

Abstract- Parabolic partial differential equations are often

used to model systems involving heat transfer, acoustics, and

electrostatics. The need for more complex models with

increasing precision drives greater computational demands

from processors. Since solving these types of equations is

inherently parallel, GPU computing offers an attractive

solution for drastically decreasing time to completion,

power usage, and increasing the computation per dollar.

However, since GPU computing involves a much different

programming paradigm than traditional processors,

techniques for optimizing solvers must still be developed.

This paper presents several optimization strategies for

accelerating solvers using CUDA to implement difference

equations and compares their performances to a standard

processor. The results demonstrate that different strategies

should be used for different GPU cards, such as the C1060

and GTX 480, resulting in up to 197 times and 257 times

single-precision and up to 133 and 163 times double-

precision speedups respectively.

Keywords: GPU programming, CUDA, parabolic partial

differential equations, convection-diffusion-reaction

equation

1 Introduction

Parabolic partial differential equations (PDEs) are useful

in several problem spaces, such as heat transfer, acoustic

modeling, and electrostatics. While numerical solution

techniques are well-known, there are significant needs that

can be addressed by solving them with GPU computing.

With well-crafted algorithms, GPUs can potentially solve

systems significantly faster, allowing decreased simulation

times and/or increased resolution in the model. GPUs can

also solve problems using an estimated one tenth to one

twentieth of the power required by traditional

supercomputing systems [1], thereby reducing costs.

This paper utilizes CUDA for GPU computing, which is

an extension to several common programming languages

that requires an NVIDIA-based video card for execution.

NVIDIA GPUs are widely deployed and thus represents a

very common computing platform. Additionally, NVIDIA’s

Tesla series specifically targets high-performance

computing. For easy scalability, NVIDIA cards are designed

around a generalized processing unit called a streaming

multiprocessor (SM). This allows the performance of CUDA

applications to scale based on the number and hardware

implementation of the SMs contained on a given card.

This paper proposes a set of optimizations for solving

parabolic PDEs target several issues that arise when porting

code to CUDA which must be deliberately addressed for

efficient use of the GPU [2, 3]. First, GPU architectures

generally mitigate memory latency by using large numbers

of threads and extremely fast context switching instead of

deep memory caches found in CPUs, although the Fermi

architecture released in 2010 did add some memory caching.

This requires optimizations to exploit enough parallelism to

make sufficient threads available and to carefully manage

the number of memory accesses required. Second, data

accesses should be formed into coalesced reads and writes.

See [2] for more details on coalesced accesses. Next, each

SM has a limited amount of shared memory, usually 8 kB to

48 kB, that can be leveraged to reduce the number of RAM

accesses. Finally, SMs are designed to execute a group of 32

threads, called a warp, concurrently. However, all threads in

the warp must be executing the same instruction. Branching

code creates divergence, which can drastically lower the

throughput as only a subset of the warp executes. Carefully

constructed code that limits divergence can minimize this

effect.

Difference equations were used to solve several model

parabolic PDEs, and optimizations were developed to

address the above issues. Previous work in GPU computing

focused on this topic include [4] which attained a 1.1 to 11

times performance improvement on two-dimensional

parabolic PDEs using double-precision floating point

arithmetic. Another effort targeted one-dimensional PDEs

for market making real time pricing, and risk management

achieved a 25 times speedup over a well-optimized CPU

implementation using a single Tesla C1060, and a 38 times

improvement using two C1060s by leveraging cyclic

reduction [5]. A mixed precision method has been presented

to solve ill-conditioned tridiagonal systems that previously

were limited to CPU solutions with a 10-fold

improvement[6].

GPU Acceleration of Solving Parabolic Partial Differential

Equations Using Difference Equations

David L. Foster

Electrical and Computer Engineering Department, Kettering University, Flint, MI, USA

Using the techniques proposed in this paper on two-

dimensional parabolic PDEs, speed-ups of 197 times and

257 times were achieved using a C1020 Tesla and a GTX

480 respectively on single-precision floating point

performance compared to an Intel i7 920. Speedups up to

133 and 163 times were attained on double-precision

floating point performance.

This paper is organized as follows. Section 2 outlines the

general approach used to solve parabolic PDEs using

CUDA. Section 3 describes three optimization strategies that

were implemented. Section 4 explains the experimental

setup used. Section 5 presents the results of testing these

optimizations, and Section 6 concludes the paper.

