
 

Abstract- Parabolic partial differential equations are often 

used to model systems involving heat transfer, acoustics, and 

electrostatics. The need for more complex models with 

increasing precision drives greater computational demands 

from processors. Since solving these types of equations is 

inherently parallel, GPU computing offers an attractive 

solution for drastically decreasing time to completion, 

power usage, and increasing the computation per dollar. 

However, since GPU computing involves a much different 

programming paradigm than traditional processors, 

techniques for optimizing solvers must still be developed. 

This paper presents several optimization strategies for 

accelerating solvers using CUDA to implement difference 

equations and compares their performances to a standard 

processor. The results demonstrate that different strategies 

should be used for different GPU cards, such as the C1060 

and GTX 480, resulting in up to 197 times and 257 times 

single-precision and up to 133 and 163 times double-

precision speedups respectively. 
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1 Introduction 

Parabolic partial differential equations (PDEs) are useful 

in several problem spaces, such as heat transfer, acoustic 

modeling, and electrostatics. While numerical solution 

techniques are well-known, there are significant needs that 

can be addressed by solving them with GPU computing. 

With well-crafted algorithms, GPUs can potentially solve 

systems significantly faster, allowing decreased simulation 

times and/or increased resolution in the model. GPUs can 

also solve problems using an estimated one tenth to one 

twentieth of the power required by traditional 

supercomputing systems [1], thereby reducing costs.  

This paper utilizes CUDA for GPU computing, which is 

an extension to several common programming languages 

that requires an NVIDIA-based video card for execution. 

NVIDIA GPUs are widely deployed and thus represents a 

very common computing platform. Additionally, NVIDIA’s 

Tesla series specifically targets high-performance 

computing. For easy scalability, NVIDIA cards are designed 

around a generalized processing unit called a streaming 

multiprocessor (SM). This allows the performance of CUDA 

applications to scale based on the number and hardware 

implementation of the SMs contained on a given card. 

This paper proposes a set of optimizations for solving 

parabolic PDEs target several issues that arise when porting 

code to CUDA which must be deliberately addressed for 

efficient use of the GPU [2, 3]. First, GPU architectures 

generally mitigate memory latency by using large numbers 

of threads and extremely fast context switching instead of 

deep memory caches found in CPUs, although the Fermi 

architecture released in 2010 did add some memory caching. 

This requires optimizations to exploit enough parallelism to 

make sufficient threads available and to carefully manage 

the number of memory accesses required. Second, data 

accesses should be formed into coalesced reads and writes. 

See [2] for more details on coalesced accesses. Next, each 

SM has a limited amount of shared memory, usually 8 kB to 

48 kB, that can be leveraged to reduce the number of RAM 

accesses. Finally, SMs are designed to execute a group of 32 

threads, called a warp, concurrently. However, all threads in 

the warp must be executing the same instruction. Branching 

code creates divergence, which can drastically lower the 

throughput as only a subset of the warp executes. Carefully 

constructed code that limits divergence can minimize this 

effect. 

Difference equations were used to solve several model 

parabolic PDEs, and optimizations were developed to 

address the above issues. Previous work in GPU computing 

focused on this topic include [4] which attained a 1.1 to 11 

times performance improvement on two-dimensional 

parabolic PDEs using double-precision floating point 

arithmetic. Another effort targeted one-dimensional PDEs 

for market making real time pricing, and risk management 

achieved a 25 times speedup over a well-optimized CPU 

implementation using a single Tesla C1060, and a 38 times 

improvement using two C1060s by leveraging cyclic 

reduction [5].  A mixed precision method has been presented 

to solve ill-conditioned tridiagonal systems that previously 

were limited to CPU solutions with a 10-fold 

improvement[6].  
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Using the techniques proposed in this paper on two-

dimensional parabolic PDEs, speed-ups of 197 times and 

257 times were achieved using a C1020 Tesla and a GTX 

480 respectively on single-precision floating point 

performance compared to an Intel i7 920. Speedups up to 

133 and 163 times were attained on double-precision 

floating point performance. 

This paper is organized as follows. Section 2 outlines the 

general approach used to solve parabolic PDEs using 

CUDA. Section 3 describes three optimization strategies that 

were implemented. Section 4 explains the experimental 

setup used.  Section 5 presents the results of testing these 

optimizations, and Section 6 concludes the paper. 

