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Abstract— This paper provides recent developments in mod-
eling and identification of nonlinear systems pertinent to
loudspeaker with nonlinear distortion effect. It is known that
when small loudspeakers are driven at high playback levels
the nonlinear characteristics of these speakers become a
major source of sound degradations. Consequently it is es-
sential to find a good model that matches to the loudspeaker
response for the purpose of predicting and preventing the
nonlinear distortion. This becomes particularly important
for the purpose of improving sound quality of mobile phones.
This paper presents the loudspeaker operation, the issues
of concern, and nonlinear modeling techniques that can
reliably be used for its identification process. Frequency
domain and state-space modelings are considered and em-
phasis is given towards polynomial nonlinear state-space
models which can better tie to nonlinear identification of
loudspeaker.
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1. Introduction
Acoustic transducers are part of our everyday life, and

we use them intensively throughout the day using our
cellphones, listening to the radio in our car, looking at the
TV or playing games on computer at night. In all cases,
sound distortion is present and has negative impact on the
sound quality, diminishing listening pleasure and, worse,
speech intelligibility. In some cases, texting is the only
way to get your message across. In particular, cellphones,
teleconference systems, PC systems use small loudspeakers
driven at high-amplitude to get enough sound level greatly
increasing nonlinear distortion. It is particularly critical when
it comes to hands-free or speaker-phone situations. So,
nonlinear distortion becomes increasingly prevalent, and yet
there is still no satisfactory model for this phenomenon.
The study of loudspeaker and its characterization based
on sine response remained common approach for many
years. Sine sweep, step by step or continuous, have been
used to measure frequency response and distortion. For
non-linear behavior characterization single tone is used to
measure harmonic distortion and two tones are used for
intermodulation and difference distortion. Many different
and sophisticated variations of these basic measurements are
used, but sine response doesn’t predict reliably the music

or speech quality. Multitone and random noise excitations,
along with coherence analysis have been introduced [1] but
have not gained in popularity. The different distortion mea-
surements (harmonic distortion, intermodulation, multitone
distortion, non-coherent power ) are not related to each other
by an underlying model, and remain purely symptomatic.
It is natural to think that the loudspeaker industry could
benefit from the modern techniques of nonlinear system
identification to obtain a comprehensive and accurate model
for diagnosis, quality control, simulation, prediction and
ultimately, linearization. Following the advancements in non-
linear system theory, during the last 30 years, many attempts
have been made in the identification and linearization of
loudspeaker [2]-[3]. However due to the wide range of audio
frequencies (20 Hz to 20kHz) and high human ear sensitivity,
the loudspeaker identification and linearization remain an
elusive goal. This paper reviews recent developments in
the domain of loudspeaker identification and explores new
possibilities to improve modeling that is better match to
the loudspeaker response. First we present the loudspeaker
operation principles and the major causes of distortion, then
we explore the successive modeling approaches that have
been investigated in the last 30 years. Finally we provide
new directions of research in the frequency domain and
propose two techniques based on state-space for modeling of
loudspeaker which can effectively be used in identification
process.

2. Preliminary Development
In this section, we give a brief overview of the loudspeaker

operation and the modeling approaches that have been
investigated in the last 30 years.

2.1 Loudspeaker Mechanism
The most common type of driver is electro-dynamic.

The driving part, the motor, is a moving coil into a static
magnetic field. The audio signal goes through the coil and
creates a variable magnetic field that interact with fixed
magnets and generate a mechanical force that is roughly
proportional to the electrical current. The acoustic radiation
is insured by a lightweight cone (diaphragm) attached to
the coil. An elastic suspension maintains the coil and the
attached cone in place into the frame ("basket"). The cone
is also mechanically connected to the basket by an elastic



Fig. 1: Loudspeaker mechanism.

suspension called surround (see fig. 1). Designing a driver
combines acoustic, mechanical, electrical and material sci-
ence. A simplified linear model based on lumped parameters
describes the loudspeaker mechanism at low frequencies. It
is composed of 2 differential equations.

u(t) = Ri(t) + L
di

dt
+Bl

dx

dt
(1)

Bli(t) = m
d2x

dt2
+ r

dx

dt
+ kx(t) (2)

Where u(t) is the input voltage, i(t) the current, x(t) the cone
displacement and R, L, Bl, m, r, k are electromechanical
parameters of the loudspeaker. It is important to note that the
force factor Bl, the voice coil inductance L and the stiffness k
are nonlinear function of the displacement x. Therefore non-
linearity is intrinsic to the driver’s principle of operation.
Beside the changing parameters just mentioned, there is a
wide variety of non-linear behaviors [4]. For example, at
high frequencies the cone and dome no longer behave as
rigid bodies. They exhibit breakup modes and eventually the
vibrations become nonlinear. Another distortion inherent to
the fundamental principle of operation is the Doppler effect
due to the fact that the sound is emitted from the diaphragm
which is a moving source.