2 General Approach to Solver

This work uses difference equations to solve 2-

dimensional parabolic PDEs of the form

ut = uxx + uyy + A(x,y)ux + B(x,y)uy + C(x,y)u +

f(x,y,t).

The boundary equations are expressed as

u(0,y,t) = g1(y,t), u(1,y,t) = h1(y,t) 0 < y < 1, t > 0

u(x,0,t) = g2(x,t), u(x,1,t) = h2(x,t) 0 < x < 1, t > 0

and the system has the starting condition

u(x,y,0) = l(x,y)

where g1, g2, h1, h2, and l are determined by the system being

modeled.

The two-dimensional grid is cast as a red-black array as

shown in Figure 1. Red points are adjacent a black point on

all four sides, and black points are adjacent to a red point of

all four sides, much like a checkerboard. The red-back array

is surrounded on all sides by a single row of points

corresponding to the boundary conditions. The advantage to

this model is that all red points may be updated in parallel

using values of neighboring black points. Then the black

points can be updated using the new values of the red points.

The method to break this array into thread blocks needed

to access memory efficiently and create enough thread

blocks to occupy the GPU’s SMs. This was accomplished by

subdividing the array into sets of rows, such as 16 rows for

example. Each block was assigned to 2N columns of a set in

which each row contained N red points and N black points.

The general algorithm is represented by the following

pseudo-code.

 if using GPU: transfer red-black array to GPU RAM

 for the required number of time steps

 update the boundary conditions

 update red points

 update black points

 if using GPU: transfer red-black array to CPU RAM

3 Performance Optimizations

This section details the three main optimizations used.

3.1 Separated Red and Black Arrays

The first optimization split the unified red-black array into

a red array and a separate black array as shown in the

example in Figure 2. The separate arrays contained the same

number of rows but had only half the number of columns as

the original array. The separation was performed on the

CPU, and the red and black arrays were passed to the CUDA

kernel.

This optimization focused on two issues based on the

following observation. When accessing N red points

(similarly for black) in the unified array, they were

interleaved with N black points. The accesses were not

coalesced since the N required points were contained in a

span of contiguous memory 2N points long. The default

method would be to read in all 2N points and discard or save

the black points for later use. With effective use of shared

memory, this method can use all data read. However, writing

the updated values of N red points back to the GPU card’s

RAM still required writing N points over a span of 2N

contiguous locations with two writes. By separating the

arrays, this write-back required only one write. Additionally,

if a thread warp read in a set of interleaved red and black

points from a unified array, the code must diverge so that the

two subsets were handled differently. Using separated arrays

avoided this divergence since the entire warp handled either

red or black points.

3.2 Per Block Work Reduction

The second optimization slightly reduces the amount of

work per thread block to reduce the number of sequential

memory accesses. It was observed that to update N points,

boundary point
Figure 1 Red-Black Array showing an arbitrary black point's

dependence on its four neighboring red points

4N+1 points must be read from memory: the N points being

updated, the N points from the row above and from the row

below,, and N+1 points from the adjacent points on the same

row. This requires one thread to make 5 sequential memory

reads while the remaining threads in the block make only 4.

To eliminate the extra latency, a block of N threads was

coded to update N-1 points. This requires 4N-3 points from

memory taking 4 sequential reads from each thread.

Using the separated arrays from Figure 2 with N=3,

suppose a block of three threads is solving for all three red

points in row 3. The block would make a request using all

threads for (3,1), (3,3), and (3,5) from the red array, a second

request for (4,1), (4,3), and (4,5) from black, a third request

for (2,1), (2,3), and (2,5) from black, a fourth request for

(3,0), (3,2), and (3,4) from black, and finally a fifth request

for only (3,6) from black. If the block is solving for N-1

points, only the following four requests are needed. The

block would make a request using all threads for (3,1), (3,3),

and (3,5) from the red array and discard (3,5), a second

request for (4,1), (4,3), and (4,5) from black discarding (4,5),

a third request for (2,1), (2,3), and (2,5) from black

discarding (2,5), a fourth request for (3,0), (3,2), and (3,4)

from black.

Note that for a thread block of 128 threads handling 256

columns, the amount of work was reduced by only 0.78%.

In many cases, this small decrease would be completely

masked by using unutilized threads. For example, an array

1000 points wide is spanned by four thread blocks handling

either 128-points or 127-points per block.

3.3 Shared Memory

The final optimization reduced redundant memory reads.