 

2 General Approach to Solver 

This work uses difference equations to solve 2-

dimensional parabolic PDEs of the form 

 

ut = uxx + uyy + A(x,y)ux + B(x,y)uy + C(x,y)u + 

f(x,y,t). 

 

The boundary equations are expressed as 

 

u(0,y,t) = g1(y,t), u(1,y,t) = h1(y,t)    0 < y < 1, t > 0 

u(x,0,t) = g2(x,t), u(x,1,t) = h2(x,t)    0 < x < 1, t > 0 

 

and the system has the starting condition 

 

u(x,y,0) = l(x,y) 

 

where g1, g2, h1, h2, and l are determined by the system being 

modeled.  

The two-dimensional grid is cast as a red-black array as 

shown in Figure 1. Red points are adjacent a black point on 

all four sides, and black points are adjacent to a red point of 

all four sides, much like a checkerboard. The red-back array 

is surrounded on all sides by a single row of points 

corresponding to the boundary conditions. The advantage to 

this model is that all red points may be updated in parallel 

using values of neighboring black points. Then the black 

points can be updated using the new values of the red points. 

The method to break this array into thread blocks needed 

to access memory efficiently and create enough thread 

blocks to occupy the GPU’s SMs. This was accomplished by 

subdividing the array into sets of rows, such as 16 rows for 

example. Each block was assigned to 2N columns of a set in 

which each row contained N red points and N black points.  

The general algorithm is represented by the following 

pseudo-code. 

 

  if using GPU: transfer red-black array to GPU RAM 

  for the required number of time steps 

   update the boundary conditions 

    update red points 

      update black points 

   if using GPU: transfer red-black array to CPU RAM 

 

 

3 Performance Optimizations 

This section details the three main optimizations used. 

3.1 Separated Red and Black Arrays 

The first optimization split the unified red-black array into 

a red array and a separate black array as shown in the 

example in Figure 2. The separate arrays contained the same 

number of rows but had only half the number of columns as 

the original array. The separation was performed on the 

CPU, and the red and black arrays were passed to the CUDA 

kernel. 

This optimization focused on two issues based on the 

following observation. When accessing N red points 

(similarly for black) in the unified array, they were 

interleaved with N black points. The accesses were not 

coalesced since the N required points were contained in a 

span of contiguous memory 2N points long. The default 

method would be to read in all 2N points and discard or save 

the black points for later use. With effective use of shared 

memory, this method can use all data read. However, writing 

the updated values of N red points back to the GPU card’s 

RAM still required writing N points over a span of 2N 

contiguous locations with two writes. By separating the 

arrays, this write-back required only one write. Additionally, 

if a thread warp read in a set of interleaved red and black 

points from a unified array, the code must diverge so that the 

two subsets were handled differently. Using separated arrays 

avoided this divergence since the entire warp handled either 

red or black points. 

 

3.2 Per Block Work Reduction 

The second optimization slightly reduces the amount of 

work per thread block to reduce the number of sequential 

memory accesses. It was observed that to update N points, 

boundary point 
Figure 1 Red-Black Array showing an arbitrary black point's 

dependence on its four neighboring red points 



 

4N+1 points must be read from memory: the N points being 

updated, the N points from the row above and from the row 

below,, and N+1 points from the adjacent points on the same 

row. This requires one thread to make 5 sequential memory 

reads while the remaining threads in the block make only 4. 

To eliminate the extra latency, a block of N threads was 

coded to update N-1 points. This requires 4N-3 points from 

memory taking 4 sequential reads from each thread. 

Using the separated arrays from Figure 2 with N=3, 

suppose a block of three threads is solving for all three red 

points in row 3. The block would make a request using all 

threads for (3,1), (3,3), and (3,5) from the red array, a second 

request for (4,1), (4,3), and (4,5) from black, a third request 

for (2,1), (2,3), and (2,5) from black, a fourth request for  

(3,0), (3,2), and (3,4) from black, and finally a fifth request 

for only (3,6) from black. If the block is solving for N-1 

points, only the following four requests are needed. The 

block would make a request using all threads for (3,1), (3,3), 

and (3,5) from the red array and discard (3,5), a second 

request for (4,1), (4,3), and (4,5) from black discarding (4,5), 

a third request for (2,1), (2,3), and (2,5) from black 

discarding (2,5), a fourth request for  (3,0), (3,2), and (3,4) 

from black. 