2.2 Approaches of System Identification
White Box (1980’s): The first attempts of system identi-

fication applied to loudspeaker were based on the lumped
model described by equations (1) and (2). A simple system
identification method delivers a first prediction of the me-
chanical behavior of the loudspeaker for low frequencies,
and small signals. It was applicable up to the cone breakup
frequency where the cone still behaves as a rigid piston.
The measurement method is based on sine excitation and
proceeds in two successive parts, involving added mass or
loudspeaker enclosure. In a seminal paper [2], the most
prominent nonlinearities (force factor Bl(x), self-inductance
L(x), stiffness k(x) ) are approximated by polynomials, then
expressed in term of Volterra series. Extensions of this work
are reported in [5] (see also the references therein). The

white box approach is limited to low frequencies and low
order nonlinearities (typically 2 or 3).

Black-Box (1990’s): Unlike white box approach, the black
box scheme uses input/output model with no physical in-
sight. One technique uses NARMAX in the time domain
[6], described by:

yt = f(yt−1...yt−n, ut...ut−m, et−1...et−d) + et (3)

Where u and y represent input and output, e represents noise
and f(.) is a nonlinear function (e.g. polynomial). Other
attempts were made in the frequency domain, using a general
Volterra model [7]. Volterra models are interesting because
of their standard and general approach. They relate imme-
diately to the frequency domain and provide generalized
frequency responses, but their complexity is such that the
order is limited practically to 3.

Block Model (2000’s): Recent trends use a simplified
Volterra model with diagonal kernels hn(t, ...t) ≡ hn(t),
incorporating Hammerstein scheme as shown in 2 with the
output of the system represented by:

y(t) =

Q∑
n=1

un(t) ∗ hn(t) (4)

Fig. 2: parallel-hammerstein.

This model deviates from physical intuition, however
attempts were made in [8] to obtain a proper identification of
each path, more exactly of each transfer function hn. Inde-
pendently, a modified Wiener-Volterra model was proposed
in [3] (see fig. 3), that has the property of having an exact
inverse. This makes it suitable for loudspeaker linearization
by derivation of a predistortion filter. It is interesting to
note that the parallel-Hammerstein and the Wiener-Volterra
models cover the full acoustic frequency range contrary to
previous models.

2.3 Analysis
As we pointed out in the introduction, we are dealing

with loudspeaker, not only for music and entertainment but
also for communication. In the case of complex signals
like speech or music, distortion sounds generally like a
modulation noise that degrades the clarity of the signal. To
demonstrate this effect, music has been played through a



Fig. 3: Modified Wiener Volterra.

loudspeaker and the added non-linear distortion has been
measured as the non-coherent power present in the acoustical
signal [1]. Fig. 4 shows both the spectrum of the musical
signal and the spectrum of the added distortion noise.

Fig. 4: Music spectrum and Distortion Noise from a Loud-
speaker.

3. Proposed New Methodologies
In this section we present new models that can reliably

be used in identification of loudspeaker.

3.1 Frequency Domain Block Model
In the last decade many papers have been published on

the frequency domain approach ([9], [10] and references
therein). The general approach is the following

1) Find the best linear approximation
2) Identify the added nonlinearity

which is practical and well-suited for weakly nonlinear
systems.