It can be easily seen that when updating a row of red points,

for example, the black points on the same row and the black

points in row below will be the upper and adjacent points

respectively for updating the red points in the row below.

Thus, these two rows of black points can be stored in the

shared memory space, which may be faster than accessing

RAM. Once the thread block loaded 4N points to update the

first row of points, it only read an additional 2N points to

calculate each additional row: N more red points and N more

black points.

Using the separated arrays in Figure 2 as an example,

suppose that a block of three threads first solved for the red

points in row 4. The block would need to read row 4 from

the red array and data from rows 3, 4, and 5 from the black

array. If the block then solved for the red points in row 3, it

would need data from row 3 of the red array and rows 2, 3,

and 4 of the black array. If black rows 3 and 4 were saved in

local shared memory, the block would only need to access

RAM for the red row and row 2 of the black array.

4 Testing

This section details the four parabolic PDE models tested,

the hardware setups, and the test parameters.

4.1 Model Equations Tested

The four models used were taken from [4] for purposes of

comparison and since they have exact solutions for

validation. All models are constrained by the conditions 0.0

≤ x ≤ 1.0, 0.0 ≤ y ≤ 1.0, and 0.0 ≤ t ≤ 1.0.

Model 1:

ut = uxx + uyy

u(0,y,t) = 0.0, u(1,y,t) = 0.0 0 < y < 1, t > 0

u(x,0,t) = 0.0, u(x,1,t) = 0.0 0 < x < 1, t > 0

u(x,y,0) = sin(πx)sin(πy) 0 < x,y < 1

This model has the exact solution

u(x,y,t) =
 sin(πx)sin(πy).

Model 2:

ut = uxx + uyy ux uy u

u(0,y,t) = e
-t+y

, u(1,y,t) = e
-t+1+y

 0 < y < 1, t > 0

u(x,0,t) = e
-t+x

, u(x,1,t) = e
-t+1+x

 0 < x < 1, t > 0

u(x,y,0) = e
x +y

 0 < x,y < 1

This model has the exact solution

u(x,y,t) = e
-t+x+y

.

4,1 4,2 4,3 4,4 4,5 4,6

3,1 3,2 3,3 3,4 3,5 3,6

4,0

3,0

2,1 2,2 2,3 2,4 2,5 2,6

1,1 1,2 1,3 1,4 1,5 1,6

2,0

1,0

0,0 0,1 0,2 0,3 0,4 0,5 0,6

Figure 2 Dividing the Red-Black Array into separate red and

black arrays. Indexes shown in the separate arrays are those

from the original unified array.

5,0 5,1 5,2 5,3 5,4 5,5 5,6

4,7

3,7

2,7

1,7

0,7

5,7

4,2 4,4 4,6

3,1 3,3 3,5

4,0

2,2 2,4 2,6

1,1 1,3 1,5

2,0

0,0 0,2 0,4 0,6

5,1 5,3 5,5

3,7

1,7

5,7

4,1 4,3 4,5

3,2 3,4 3,6 3,0

2,1 2,3 2,5

1,2 1,4 1,6 1,0

0,1 0,3 0,5

5,0 5,2 5,4 5,6

4,7

2,7

0,7

Model 3:

ut = uxx + uyy + sin(ax)cos(ay)ux - cos(ax)sin(ay)uy - u

u(0,y,t) = 0.0

u(1,y,t) = (
) () () 0 < y < 1, t > 0

u(x,0,t) = 0.0

u(x,1,t) = (
) () () 0 < x < 1, t > 0

u(x,y,0) = sin(ax)sin(ay) 0 < x,y < 1

This model has the exact solution

u(x,y,t) = (
) () ()

Model 4:

ut = uxx + uyy ux uy u + (1 + xy)cos(t)

- (1 + x)(1 + y)sin(t)

u(0,y,t) = sin(t), u(1,y,t) = (1+y)sin(t) 0 < y < 1, t > 0

u(x,0,t) = sin(t), u(x,1,t) = (1+x)sin(t) 0 < x < 1, t > 0

u(x,y,0) = sin(πx)sin(πy) 0 < x,y < 1

This model has the exact solution

u(x,y,t) = (1+xy)sin(t).