Note that for a thread block of 128 threads handling 256 

columns, the amount of work was reduced by only 0.78%.  

In many cases, this small decrease would be completely 

masked by using unutilized threads. For example, an array 

1000 points wide is spanned by four thread blocks handling 

either 128-points or 127-points per block. 

3.3 Shared Memory 

The final optimization reduced redundant memory reads. 

It can be easily seen that when updating a row of red points, 

for example, the black points on the same row and the black 

points in row below will be the upper and adjacent points 

respectively for updating the red points in the row below. 

Thus, these two rows of black points can be stored in the 

shared memory space, which may be faster than accessing 

RAM. Once the thread block loaded 4N points to update the 

first row of points, it only read an additional 2N points to 

calculate each additional row: N more red points and N more 

black points. 

Using the separated arrays in Figure 2 as an example, 

suppose that a block of three threads first solved for the red 

points in row 4. The block would need to read row 4 from 

the red array and data from rows 3, 4, and 5 from the black 

array. If the block then solved for the red points in row 3, it 

would need data from row 3 of the red array and rows 2, 3, 

and 4 of the black array. If black rows 3 and 4 were saved in 

local shared memory, the block would only need to access 

RAM for the red row and row 2 of the black array. 

 

4 Testing 

This section details the four parabolic PDE models tested, 

the hardware setups, and the test parameters. 

 

4.1 Model Equations Tested 

The four models used were taken from [4] for purposes of 

comparison and since they have exact solutions for 

validation. All models are constrained by the conditions 0.0 

≤ x ≤ 1.0, 0.0 ≤ y ≤ 1.0, and 0.0 ≤ t ≤ 1.0. 

 

Model 1: 

ut = uxx + uyy 

u(0,y,t) = 0.0, u(1,y,t) = 0.0       0 < y < 1, t > 0 

u(x,0,t) = 0.0, u(x,1,t) = 0.0       0 < x < 1, t > 0 

u(x,y,0) = sin(πx)sin(πy)        0 < x,y < 1       

 

This model has the exact solution  

u(x,y,t) =     
   sin(πx)sin(πy). 

 

 

Model 2: 

ut = uxx + uyy   ux   uy   u 

u(0,y,t) = e
-t+y

, u(1,y,t) = e
-t+1+y

      0 < y < 1, t > 0 

u(x,0,t) = e
-t+x

, u(x,1,t) = e
-t+1+x

     0 < x < 1, t > 0 

u(x,y,0) = e
x +y

            0 < x,y < 1       

 

This model has the exact solution  

u(x,y,t) = e
-t+x+y

. 
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Figure 2 Dividing the Red-Black Array into separate red and 

black arrays. Indexes shown in the separate arrays are those 

from the original unified array. 
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Model 3: 

ut = uxx + uyy + sin(ax)cos(ay)ux - cos(ax)sin(ay)uy - u 

u(0,y,t) = 0.0 

u(1,y,t) =  (   
   )    ( )     (  )    0 < y < 1, t > 0 

u(x,0,t) = 0.0  

u(x,1,t) =  (   
   )    ( )     (  )    0 < x < 1, t > 0 

u(x,y,0) = sin(ax)sin(ay)        0 < x,y < 1       

 

This model has the exact solution  

u(x,y,t) =  (   
   )    (  )     (  ) 

 

 

Model 4: 

ut = uxx + uyy  ux   uy   u + (1 + xy)cos(t)  

- (1 + x)(1 + y)sin(t) 

u(0,y,t) = sin(t), u(1,y,t) = (1+y)sin(t) 0 < y < 1, t > 0 

u(x,0,t) = sin(t), u(x,1,t) = (1+x)sin(t) 0 < x < 1, t > 0 

u(x,y,0) = sin(πx)sin(πy)        0 < x,y < 1       

 

This model has the exact solution  

u(x,y,t) = (1+xy)sin(t). 

