
3DCIS: A Real-time Browser-rendered 3D Campus Information
System Based On WebGL

Nils Hering1, Martin Rünz1, Lubosz Sarnecki1 and Lutz Priese1
1Institute of Computational Visualistics, University of Koblenz-Landau, Koblenz, Germany

Abstract— Most of the current real-time 3D web applica-
tions are only available with plug-ins as Flash or addi-
tional software as Java. Avoiding this drawback, the new
WebGL technology provides hardware accelerated computer
graphics for web browsers without requiring plug-ins. Using
Blender, WebGL, the WebGL-expanding framework GLGE,
and an in-house developed exporter B2G from Blender to
GLGE we have realized the cutting-edge web application
3DCIS based on a complex 3D model of our campus. With
3DCIS one is able to explore the campus interactively and
to become acquainted with local persons and institutions.
Textual information about buildings, rooms and persons is
linked with 3D model information to enhance the intuitive
experience of 3DCIS.

Keywords: Web 3D, WebGL, GLGE, export, information system

1. Introduction
It is state of the art to use plug-in based systems to

create 3D web applications. Well-known and widely spread
examples are Adobe Flash, Unity3D or Microsoft Silverlight.
Their main handicap is the user’s obligation to install the
corresponding plug-in. Another common software system to
provide 3D applications in the web browser is the Java applet
concept. Java applets do not require an explicit plug-in but
an installed Java virtual machine.

The relatively new 3D web technology WebGL [9] avoids
those drawbacks. A user may navigate in a 3D environment
solely in a WebGL compatible web browser. This comfort is
payed by the developer of a WebGL application as WebGL
provides only a rudimentary application programming inter-
face (API). On the other hand, development of 3D models is
rather simple in Blender. Therefore, we had to build an ex-
porter from Blender to WebGL that we will introduce in this
paper. We have released the exporter under the GNU GLPv3
free software license to the community. As an application of
B2G we present the campus information system 3DCIS of
our university. An interested visitor may navigate in 3DCIS
through a 3D model of our campus and interactively gather
further information about persons, rooms, facilities, etc. from
the application. 3DCIS uses the probably largest online
WebGL model in a real-time application world-wide at
present (May 2011). The latest version of 3DCIS is currently
available at http://explore.uni-koblenz.de.

2. Related work
The WebGL API provides capabilities in developing 3D

web content which were previously the exclusive domain
of the desktop environment. Leung and Salga deal in [10]
with the question how mid level APIs can help the developer
to create unique 3D web content. They emphasize the fact
that WebGL gives the chance to not just replicate desktop
3D content and applications, but rather to exploit other web
features to develop richer content and applications.

DeLillo presents in [5] the WebGLU development library
for WebGL. WebGLU provides an API which allows the
developer to implement WebGL based content easier and
more clearly than with the WebGL API only.

In [6] Di Benedetto et al. introduce SpiderGL, a JavaScript
library for developing 3D web applications. The aim of
SpiderGL is to simplify the use of WebGL and to provide
some extra features like e.g. the handling of asynchronous
data loading. SpiderGL is used in [4] where Callieri et
al. present a WebGL and SpiderGL based method for the
building of interactive 3D visualization schemes for scientific
data produced by molecular and cellular biology research.

In [11] Niebling and Becker deal with a web extension
of the COVISE visualization environment [13]. To reach
this goal they deploy WebGL to provide a web rendering
component which allows to explore e.g. post-processed
simulation results in a web browser.

Esnault et al. present a flexible framework for the 3D
visualization of data in the web in [8]. They mention WebGL
as one of the technologies to present the Web 3D result scene
to the user.

In [2] Behr et al. introduce a scaleable architecture that
implements the HTML5/X3D integration model X3DOM
[1]. This architecture offers a single declarative interface
to application developers while it provides several render
backends. One of those backends is WebGL supplemented
by a scenegraph.