This approach is justified by the following fact that
a Volterra system subjected to Gaussian random input is
equivalent to a linear system with an added noise source
at the output (see fig. 5). The linear part YR contains all the
contributions coherent with the excitation and the nonlinear
part YS gathers all the contributions which are not coherent
to the input. For each frequency ω, YS(ω) is the sum of
contributions like:

H3(ω1, ω2, ω − ω1 − ω2)U(ω1)U(ω2)U(ω − ω1 − ω2) (5)

Where H3 is the Volterra generalized frequency response
of order 3 and ω1 + ω2 6= 0. For a random input U,

Fig. 5: Nonlinear system with random input and its equiva-
lent linear system + nonlinear noise source.

each contribution is random, and YS cannot be distinguished
from a noise. Note that odd degrees of nonlinearity can add
coherent contribution to YR (e.g. insert ω1 + ω2 6= 0 in
(5)) that modify the best linear approximation GR . Using
this result a general purpose and flexible block model is
proposed as shown in fig. 6. It is a parallel structure with

Fig. 6: Generic nonlinear model for frequency domain
identification.

each branch representing a typical situation. The 1st branch
is simply the linear case (c is a pure real gain). In the
following branches NLi are static polynomials systems. The
2nd branch is Hammerstein system. The 3rd branch is a
Wiener system. The 4th branch is a cascade approximation
of a nonlinear feedback. Note that linear block G is the
same in all branches. That model is identified in successive
steps. First the best linear approximation of the overall
system is identified and inserted as G in all branches.
Then the active branches are selected based on their power
contributions. Finally the polynomial NLi of the selected
branches are identified. This approach seems well suited to
loudspeaker identification. In particular, the nonlinear feed-
back that is part of electrodynamic loudspeaker mechanism
can be identified. Our immediate goal is to apply this model
to loudspeaker identification and compare it with previous
methods.



3.2 Nonlinear State-Space Modeling
The most general representation of nonlinear system in

state space notation can be expressed as:

ẋ(t) = f(x, u, t)

y(t) = h(x, u, t) (6)

for continuous-time system, where x ∈ Rn, u ∈ Rm and
y ∈ Rl. The analysis and design of nonlinear system (6) is
not a trivial task. Therefore, more attention has been given to
special class of nonlinear systems. In particular, the class of
nonlinear systems affine in the input attracted systems and
control community for obvious reasons. The state equation
of this class is given by:

ẋ(t) = f(x) + g(x)u (7)

and the output equation is assumed linear in state i.e.
y(t) = Cx(t). It is not difficult to show that under the
assumption of f(x) = 0 and continuous differentiability of
f(x) and g(x), one can recast (7) in the pseudolinear form

ẋ(t) = A(x)x+B(x)u (8)

which resemble linear system; however, the system matrices
are state dependent. It should be pointed out that the choice
of the matrix A(x) is not unique. Note also that the non-
linearity is in multiplicative format. Due to this structure,
control theoretical concepts can be developed to mimic
the classical state-space design approaches. For example
the state feedback design and its optimal control format
based on Linear Quadratic Regulator (LQR) leads to state
dependent Ricatti equation (SDRE), which can be solved to
specify the feedback gain. Therefore it is also interesting
to pursue research in identification schemes based on this
model structure.
A. Polynomial Nonlinear State Space Model
Recently the following class of Lipschitz nonlinear systems
has attracted a considerable attention [11]:

ẋ(t) = Ax+Bu+ Ep(x, u)

y(t) = Cx+Du+ Fq(x, u) (9)

where p(t) ≡ p(x, u) and q(t) ≡ q(x, u) satisfy the
Lipschitz condition. Note that in this case the nonlinearity is
in additive format. It can be shown that applying functional
expansion of the function f and h in (6) with various kinds
of basis functions, one can arrive at (9). In this paper, a
set of polynomial basis functions is chosen due to compu-
tational simplicity and its advantage in our application. The
polynomial Nonlinear State Space (PNSS) model is defined
by (9) consisting of the linear terms in x(t) and u(t) with
constant coefficient matrices A, B, C, D, E, F and the vectors
p(t) ∈ Rnp and q(t) ∈ Rnq containing nonlinear monomials
in x(t) and u(t) of degree two up to a chosen degree r, where
the coefficient matrices E and F contain the coefficients
associated with those monomials. Note that the monomials

of degree one are included in the linear part of the PNSS
model structure. When a full polynomial expansion is carried
out, all monomials up to degree r must be taken into account.
First, a vector z is defined as the concentration of the state
vector and the input vector as

z(t) = [x1(t) . . . xn(t)u1(t) . . . um(t)]T (10)

As a consequence, the dimension of the vector z(t) is given
by nz= n+m. Then, using the conventional index notation for
monomials we define:

p(t) = q(t) = z(t){r} (11)

