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Abstract - In magnetic nanoparticle hyperthermia 

treatment, the ideal objective is to destroy all tumor cells 

without any damage to neighboring normal tissues. Thus, 

the temperature distribution in cancerous tissue and also 

surrounding healthy tissues should become closer to the 

desired distribution. In this paper, the temperature 

distribution is estimated by using a numerical scheme to 

solve the Penne’s bioheat transfer equation in a bi-

layered spherical tissue with blood perfusion and 

metabolism. The accuracy of the present model was 

justified by comparing with an experimental data and 

similar analytical schemes. Changing the parameters of 

cancerous tissue showed that the most effective 

parameter, to optimize the treatment, is the tissue 

conductivity. Subsequently, we demonstrated that among 

different factors influencing the tissue conductivity, the 

mass fraction of water in the tissue is the main factor. 

According to mass fraction of water in cancerous tissue, 

two methods of magnetic nanoparticle hyperthermia 

treatment was suggested. 
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1. Introduction 
 

 

Magnetic fluid hyperthermia is a new method of cancer 

treatment. In the realm of oncology therapeutics, 

hyperthermia is a general term for increasing the 

temperature of tissue above the physiologic level (40°C to 

45°C) within a targeted tumor without damaging the 

surrounding healthy tissue. [1]  

During magnetic hyperthermia treatment, the drug which 

contains magnetic nanoparticles is injected into the 

patient’s body. Thus, by using an alternating magnetic 

field near the tumor site, not only does drug absorption 

increase near cancerous cells, but also heat is produced 

and adjacent cells are ablated because of hysteresis 

effects. The underlying mechanism that dominates this 

type of heating results from the production of (electric) 

eddy currents. These currents produce heat that scales as: 

 

       
        

 

Where SAR is the tissue-specific absorption rate, 

measured as W/g tissue, r is the radius of exposed region, 

and f and H are the AMF frequency and amplitude, 

respectively. [2] 

 

Andrä et al. [3] modeled small breast carcinomas 

surrounded by extended healthy tissue as a solid sphere 

with constant heat generation caused by FePt magnetic 

nanoparticles (MNPs), and measured the temperature 

distribution. 

Maenosono and Saita [6] and Lin & Liu [5] used FePt 

magnetic nanoparticles (MNPs) for magnetic 

hyperthermia and estimate the temperature distribution by 

using numerical approaches to solve Penne’s bio-heat 

equation.  

As one of the current obstacles in using this method is 

that surrounding tissue is also affected or ablated by heat, 

this method will be optimized when the heat produced by 

metallic compounds only affects tumor tissue. Therefore, 

a mechanism must be introduced to minimize the 

susceptibility of surrounding tissue to heat. This will be 

possible when the temperature distribution in tumor tissue 

is ideal. In order to do this, a model is needed to 

approximate the temperature distribution in tumor and 

surrounding normal tissues. Because of the sensitivity of 

healthy cells to temperature fluctuation, the accuracy of 

this model is critical to obtain reliable results. 

In this paper we introduce a modified model that uses a 

new numerical approach to obtain the inverse Laplace 

transform of Penne’s bio-heat equation. The estimated 

results are compared with those in the literature [3, 5, 6]. 

These comparisons show that the present model has a 

better accuracy than other numerical approaches. Base on 

this model, we compare the effect of changing three main 

parameters to determine the most critical one which is 

conductivity. Subsequently, we found that the most 

important parameter in conductivity is the mass fraction 

of water in the tissue. Finally with respect to our results 

some suggestions were made to optimize the temperature 

distribution by changing effective parameters.   



2. Material and methods 
 

To simplify the problem, we assume the tumor to be a 

spherical tissue with radius R, and the surrounding normal 

tissue to be a bigger concentric sphere with radius a. We also 

make the assumption that nanoparticles absorb 

homogeneously only into the tumor tissue. As the result of 

homogeneity, all thermodynamic parameters in the tissues 

are constant. By alternating the magnetic field, a constant 

power density will be produced in the tumor tissue due to 

hysteresis losses. This power density is denoted by P which is 

directly related to the SAR value. This power produces a 

temperature distribution in both the tumor and normal tissue 

as a function of time (t) and radius (r). Now, by employing 

the heat transfer equation the temperature distribution in 

tissues can be obtained. 