Di Cerbo et al. deal with the extension of their e-learning
platform DIEL in [7]. By using X3D and X3DOM in
combination with WebGL to create a Web 3D interface they
achieved to render 3D content on the web without requiring
additional software.

In [12] Sons et al. present XML3D, a new technology
for the support of interactive 3D content in mixed 2D/3D
documents. A portable implementation of XML3D is based
on JavaScript and WebGL.

http://explore.uni-koblenz.de

3. WebGL and GLGE
WebGL is a platform independent API used to create 3D

content for web browsers. It utilizes the HTML5 canvas
element and therefore requires a web browser capable of
processing both HTML5 and WebGL. WebGL and HTML5
are still in further development by different consortia. We-
bGL is based on OpenGL ES 2.0, a popular 3D API designed
for embedded devices. WebGL simply enables users to draw
3D primitives on a 2D canvas. But it has no scene graph and
is not able to load and instantiate textured meshes. WebGL
is already supported by a variety of browsers. The future
of WebGL is promising, especially as it is a standard since
March 2011.

A lot of WebGL frameworks are currently in development.
3DCIS uses GLGE [3]. GLGE is a programming library
based on WebGL, providing more comfortable handling of
WebGL features. The main benefit of such a library is that
much of the low-level operations of WebGL are wrapped
by higher-level functionality. This means easier access to
WebGL’s scope and more comfort in developing usable 3D
web applications.

GLGE provides text rendering and offers fast picking of
objects. It is open source and written in JavaScript. GLGE is
able to load Collada scenes (widely used Khronos standard)
as well as scenes stored in it’s own XML structure.

4. Blender-to-GLGE exporter
The desired workflow is to maintain 3D models in Blender

and to export them to GLGE in such a smooth way that
changes in the model can be studied in WebGL immediately,
without manual modifications. Blender is free software,
productive and available for all major operating systems. It
possesses a powerful Python API.

4.1 Blender export situation
Since Blender 2.5 was still in it’s beta stages during

the beginnings of our work, there was, and in places still
is, a lack of community supplied plug-ins like exporters.
Fortunately, Blender 2.4 and Blender 2.5 file formats are
cross compatible in both directions. This means that a
workflow using Blender 2.5 for content creation and 2.4 for
export is possible. However, this would result in using two
different program instances simultaneously.

Another possibility to export Blender 2.5 data is Collada.
Both, Blender 2.5 and GLGE support this XML based
format, but lack feature completeness. The Collada export
in Blender is implemented with OpenCOLLADA in C++,
an MIT licensed Collada API, also available for Maya and
3DStudio. At the start of our work Blender and OpenCOL-
LADA had to be compiled from source in order to export
Collada which is harder to deploy on an artist’s system than
a plain Python script.

We thus decided to write a new exporter from Blender to
the GLGE XML format to have more control over the final

result and appearance of the scene. Therefore, two exporters
have been implemented. An early one running in Blender
2.49 and our advanced B2G (Blender-to-GLGE) running
in Blender 2.5x. Both are written in Python and produce
GLGE-readable data.

4.2 Early exporter
The early exporter allows to either export the complete

Blender project, the complete scene, or the current selection
such as separate buildings or objects. It was written for
Blender 2.49b in Python 2.6. Mesh objects with position,
normal and UV (texture mapping) information are exported.
Also camera objects are exported correctly. The material
information only holds the texture name but no additional
shading information, so only flat shading is possible.

4.3 GLGE scene format and B2G
The new Blender 2.5 Python API uses Python 3.1 and can

access the whole range of scene data available in Blender.
The aim has been that the resulting GLGE export looks like
the Blender 2.5 scene (see the comparison in figure 1). It
should be easily modifiable by an artist without editing the
exported markup.

The following listing describes a basic GLGE scene XML
structure.