Note that the vector z(t){r} as defined in (11) should contain
all monomials with a degree between two and r. For instance,
the vector z{3} with nz= 2 denotes

z{3} = [z(2)z(3)]
T = [z21 , z1z2, z

2
2 , z

3
1 , z

2
1z2, z1z

2
2 , z

3
2 ]

T

(12)
where we define z(r) as the vector of all the distinct

monomials of degree r composed from the elements of vector
z. The number of elements in vector z(r) is given by the
following binomial coefficient

Nr =

(
nz + r − 1

r

)
(13)

Thus, the vector z{r} has the length

Lr =

(
nz + r

r

)
− 1− nz (14)

and corresponds to considering all the distinct nonlinear
combinations of degree r, which is the default choice for
the PNSS model structure. The total number of parameters
required by the model in(9) , is given by

N =

[(
n+m+ r

r

)
− 1

]
(n+ l) (15)

B. Bilinear and State Affine Models
The class of bilinear state space models is described by

ẋ(t) = Ax+Bu+

m∑
k=1

Nkukx(t)

y(t) = Cx+Du (16)

It is well known that bilinear state space models are
universal approximates for continuous-time nonlinear sys-
tems within a bounded time interval. Unfortunately, this
approximation does not hold in discrete time case. A more
general class of state space models known as state affine
models admit this approximation for discrete-time systems
[12]. A state affine model of degree r for discrete-time



systems is defined as

x(t+ 1) =

r−1∑
i=1

Aiu
i(t)x(t) +

r∑
i=1

Biu
i(t)

y(t) =

r−1∑
i=1

Ciu
i(t)x(t) +

r∑
i=1

Diu
i(t) (17)

These models results in a natural way when describing
sampled continuous-time bilinear state space systems [13].
The advantage of this model is that the states x(t) appear
linearly in the state and output equations. As a consequence,
subspace identification techniques can be used to estimate
the model parameters. It is also interesting to see that state
affine models form a subset of the PNSS model class.

4. Identification Procedure
It should be pointed out that a parallel treatment of

previous section for discrete-time nonlinear system can be
established. This is convenient for system identification
process. In this case, without loss of generality, we see
similar state space notation as follows:

x(t+ 1) = Ax+Bu+ Ep(t)

y(t) = Cx+Du+ Fq(t) (18)

Due to the fact that nonlinearities are concentrated in the
states, one can simplify PNSS representation by considering
only z(t) = x(t) = [x1(t) . . . xn(t)]

T and construct x(t){r}
which reduces the computational complexity. The identifi-
cation procedure for PNSS model consists of three major
steps. First, best linear approximation (BLA) of the system
under test is determined non-parametrically in mean square
sense. Then, a parametric linear model is estimated from
BLA using frequency domain subspace identification method
[14]. This is followed by solving a nonlinear optimization
of the linear model. The last step consist of estimating
the full nonlinear model by using again a nonlinear search
algorithm that minimizes the model output error in regard
to the measured output. The following steps summarizes the
frequency domain subspace identification technique:

1) The BLA is obtained by a classical FRF measurement
using periodic excitation (e.g. multitone) [9].

2) The FRF estimate is extended to the full unit circle
and the Impulse Response coefficients ĥi are obtained
by IDFT of the FRF

3) The Hankel matrix is defined from the Impulse
Response:

Ĥ =


ĥ1 ĥ2 · · · ĥr

ĥ2 ĥ3 · · · ĥr+1

...
...

. . .
...

ĥq ĥq+1 · · · ĥq+r−1



with number of rows q > n and number of columns
r ≥ n, n being the order of the system.

4) The Singular Value Decomposition of the Hankel
matrix is calculated and the system order is determined
by selection of the n largest singular values.

5) The system matrices Â, Ĉ are estimated directly from
the n left singular vectors.

6) The remaining system matrices B̂, D̂ are estimated by
least-square optimization of the state-space model with
respect to the measured FRF

5. Conclusion
This paper summarized the available techniques for mod-

eling and identification of loudspeaker with its unavoidable
nonlinear distortion phenomenon. Various frequency and
state-space approaches have been analyzed. It is shown that
when a general, black-box model of a nonlinear device is
required, the PNSS model is a perfect tool to approximate
the nonlinearity. This enables the identification procedure to
be performed in a straightforward fashion using three simple
steps; namely, best linear approximation, estimate a linear
model, and finally solve a standard nonlinear optimization
problem.
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