Regarding the spherical shape of tumor tissue, a shell 

spherical control volume can be assumed. By using the 

heat transfer equation in spherical coordinates, the 

following equations are obtained: 
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In the equation above, convection heat transfer is 

unknown. This quantity can be approximated by assuming 

quasi-steady state conditions and applying the first law of 

thermodynamics: 

 

 ̇(     )   ̇   ̇  
  

  
 ( ) 

 

 ̇   ̇(     )    ̇ (     )        (     )  ( ) 

 

Equations 1 and 3 lead to Penne’s bioheat equation, 

formulated in equations 4 and 5 below: 
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The various parameters in these equations are defined as 

follows:  

(The subscript “1” refers to tumor tissue, while the 

subscript “2” refers to normal tissue) 

T represents the temperature. 

  is the density. 

c  is the specific heat capacity. 

k  is the thermal conductivity. 

Tb represents the blood temperature far from cancerous 

tissue. 

q is the metabolic heat generation rate. 

P is the heat generated by magnetic nanoparticles at the 

tumor site. 

wb is the blood perfusion rate. 

 

Following equations are applied for initial and boundary 

conditions [5]: 
 

Spherical symmetry: 
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Continuity of temperature at the interface: 
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Thermal energy conservation: 
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Heat flux rate at the edge of surrounding normal tissues 
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The initial conditions become (j= 1, 2):  
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A new dependent variable, H, is defined as: 
 

   (    )   
(  ) 

 

Therefore the initial and boundary conditions are 

rewritten as: 
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Applying the Laplace transform to the equations above 

with respect to time (t), the initial and boundary 

conditions can be rewritten as: 
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The initial and boundary conditions used in the equations 

above give the following solution: 
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Where constants are as: 
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Therefore, the inverse Laplace transform yields the 

temperature distribution function H, which cannot be 

obtained analytically. Thus, the numerical solution 

presented by J. Abate and P. P. Valko [7] is applied to this 

problem, which gives an approximate result for the 

function H. 

The accuracy of this method can be determined as [7]: 
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M is the number of precision decimal digits which is 

assumed to be three in this article.  

 

Using above method, the function H can be approximated 

as: 
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By calculating H from equation (40) and using equation 

(13), the temperature in the tumor will be obtained, at 

every radius r and at every time t. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Results and discussion 
 

The thermal effects of nanoparticle-injected (FePt) 

tissues, was demonstrated by Maenosono & Saita [6]. 

In this research work, parameters of the table 3.1 and 

table 3.2 were used. 

 
Table3.1. Dimensions of tissues and properties of magnetic field 

used by Maenosono & Saita [6] 

 

 

 
 
 
         Table3.2. Heat produced by magnetic nanoparticles [6] 

 
Type of 

magnetic 

nanoparticles 

9-nm FCC 

FePt 

19-nm 
magnetite  

Heat 

Generation 

P1=3.97×105 

   
 

  
 

P2=1.95×105    
 

  
 

 
 

Figure (1) shows the temperature distribution at t=600s 

for P1 and P2 as a function of distance from  

the center of the tumor.  

 

 
Figure 1. Temperature distributions in the finite tissue at  

t=600s, for P1=3.97×10^5  W/m^3    (9-nm fcc FePt  MNP s) 

and P2=1.95×10^5 W/m^3     (19-nm magnetite MNPs) 

Here the diagram is compared with the results of 

Maenosono & Saita [6]. Obviously, since Maenosono & 

Saita [6] used far less data points, we can conclude that 

our results have improved accuracy. Moreover, it is 

demonstrated in figure (1) that the temperature 

distribution in the tumor tissue (r < 0.005m) is 

approximately linear. This is in complete contradiction 

with the nature of heat transfer in that region. Due to heat 

generation in tumor tissue by the nanoparticles, the 

temperature distribution must be parabolic which agrees 

with present results. 

Figure 2. Temperature distributions in the finite tissue   at 

t=600 s for P1=3.97×10^5 W/m^3    (9-nm fcc FePt MNPs) and 

P2=1.95×10^5 W/m^3     (19-nm magnetite MNPs) 

 

Figure (2) show that the present results are in better 

agreement with the curves presented by Lin & Liu [5].  
 

In order to confirm the accuracy of the present approach, 

it is necessary to compare the present results of 

temperature distribution with experimental results. The 

temperature distribution of the tumor and neighboring 

normal tissue is calculated using parameter values given 

by Andra et al. [3], and it is compared with experimental 

results in figure (3). It should be mentioned that although 

Andra et al. [3] and Lin & Liu [5] used the same 

parameters, they differ in value.  

   

 

According to figure (3), the analytical results are in good 

agreement with the experimental results obtained by 

Andra et al. [3]. Therefore, the method presented in our 

work is a reliable means of modeling the temperature 

distribution in cancerous and normal tissue.  