<glge>
<material/>
<mesh/>
<scene>
<object/>
<light/>
<camera/>

</scene>
</glge>

The root element of the GLGE document format is glge.
Inside the root element meshes and materials are defined
with mesh and material tags. The mesh to material relation
and the instancing of the meshes is defined inside the
scene tag. A scene can contain 3 different types of children
with transformation information. An object tag, which is
a mesh linked with a material definition, and also camera
and light tags which define the scene’s cameras and lights.
Furthermore, there is a possibility to group objects which is
currently unused by B2G.

The scene tag itself contains an ambient color, a back-
ground color and fog settings as attributes. All this informa-
tion can be found in the world settings in Blender and is
exported.

B2G is able to export mesh objects with mixed triangle
and quad faces. Beside the vertex position, also the UV co-
ordinates for texture mapping and face normals are exported.
The artist can decide if he uses smooth, interpolated normals
or solid normals per face in Blender. The normal information
is required by the renderer for advanced shading techniques
with a Phong model and normal mapping.

Fig. 1: Comparison between the scene in the Blender 2.55
editor (left) and the exported GLGE scene in the Chromium
9 web browser (right). The sky color is not rendered in
Blender’s GLSL view. Differences in the specular highlight
are also noticeable, since GLGE and Blender use different
shading algorithms.

A common technique is the multiresolution modifier
where a tessellation can be applied to the mesh data.
Blender’s mesh modifiers are also supported by B2G.

There are three different types of light objects in GLGE.
Point lights, spot lights, and directional lights. Each of
these lights can have a different attenuation and color.
Constant, linear and quadratic attenuation is implemented in
GLGE. For spot lights GLGE renders shadows using shadow
mapping. This requires a direction and some extra options.
Spotlights are exported, thus shadow mapping in a scene is
possible. This slows down performance since the scene has
to be rendered one more time for each spot light. Also a
shadow map texture has to be stored for each spotlight.

The GLGE material holds the information relevant for
the object’s shading. Common shading values like specular,
shininess and emit are possible. Those options are exported
from the Blender material. A material can have a uniform
color or can take the information from a color texture map.
Additionally normal maps can be set in Blender to gain bump
mapping in GLGE. All textures have to have a width and
height which is power of two as specified in the OpenGL
ES Specification. To render plants B2G handles transparent
textures. It is also possible to set the transparency of whole
objects which is used to visualize rooms in the campus
application. The GLGE scene graph takes care of sorting
the transparent objects for every frame.

The GLGE scene file can include further XML files.
B2G utilizes that feature and writes the scene, materials and
meshes into separate files to maintain readability in a text
editor. Opening the big mesh files in an editor is slow and
unstable and may result in editor crashes. The exporting of
readable XML files is optional, so B2G strips newlines and
indentations if desired.

5. 3DCIS
The goal of 3DCIS (3D campus information system of

our campus) is to provide a virtual web-based access to
the campus and consequently the possibility to explore
the campus online. Besides the model-provided local ar-
chitectural information 3DCIS also visualizes information
about the university’s departments, employees, facilities and
institutions. This information is valuable for students and
employees, but 3DCIS shall also attract interested scholars.
For the 3DCIS’ realization the open source web application
framework Django was used with a MySQL database. It is
running on an Apache server on Ubuntu Server 10.04 LTS.

The GUI of 3DCIS in the browser consists of three areas:
a left vertical navigation bar, an upper horizontal information
bar and the central 3D application (see figure 2).

Fig. 2: The GUI of the German 3DCIS version without the
browser parts.

5.1 Basic 3D model
Originally, we had created a model of our campus in

SketchUp in a previous project and exported it to Blender.
So the starting point was a highly detailed 3D model
HPCM (High-poly campus model) with more than 1 470
000 polygons.

Since in WebGL the model has to be transferred to
the client on each page view, a much smaller number of
polygons is required. For this reason, we had to downscale
HPCM into LPCM (Low-poly campus model) in Blender.
LPCM uses only 5590 polygons. Figure 3 shows a snapshot
of HPCM in Blender, while figure 4 gives a snapshot from
LPCM in the web browser.