4.2 Hardware Setup

The computer used for testing had the following

specifications:

 Intel Core i7 920 at 2.67 GHz

 Asus P6T Deluxe motherboard

 6 GB of 1333 MHz DDR3 RAM

 EVGA GeForce 260 GTX video card

 750 GB 7200 RPM hard drive

 Windows 7 Professional 64-bit

 CUDA version 3.1



The two graphics cards used for GPU computing were an

NVIDIA Tesla C1060 with 4 GB of RAM and 240 cores in

30 SMs and an EVGA GeForce 480 GT with 1.5 GB of

RAM and 480 cores in 15 SMs at stock clock speeds.

4.3 Software Parameters

Thread blocks were launched using 128 threads. This was

the smallest value that allowed all 1024 thread slots

available in the GPUs’ SMs tested to be utilized. Larger

values would have left more thread slots unoccupied if

register and shared memory usage prevented 8 blocks from

being assigned per SM.

Each of the models was tested using square arrays from

500 points per side to 4000 points per side in increments of

500 points. The number of rows contained in a set, as

explained in Section II was tested at 16, 32, and 64 rows per

set.

5 Results

The four versions of the kernel tested were CPU; GPU,

which contained no optimizations; GPU-RB, which

separated the data into separate red and black arrays; and

GPU-RBS, which contained the separation of arrays, used

the per-block work reduction, and used shared memory. All

data refers to tests with 16-row pitch.

Several interesting patterns were noted in all tests. First,

the throughput of the CPU implementation declined quickly

in all tests from 500 to about 1500 points per dimension and

gradually tapered off more as the data set sizes continued to

increase. The rapid increase corresponded to the size of the

data sets exceeding the L3 cache of the CPU, indicating that

the CPU performance was likely limited by memory

bandwidth. This effect can be seen in Table 1 for the

C1060's performance on Model 2 for single-precision,

showing the throughput of the different versions in millions

of points updated per second based on the number of points

per side.

Table 1 Tesla C1060 Throughput on Model 2 with Single-

Precision Floating Point

Points

per

Side

CPU

(Mpts/s)
GPU

(Mpts/s)
GPU-RB

(Mpts/s)
GPU-RBS

(Mpts/s)

500 65.96 1078.39 1773.51 2754.44

1000 59.07 1230.28 1772.02 3182.40

1500 44.84 1266.84 1935.90 3770.77

2000 41.49 1302.58 1956.86 3854.73

2500 37.93 1170.87 1976.39 3940.19

3000 37.50 1120.09 1976.48 3958.37

3500 35.79 1149.27 2003.34 3983.28

4000 30.67 1152.60 1978.63 3989.22

 Over the same range of 500 to 1500 points per side, the

throughput of the GPU versions greatly increased. This

effect was related to the number of threads that were created

based on the dimensions of the problem. From the previous

section, a GPU block of 128 threads processed 254 columns

and either 16, 32, or 64 rows. For a 16-row block and a 500

by 500 point array, this yielded only 64 blocks. Since the

C1060 can hold 240 blocks of this size concurrently, the

smaller data sets did not fully occupy the card, and the MPs

suffered more idle time during memory accesses. Larger

data sets allowed the GPUs to mitigate this latency more

efficiently. It should also be noted that in addition to fully

occupying the card on smaller data sets, the 16-row pitch

also showed slightly better throughput by a few percent once

over 32- and 64-row pitches.

Omitting the small data sets that didn't result in full

occupancy of the GPU, Table 2 and Table 3 show the mean,

minimum, and maximum speeds for both GPUs on the

models for 1500 to 4000 points per dimension. Full test

results are not shown for space considerations. For both

cards, the separated red and black arrays yielded a

substantial speed increase over the basic GPU

implementation with a unified red-black array. As can be

seen by comparing the GPU and GPU-RB columns, this

optimization often yielded speeds of around 50%.

For the Tesla, which is based on the GT200 series GPU

that does not have memory caching, the use of shared

memory gave significant benefits. For single-precision, the

additional optimizations in GPU-RBS gave a 27.9% to 99%

increase over the GPU-RB performance. For double-

precision, it yielded almost double the performance for

Models 1 and 2, significant increases in Model 4, and made

notably little improvement in Model 3. However, since the

400-series GPUs, like that in the GTX 480, do have a

memory cache, the use of shared memory required too much

overhead to produce a benefit. Thus, the performance over

GPU-RBS compared just GPU-RB was often about 10%

slower, with around a 25% decrease for Model 2 with single

precision.