 
Figure 3. Temperature distribution as a function of the 

distance from the center of the tumor for different exposure 

times, using the parameters given in [3]. Measured values for 

the same parameters are plotted with symbols. 

  

The present distribution curve can be converged to that of 

the ideal condition by changing the effective parameters 

Radius of tumor tissue R=5mm 

  Radius of normal tissue a=15mm 

The magnetic field's 

amplitude 
5mT 

The magnetic field's 

frequency 
300kHz 



of normal and cancerous tissue. This necessitates the 

knowledge of the effect that each of these parameters has 

on the temperature distribution. 

 
Figure 4. Temperature distribution variation for different 

values of k1 (heat conductivity of tumor tissue) calculated at 

t=22s. 

Different curves of temperature distribution with different 

values of parameters (k1, c1, wb1) are compared in figures 

(4), (5), (6) (all calculated at t=22s). It should be noted 

that c2 and k2 are the normal tissue parameters and it is 

obvious that changing these parameters is not as easy 

as changing the tumor tissue parameters. 
      In figure (4), the temperature distribution converges to 

the ideal condition as k1 is reduced. 

 

 
Figure 5. Temperature distribution variation for different values of 

c1 (specific heat capacity of tumor tissue) calculated at t=22s. 

Figure (5) shows that the temperature of the center of 

tumor decreases with increasing c1.  

 

 

 
 

 
Figure 6. Temperature distribution variation for different 

values of wb1 (blood flow rate in tumor tissue), calculated at 

t=22s. 

Figure (6) shows that temperature distribution is less 

sensitive to wb1 variation as compared to c1 & k1. It seems 

that decreasing human activity, resulting in less blood 

flow rate, can enhance this therapy. The reason is that 

decreasing blood flow rate leads to less convection heat 

transfer, and so heat generated by nanoparticles would not 

be transferred through the bloodstream. 

 

Summarizing the results of figures (4), (5) and (6), it can 

be concluded that the temperature distribution at the 

tumor site is mostly affected by the heat conductivity of 

the tumor tissue, among other factors. This can also be 

inferred from boundary condition (9). Therefore to 

achieve ideal temperature distribution, the most effective 

way is to reduce k1. 

 

From the knowledge of heat transfer principles, it is 

obvious that large values of conductivity make the 

temperature distribution uniform and small values make a 

large temperature gradient. Therefore it could be 

concluded that, there are two methods in magnetic 

nanoparticle hyperthermia. The first is to destroy all 

tumor tissue, while also destroying nearby normal tissue 

cells, by increasing conductivity of the tumor tissue. The 

second is to completely destroy the center of the tumor 

with incurring less damage to normal tissues by 

decreasing conductivity of the tumor tissue. The best 

treatment is a choice that would have to be made by the 

physician.  

 



 
Figure 7. Temperature distribution for conductivity value 

equal to 0.3k1 and 5k1 at t=22s and t=220s, where k1 is the 

conductivity of the cancerous tissues given by Andra et al. [3]. 

Fig (7) shows the temperature distribution for 

conductivity value equal to 0.3k1 and 5k1 at t=22s and 

t=220s.  This figure illustrates the two suggested method 

of magnetic hyperthermia treatment therapy. 

 

 

Conductivity of biological tissues (k) depends on various 

parameters such as water content percentage, the amount 

of fat and protein [8], and temperature [9]. 

 

Noting the first assumption in solving Penne’s equation 

which states that conductivity is independent of 

temperature, variation of K should be measured based on 

changing water and fat and protein content, only.  

  

 According to Cooper and Trezck [9], the following 

relation holds between these parameters: 
 

 

 

 

Based on equation (43), it seems that changing the water 

content of a tissue is more effective than changing fat or 

protein content because its coefficient is greater than 

others. Thus it is possible to obtain different temperature 

distributions based on different water contents in order to 

draw closer to our ideal temperature distribution. 

4. Conclusion 
 

A numerical solution has been introduced in this paper in 

order to obtain temperature distribution in tumor tissue 

treated with magnetic nanoparticle hyperthermia. Based 

on the proposed method of calculation, the results were 

very close to experimental curves. These results are 

reliable as they are close to other numerical results in 

literature [5, 6], as well as experimental measurements 

[3]. Some factors that affect thermodynamic parameters 

of the tissue are presented in this article and their relative 

effects are shown in various figures. According to these 

figures, the best way to obtain optimal distribution is to 

reduce conductivity of the tumor tissue by increasing its 

water content. Also, two methods of magnetic 

nanoparticle hyperthermia treatment based on 

conductivity value were suggested. 
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