LPCM simply has flat surfaces where HPCM uses geome-
try for doors and windows (see figure 5). Consequently, the
textures used in LPCM have to contain more information
than those in HPCM. On that account a technique called
texture baking has been used. Texture baking allows one to
render lighting data and geometry data to a texture. As a
result, flat surfaces in LPCM reproduce the shape of HPCM

Fig. 3: The HPCM rendered with the Blender 2.5 internal
renderer using ambient occlusion and ray tracing.

Fig. 4: The LPCM used in 3DCIS.

and contain fixed lightning information. By UV mapping the
web application is aware of how to apply textures to objects.

Fig. 5: Comparison of high-poly geometry in HPCM (left)
and low-poly geometry in LPCM (right).

To increase the usability of 3DCIS, annotations have been
added to LPCM. These annotations imply the locations
of rooms, stairways, and elevators which are stored as an
instance of a cube mesh as depicted in figure 6. These
annotations are used to join the 3D model information with
additional information of persons in 3DCIS.

Fig. 6: Annotated rooms (as cubes) in the LPCM Blender
model.

5.2 3D user interaction
The handling of 3DCIS is oriented towards 3D computer

games to get students interested in our application. The entire
campus is presented in WebGL and explorable in a way
known from computer games with first-person view.

As usual in 3D applications the view of the user is
represented by a camera. This camera indicates e.g. the
user’s position and view directions. By pressing an arrow
key the camera position moves on the ground plane. Shifting
the mouse cursor on the 3D application changes the view
direction of the camera. A camera-synchronized mini map
adapts all the user’s movements and alleviates orientation in
3DCIS. The motion speed can be modulated via an options
menu. This menu also allows the activation and deactivation
of simple billboard texture vegetation.

As there are differences in altitude in the campus model
the camera’s height has to be set correctly. Using the arrow
keys just affects the camera’s x- and y-position but not the
camera’s height. In order to receive height information of
the modeled area, a height-map was generated. Our height-
map is a simple grayscale image where dark pixels (0
means black) represent lower altitudes and lighter pixels
(255 means white) represent higher altitudes (see figure 7).

To move the camera correctly the z-value of its current and
aimed position is queried from the height-map. A high gap
between those two values indicates that the user is passing an
incline. If the gap is too high the terrain is not passable and
further movement is prevented. 3DCIS contains a collision
detection that prohibits movements into solid objects using
the same height map.

There are many possibilities to get information within
3DCIS. The easiest way to receive information is to click on
buildings. When a click on a building occurs the building
gets highlighted in blue and additional information about
this building is displayed. Buildings are also accessible via
the navigation bar or via search requests as we will explain
in the next subsection.

Rooms can only be addressed via the information or
navigation bar. Selected rooms are highlighted in blue and

Fig. 7: Height and collision map in which the gray value of
a location represents its height in the application.

Fig. 8: A model-annotated room visualized in 3DCIS by a
blue cuboid.

their 3D position can be seen in the now transparent building,
see figure 8. Rooms are represented by cuboids as described
in section 5.1. In order to achieve these different graphic rep-
resentations (ordinary, highlighted and transparent objects),
different materials are in use.

A further interesting feature is the flight option. In addition
to the room’s visualization the user will experience an
automatic flight to the building which contains the requested
room. To generate these flights instantly, the 3D environment
is divided in 1 216 nodes. Each node is either passable or
not passable. The distribution of the nodes is stored in a
bitmap which is working as the height-map.

The A* graph search algorithm is used to find the shortest
way from the user’s position to the room’s position. At the

end of the flight the camera pans to the room’s position in
the building.