 

4.2 Hardware Setup 

The computer used for testing had the following 

specifications: 

 Intel Core i7 920 at 2.67 GHz 

 Asus P6T Deluxe motherboard 

 6 GB of 1333 MHz DDR3 RAM 

 EVGA GeForce 260 GTX video card 

 750 GB 7200 RPM hard drive 

 Windows 7 Professional 64-bit 

 CUDA version 3.1 

  

The two graphics cards used for GPU computing were an 

NVIDIA Tesla C1060 with 4 GB of RAM and 240 cores in 

30 SMs and an EVGA GeForce 480 GT with 1.5 GB of 

RAM and 480 cores in 15 SMs at stock clock speeds. 

 

4.3 Software Parameters 

Thread blocks were launched using 128 threads. This was 

the smallest value that allowed all 1024 thread slots 

available in the GPUs’ SMs tested to be utilized. Larger 

values would have left more thread slots unoccupied if 

register and shared memory usage prevented 8 blocks from 

being assigned per SM. 

Each of the models was tested using square arrays from 

500 points per side to 4000 points per side in increments of 

500 points. The number of rows contained in a set, as 

explained in Section II was tested at 16, 32, and 64 rows per 

set. 

 

5 Results 

The four versions of the kernel tested were CPU; GPU, 

which contained no optimizations; GPU-RB, which 

separated the data into separate red and black arrays; and 

GPU-RBS, which contained the separation of arrays, used 

the per-block work reduction, and used shared memory. All 

data refers to tests with 16-row pitch. 

Several interesting patterns were noted in all tests. First, 

the throughput of the CPU implementation declined quickly 

in all tests from 500 to about 1500 points per dimension and 

gradually tapered off more as the data set sizes continued to 

increase. The rapid increase corresponded to the size of the 

data sets exceeding the L3 cache of the CPU, indicating that 

the CPU performance was likely limited by memory 

bandwidth. This effect can be seen in Table 1 for the 

C1060's performance on Model 2 for single-precision, 

showing the throughput of the different versions in millions 

of points updated per second based on the number of points 

per side. 

 

Table 1 Tesla C1060 Throughput on Model 2 with Single-

Precision Floating Point 

Points 

per 

Side 

CPU 

(Mpts/s) 
GPU 

(Mpts/s) 
GPU-RB 

(Mpts/s) 
GPU-RBS 

(Mpts/s) 

500 65.96 1078.39 1773.51 2754.44 

1000 59.07 1230.28 1772.02 3182.40 

1500 44.84 1266.84 1935.90 3770.77 

2000 41.49 1302.58 1956.86 3854.73 

2500 37.93 1170.87 1976.39 3940.19 

3000 37.50 1120.09 1976.48 3958.37 

3500 35.79 1149.27 2003.34 3983.28 

4000 30.67 1152.60 1978.63 3989.22 

 

 Over the same range of 500 to 1500 points per side, the 

throughput of the GPU versions greatly increased. This 

effect was related to the number of threads that were created 

based on the dimensions of the problem. From the previous 

section, a GPU block of 128 threads processed 254 columns 

and either 16, 32, or 64 rows. For a 16-row block and a 500 

by 500 point array, this yielded only 64 blocks. Since the 

C1060 can hold 240 blocks of this size concurrently, the 

smaller data sets did not fully occupy the card, and the MPs 

suffered more idle time during memory accesses. Larger 

data sets allowed the GPUs to mitigate this latency more 

efficiently. It should also be noted that in addition to fully 

occupying the card on smaller data sets, the 16-row pitch 

also showed slightly better throughput by a few percent once 

over 32- and 64-row pitches. 

Omitting the small data sets that didn't result in full 

occupancy of the GPU, Table 2 and Table 3 show the mean, 



 

minimum, and maximum speeds for both GPUs on the 

models for 1500 to 4000 points per dimension. Full test 

results are not shown for space considerations. For both 

cards, the separated red and black arrays yielded a 

substantial speed increase over the basic GPU 

implementation with a unified red-black array. As can be 

seen by comparing the GPU and GPU-RB columns, this 

optimization often yielded speeds of around 50%.  

