turion 
64 X2 at 1.66%, and no loss for Intel Core i5 520M (8.57% in 
surplus). 
 

5.3 False sharing impacts comparison on multiprocessor and 
dual core systems 
The previous research points out the severity of the false sharing 
impact on multiprocessor systems in two orders of magnitudes (-
100x) [6]. However, the experiment results in this paper 
demonstrate the worst case of performance degradation by a factor 
of four (-4x). An important observation is the degree of impact on a 
multiprocessor system is far aggressive than that on a dual core 
system. The suspicious factor is memory hierarchy. 
 
 

 
Figure 12. Cache Ping-ponging on multi-level memory  

in a multiprocessor system 
 

 
Figure 13. Cache Ping-ponging on multi-level memory  

in a dual core system 

Figure 12 and 13 show multi-level memory hierarchies of a 
multiprocessor system and an Intel dual core processor system. 
Supposed that the program similar to the one that runs in the test 
experiment is executed in a multiprocessor system, false sharing 
occurs on the system. In the PAR case, the array elements in a 
cache line are updated by many processors; false sharing results in 
considerably numbers of cache line invalidation. When a processor 
writes a new value to its array elements, the whole cache line needs 
to be written back to the main memory, and reload to all processors’ 
caches, known as cache Ping-Pong in figure 12. The CPUs’ read 
and write operations befall between their caches and the (shared) 
main memory, in other words, between the cache and the main 
memory hierarchy. Since the processors need to access to the main 
memory through a shared bus, the system suffers from cache misses 
penalty. The amount of CPU waiting time substantially increases by 
the cache miss penalty as a following equation [10]:   
 

Cache miss penalty (X bytes) = main memory access latency  
+ X bytes/data receive rate           (3) 

 

Cache miss penalty is computed by adding up a delay of main 
memory access and data transfer time from main memory to cache 
memory. The data transfer rate depends on the shared memory bus. 
Because the bus is used by all processors to access to main memory 
and peripheral devices, transfer time of the bus has much higher 
latency than that of an internal bus between caches and CPUs.  
Therefore, the substantial amount of increasing time caused by 
cache miss penalty results in significant performance reduction 
stemmed from the false sharing problem. 

The similar scenario of false sharing occurs on a dual core system. 
Cache Ping-Ponging also happens in the system as shown in figure 
13. Yet, the cache invalidation in the dual core system takes place in 
between the L1 cache and the shared L2 cache, instead in between 
the cache and the main memory in multiprocessor systems. The on-
die caches are local memories having low latency. Data transfers 
among caches do not require bus transactions as data transfers 
between cache and main memory. Thus, the severity of false 
sharing on a dual core system does not cause significant 
performance degradation as it does on a multiprocessor system. 
 

6.0 Conclusion 
The study of false sharing effects on dual-core CPUs demonstrates 
the existence of false sharing on multicore CPUs. The issue 
apparently degrades overall performance in a concurrent execution.   

(1) In the test case with false sharing occurs, PAR, on dual core 
processors, the efficiency degrades by approximately 70-
75%. In other words, the test program works slower than 
speculated by four times; it runs at 25-30% efficiency 
instead of 100% efficiency.  

(2) For the partially false sharing remedial cases, PAR_SPC 
and PAR_PAD, have certain runtime improvements to be 
30-50% efficiency. However, the false sharing impact still 
stalls the two test cases, and leads to significant efficiency 
loss.  

(3) On the best case, PAR_SPC_PAD, completely avoids false 
sharing, and obtains performance at nearly 100% efficiency.  

All three test systems, Intel Core2 Duo T5270, AMD Turion64 X2, 
and Intel Core i5 520M processors, are consistently suffering from 
false sharing effects resulting in performance drops at 50%-75% 
efficiency. 



On one hand, programmers can be optimistic for improvements on 
multicore CPUs since the ratio of performance drops caused by the 
false sharing problem on a dual core system is not as high as that on 
a multiprocessor system. The findings in this paper indicates 
performance of a dual core system drops approximately by a factor 
of four (-4x). Unlike the false sharing impact on a multiprocessor 
system, the previous research reported the performance loss as high 
numbers as one hundred times (-100x) on an eight processor 
system. The different degrees of the false sharing impacts stem 
from the different memory architectures between those two 
systems.  The shared cache implementation on Intel dual core 
processors alleviates the adverse impact caused by false sharing. 
For AMD processors, although each core has a separate L2 cache 
which is subject to have false sharing problems, the processor 
handles the data synchronization among caches on all cores by 
using MOESI coherency protocol and dedicated data paths, the 
synergy of the two parts are named as Hyper Transport technology. 
In brief, both Intel and AMD have deliberately come up with the 
intelligent designs to cope with the data sharing issue across cores. 

On the other hand, the programmers must still be aware of 
performance degradation caused by false sharing. For dual core 
processor system, a parallel version of the program working four 
times slower is considered unacceptable since it runs even slower 
than sequential version running on a single core processor. The 
false sharing problem, therefore, is a major potential issue in 
parallel programming on multicore CPUs.  
We proposed and demonstrated implementation of Spacing and 
Padding techniques to avoid false sharing. These approaches 
remedy, or totally eliminate, the false sharing impact. Nevertheless, 
the implementation of Spacing and Padding techniques barters with 
memory space. For instance, on the dual core test systems, the 
amount of memory used in the PAR case is 8 bytes of the array plus 
the metadata size, which can be rounded up to be 16 bytes. The 
modified array size in the PAR_SPC_PAD case becomes three 
cache lines, or 192 bytes, two cache lines for two elements and one 
cache line for metadata. Thus, the cost to avoid false sharing is 
rather expensive.   
 

7.0 Future Work 
The processors with four cores, six cores, and eight cores will be a 
standard for personal computers in the foreseeable future. Also, the 
internal architecture of processors keeps changing to handle inter-
core communication efficiently. For Intel Core-i7, data on each core 
is synchronized through inter-core connection paths known as Intel 
Quick Path technology [1]. AMD Phenom X4 Quad-core uses 
Hyper Transport 3.0 technology maximizing throughput to be 
51.2Gbit/second [11]. All break-through technologies are invented 
to tackle data synchronization among cores. However, does the new 
cutting edge technology really work on all types of applications 
without the false sharing issue? If it does, that is good news for 
programmers. This paper shows the existence of false sharing on 
dual core CPUs, and it could imply that false sharing would still 
occur on a more-than-two-core processor. In case the problem does 
exist, how much is the impact on a quad core CPU?  How much is 
the performance loss on an eight core or a sixteen core processor? 
The evaluation of the false sharing impact on such many cores 
CPUs will be subject to further research in the future. 
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