5.3 Informational features
3DCIS combines the experience of moving through the

3D campus model with useful search features. It is possible
to search for buildings, departments, institutions, persons,
rooms etc. The search results provide as many information
as possible of the linked data, see subsection 5.4. The
search result of a person e.g. is visualized in an information
window which shows the name and title, an image, telephone
number, e-mail address, homepage url and room number.
The information window is realized as an overlay over the
WebGL content (see figure 2). By clicking the room number,
the accordant room gets visualized as described in section
5.2. A click on the flight button next to the room number
initiates a flight to the person’s room as described in 5.2.

The provided information is accessible by search queries
via a search bar on the larger information bar. The automatic
search for matching search terms is extended by keyword
mapping. The keyword mapping maps syntactical different
search terms on semantically similar ones. Alternatively,
most information is also available via accordion tabs on the
navigation bar. Highest level entries divide the information in
“persons”, “rooms” and “for persons interested in studies”.

5.4 Data mining
To provide the informational features 3DCIS has to have

access to data that is contained in three main data sources.
The first source is the university’s content management sys-
tem (CMS). Nearly all the university’s employees, namely
professors, scientific assistants, public employees or student
assistants, are documented in the CMS’s database. The CMS
data is obtained by polling a current XML file regularly
using a Python script. This script uses a XML Python module
and is called up by a cronjob. The CMS person entries
contain data such as name, title, picture, room, telephone
number, e-mail address, homepage url etc.

Besides the university’s CMS data its LDAP address
book is also accessed. For the LDAP access an accordant
Python LDAP module is used. The LDAP address book’s
person entries contain a unique ID, the person’s name, room
number, phone number and e-mail address. The third main
data source consists of manual data. Information about e.g.
whole buildings are not available in easy-accessible manner
and had to be added manually.

The data is checked having regard to data privacy. E.g.
names or e-mail addresses of students from the LDAP
which are not published in the CMS, are not published or
searchable in 3DCIS.

The collected data is combined using Django data-models.
A Django data-model is a python class which automatically
sets the data base schema. By using these models one is
able to describe and organize a data structure in Python

code. Such models have been designed for Person, Group,
Room and Building for example. The Room data-model,
respectively the Room class, looks like this e.g.:

c l a s s Room(WCObject) :
name = models . C h a r F i e l d (. . .)
room_type = models . C h a r F i e l d (. . .)
t e l e p h o n e s = models . ManyToManyField (. . .)
b u i l d i n g = models . Fore ignKey (. . .)
t a g s = models . ManyToManyField (. . .)

The above code listing is not valid Python code. The dots
in brackets are place holders for further descriptions.

6. Conclusion
We use Blender to develop and maintain 3D models.

With our in-house developed Blender-to-GLGE exporter
B2G we can export our Blender models to WebGL. B2G
accomplishes that the GLGE export almost looks like the
original Blender scene by exporting all relevant artefacts like
e.g. light sources or object’s shading information. The user
may use WebGL models in the internet browser without any
plug-in.

Our 3D campus information system 3DCIS is based on
such a WebGL model. 3DCIS provides for example

• interactive navigation in our 3D campus model,
• a camera-synchronized mini map,
• different search options,
• visualization of the search results via

– automatic flights,
– correct display of 3D room locations.

Considering nowadays Web 3D conditions 3DCIS uses
a rather large model (although we broke down the HPCM
to the LPCM). Nevertheless, 3DCIS performs real-time
rendering of the campus scene.

3DCIS can be used as an information system for univer-
sity’s employees. It is composed like a common 3D game
to attract potential students.

This work is not completed yet. In the future we want to
add several more features to 3DCIS. Besides a nicer campus
scene, with plants and changing light conditions, we want to
increase the number of user adaptable “gameplay” options,
e.g. the model’s level of detail. Additionally, an English
version of 3DCIS is currently under construction. According
to this step the data management parts of 3DCIS will be re-
engineered and a change from Django to a PHP based system
is likely.