For the Tesla, which is based on the GT200 series GPU 

that does not have memory caching, the use of shared 

memory gave significant benefits. For single-precision, the 

additional optimizations in GPU-RBS gave a 27.9% to 99% 

increase over the GPU-RB performance. For double-

precision, it yielded almost double the performance for 

Models 1 and 2, significant increases in Model 4, and made 

notably little improvement in Model 3. However, since the 

400-series GPUs, like that in the GTX 480, do have a 

memory cache, the use of shared memory required too much 

overhead to produce a benefit. Thus, the performance over 

GPU-RBS compared just GPU-RB was often about 10% 

slower, with around a 25% decrease for Model 2 with single 

precision. 

It is also noteworthy that the newer GTX 480 did not 

dominate the C1060 as might be expected. The C1060 is 

based on the same GPU as the 280 GTX video cards, which 

were the predecessors to the GTX 480.  In single-precision 

performance, the C1060 was comparable to the GTX 480 on 

Model 1, dominated on Model 2, was within 90% of the 

performance on Model 3, and was faster on data sets 3000 

points per side and smaller on Model 4. For double-

precision, the C1060 dominated the GTX 480 on Models 2 

and 4, but the GTX 480 dominated on the other two. 

Therefore, these results show that different optimizations are 

beneficial based on the GPU architecture used, and that 

older architectures may still be more advantageous for 

certain problems. 

 

6 Conclusions 

This research demonstrates several advantageous 

techniques for accelerating difference equation solvers for 

two-dimensional parabolic PDEs. An important result is that 

optimization strategies differ based on the underlying GPU 

hardware, and effective GPU computing programming 

practices need to account for this.  
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Table 2  Mean, Minimum, and Maximum Speedups on 1500 

by 1500 to 4000 by 4000 point data sets on single-precision 

floating point numbers 

 GPU GPU-RB GPU-RBS 

Model 1 

C1060 

31.82, 28.13, 

38.09 

52.15, 42.75, 

64.49 

102.97, 82.33, 

129.41 

Model 1 

GTX 480 

63.85, 53.27, 

79.47 

101.23, 82.70, 

129.27 

92.77, 73.20, 

119.47 

Model 2 

C1060 

31.68, 28.25, 

37.58 

52.61, 43.17, 

64.51 

104.63, 84.09, 

130.07 

Model 2 

GTX 480 

53.15, 47.13, 

64.41 

74.88, 65.60, 

89.47 

56.81, 49.03, 

68.61 

Model 3 

C1060 

49.44, 46.44, 

51.80 

80.88, 70.29, 

91.07 

103.45, 90.74, 

91.07 

Model 3 

GTX 480 

83.50, 77.19, 

95.07 

110.37, 93.70, 

124.70 

102.68, 88.10, 

115.54 

Model 4 

C1060 

80.40, 74.83, 

84.75 

132.53, 108.24, 

146.92 

177.22, 148.76, 

197.27 

Model 4 

GTX 480 

126.66, 100.82, 

164.79 

189.86, 146.82, 

257.16 

154.45, 116.43, 

216.70 

 

Table 3  Mean, Minimum, and Maximum Speedups on 1500 

by 1500 to 4000 by 4000 point data sets on double-precision 

floating point numbers 

 GPU GPU-RB GPU-RBS 

Model 1 

C1060 

26.05, 19.33, 

31.85 

45.04, 32.46, 

55.55 

89.48, 63.72, 

111.64 

Model 1 

GTX 480 

71.06, 48.97, 

90.16 

132.27, 91.70, 

163.52 

123.37, 84.71, 

158.43 

Model 2 

C1060 

26.10, 20.09, 

31.60 

45.32, 33.53, 

55.70 

90.46, 66.36, 

112.43 

Model 2 

GTX 480 

49.41, 37.96, 

61.84 

75.94, 55.13, 

95.96 

71.41, 51.21, 

90.39 

Model 3 

C1060 

19.15, 16.60, 

21.15 

27.11, 25.04, 

28.90 

27.83, 25.58, 

30.04 

Model 3 

GTX 480 

59.54, 53.72, 

64.95 

68.38, 60.35, 

75.55 

67.16, 59.44, 

74.59 

Model 4 

C1060 

39.33, 33.70, 

44.01 

68.90, 60.84, 

75.44 

117.27, 104.70, 

133.84 

Model 4 

GTX 480 

61.13, 53.58, 

74.56 

87.41, 76.18, 

105.32 

81.16, 70.65, 

98.73 
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