It is also noteworthy that the newer GTX 480 did not

dominate the C1060 as might be expected. The C1060 is

based on the same GPU as the 280 GTX video cards, which

were the predecessors to the GTX 480. In single-precision

performance, the C1060 was comparable to the GTX 480 on

Model 1, dominated on Model 2, was within 90% of the

performance on Model 3, and was faster on data sets 3000

points per side and smaller on Model 4. For double-

precision, the C1060 dominated the GTX 480 on Models 2

and 4, but the GTX 480 dominated on the other two.

Therefore, these results show that different optimizations are

beneficial based on the GPU architecture used, and that

older architectures may still be more advantageous for

certain problems.

6 Conclusions

This research demonstrates several advantageous

techniques for accelerating difference equation solvers for

two-dimensional parabolic PDEs. An important result is that

optimization strategies differ based on the underlying GPU

hardware, and effective GPU computing programming

practices need to account for this.

7 Acknowledgments

This research was supported by an equipment donation

from the NVIDIA Corporation as part of the Academic

Partnership Program.

Table 2 Mean, Minimum, and Maximum Speedups on 1500

by 1500 to 4000 by 4000 point data sets on single-precision

floating point numbers

 GPU GPU-RB GPU-RBS

Model 1

C1060

31.82, 28.13,

38.09

52.15, 42.75,

64.49

102.97, 82.33,

129.41

Model 1

GTX 480

63.85, 53.27,

79.47

101.23, 82.70,

129.27

92.77, 73.20,

119.47

Model 2

C1060

31.68, 28.25,

37.58

52.61, 43.17,

64.51

104.63, 84.09,

130.07

Model 2

GTX 480

53.15, 47.13,

64.41

74.88, 65.60,

89.47

56.81, 49.03,

68.61

Model 3

C1060

49.44, 46.44,

51.80

80.88, 70.29,

91.07

103.45, 90.74,

91.07

Model 3

GTX 480

83.50, 77.19,

95.07

110.37, 93.70,

124.70

102.68, 88.10,

115.54

Model 4

C1060

80.40, 74.83,

84.75

132.53, 108.24,

146.92

177.22, 148.76,

197.27

Model 4

GTX 480

126.66, 100.82,

164.79

189.86, 146.82,

257.16

154.45, 116.43,

216.70

Table 3 Mean, Minimum, and Maximum Speedups on 1500

by 1500 to 4000 by 4000 point data sets on double-precision

floating point numbers

 GPU GPU-RB GPU-RBS

Model 1

C1060

26.05, 19.33,

31.85

45.04, 32.46,

55.55

89.48, 63.72,

111.64

Model 1

GTX 480

71.06, 48.97,

90.16

132.27, 91.70,

163.52

123.37, 84.71,

158.43

Model 2

C1060

26.10, 20.09,

31.60

45.32, 33.53,

55.70

90.46, 66.36,

112.43

Model 2

GTX 480

49.41, 37.96,

61.84

75.94, 55.13,

95.96

71.41, 51.21,

90.39

Model 3

C1060

19.15, 16.60,

21.15

27.11, 25.04,

28.90

27.83, 25.58,

30.04

Model 3

GTX 480

59.54, 53.72,

64.95

68.38, 60.35,

75.55

67.16, 59.44,

74.59

Model 4

C1060

39.33, 33.70,

44.01

68.90, 60.84,

75.44

117.27, 104.70,

133.84

Model 4

GTX 480

61.13, 53.58,

74.56

87.41, 76.18,

105.32

81.16, 70.65,

98.73

References

[1] NVIDIA. (2010, Nov. 23). Tesla C2050/C2070 GPU

Computing Processor Overview.

[2] D. B. Kirk and W.-M. W. Hwu, Programming

Massively Parallel Processors: a Hands-On Approach:

Morgan Kaufmann Publishers, 2010.

[3] J. Sanders and E. Kandrot, CUDA by Example, An

Introduction to General-Purpose GPU Programming:

Addison Wesley, 2010.

[4] C.-W. Hsieh, et al., "Rapid Performance of Parabolic

Problems using Convection Diffusion Reacion on GPU

Accelerator," presented at the PDPDA'10, Las Vegas, NV,

USA, 2010.

[5] D. Egloff, "High Performance Finite Difference PDE

Solvers on GPUs," QuantAlea GmbH, Zurich,

Switzerland2010 2010.

[6] D. Göddeke and R. Strzodka, "Cyclic Reduction

Tridiagonal Solvers on GPUs Applied to Mixed Precision

Multigrid," IEEE Transactions on Parallel and Distributed

Systems vol. 22, pp. 22-32, Jan. 2011 2011.