Acknowledgments
We would like to thank everybody involved in this work for

their commitment. Special thanks go to the student project
"Interaktiver Campuswegweiser", Christian Fuchs, Markus
Lohoff and Christian Schneider.

References
[1] J. Behr, P. Eschler, Y. Jung, and M. Zöllner. X3dom: a dom-based

html5/x3d integration model. In Proceedings of the 14th International
Conference on 3D Web Technology, Web3D ’09, pages 127–135, New
York, NY, USA, 2009. ACM.

[2] J. Behr, Y. Jung, J. Keil, T. Drevensek, M. Zoellner, P. Eschler, and
D. Fellner. A scalable architecture for the html5/x3d integration model
x3dom. In Proceedings of the 15th International Conference on Web
3D Technology, Web3D ’10, pages 185–194, New York, NY, USA,
2010. ACM.

[3] P. Brunt. Glge api documentation, December 2010.
http://www.glge.org/api-docs/.

[4] M. Callieri, R. M. Andrei, M. Di Benedetto, M. Zoppè, and
R. Scopigno. Visualization methods for molecular studies on the web
platform. In Proceedings of the 15th International Conference on Web
3D Technology, Web3D ’10, pages 117–126, New York, NY, USA,
2010. ACM.

[5] B. P. DeLillo. Webglu development library for webgl. In ACM
SIGGRAPH 2010 Posters, SIGGRAPH ’10, pages 135:1–135:1, New
York, NY, USA, 2010. ACM.

[6] M. Di Benedetto, F. Ponchio, F. Ganovelli, and R. Scopigno. Spidergl:
a javascript 3d graphics library for next-generation www. In Proceed-
ings of the 15th International Conference on Web 3D Technology,
Web3D ’10, pages 165–174, New York, NY, USA, 2010. ACM.

[7] F. Di Cerbo, G. Dodero, and L. Papaleo. Integrating a web3d interface
into an e-learning platform. In Proceedings of the 15th International
Conference on Web 3D Technology, Web3D ’10, pages 83–92, New
York, NY, USA, 2010. ACM.

[8] N. Esnault, J. Royan, R. Cozot, and C. Bouville. A flexible framework
to personalize 3d web users experience. In Proceedings of the 15th
International Conference on Web 3D Technology, Web3D ’10, pages
35–44, New York, NY, USA, 2010. ACM.

[9] KHRONOS. Webgl specification, December 2010.
https://cvs.khronos.org/svn/repos/registry/trunk/public/
webgl/doc/spec/WebGL-spec.html.

[10] C. Leung and A. Salga. Enabling webgl. In Proceedings of the
19th international conference on World wide web, WWW ’10, pages
1369–1370, New York, NY, USA, 2010. ACM.

[11] F. Niebling, A. Kopecki, and M. Becker. Collaborative steering and
post-processing of simulations on hpc resources: everyone, anytime
anywhere. In Proceedings of the 15th International Conference on
Web 3D Technology, Web3D ’10, pages 101–108, New York, NY,
USA, 2010. ACM.

[12] K. Sons, F. Klein, D. Rubinstein, S. Byelozyorov, and P. Slusallek.
Xml3d: interactive 3d graphics for the web. In Proceedings of the
15th International Conference on Web 3D Technology, Web3D ’10,
pages 175–184, New York, NY, USA, 2010. ACM.

[13] A. Wierse, U. Lang, and R. Rühle. A system architecture for
data-oriented visualization. In J. Lee and G. Grinstein, editors,
Database Issues for Data Visualization, volume 871 of Lecture Notes
in Computer Science, pages 148–159. Springer Berlin / Heidelberg,
1994.

	Introduction
	Related work
	WebGL and GLGE
	Blender-to-GLGE exporter
	Blender export situation
	Early exporter
	GLGE scene format and B2G

	3DCIS
	Basic 3D model
	3D user interaction
	Informational features
	Data mining

	Conclusion
	References

