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Abstract— The efficient and discriminating feature extrac-
tion is a significant problem in pattern recognition and
computer vision. This paper presents a novel Discrimi-
nating Haar (D-Haar) features for eye detection. The D-
Haar feature extraction starts with a Principal Component
Analysis (PCA) followed by a whitening transformation on
the Haar feature space. A discriminant analysis is then
performed on the reduced feature space. A set of basis
vectors, based on the novel definition of the within-class and
between-class scatter vectors and a new criterion vector,
is defined through this analysis. The D-Haar features are
derived in the subspace spanned by these basis vectors. We
then present an accurate eye detection approach using the
D-Haar features. Experiments on Face Recognition Grand
Challenge (FRGC) show the promising discriminating power
of D-Haar features and the improved detection performance
over existing methods.

Keywords: Haar Wavelet; Discriminant Analysis; Eye Detection;
Face Recognition Grand Challenge

1. Introduction
Previous research has proved that various image repre-

sentations can provide more information for detection and
recognition than pixel-by-pixel intensity values [1] [2] [3]
[4]. Due to the state-of-the-art work of Viola and Jones [4],
Haar wavelet representation attracts much attention in the
past decade [5] [6] and it is widely used in image retrieval
[7], pedestrian detection [4], as well as face detection and
recognition [8]. The Haar wavelet is a set of basis functions
which is capable of capturing the relationship between
average intensities of neighboring regions in different scales
and orientations. The main reasons of using Haar wavelet in
our work are (i) its intensity difference encoding scheme
is suitable to capture the structure characteristic of eyes:
centered dark pupil is surrounded by a relatively white sclera
and (ii) the inner product of Haar basis functions with an
image vector can be efficiently performed by just several
integer additions and subtractions instead of floating point
multiplications [4].

One important problem of Haar wavelet feature is that it
resides in an extremely high dimensional space. However,
low dimensionality is especially important for learning, as
the number of examples required for attaining a given level
of performance grows exponentially with the dimensionality

of the vector space [9]. A simple choice of dimensional-
ity reduction is the Principal Component Analysis (PCA)
[10]. PCA is probably the most widely used dimensional-
ity reduction technique with the property of optimal data
representation in the sense of minimum mean-square error.
Although PCA can derive the optimal representing features,
it can not derive the optimal discriminating features. How-
ever, in contrast to the case of pattern classification, where
we need to decide between a relatively small number of
classes, the detection problem requires us to differentiate
between the object class and the rest of the world. As a
result, the extracted features for object detection must have
discriminating power to handle the cluttered scenes it will
be presented with. Furthermore, in modeling complicated
classes of objects like eyes, the inner-class variability itself
is also significant. One widely used discriminating feature
extraction method is the Fisher Linear Discriminant (FLD)
[10]. For any L-class pattern classification problem, FLD
derives a compact and well-separated feature space based on
L−1 basis vectors that maximize the between-class distance
while minimize the within-class distance. However, when
applied to the two-class detection problem, FLD only derives
one basis vector, which will lead to the significant loss of
data information and a very poor classification performance.
Another popular feature extraction method is Adaboost [4].
Adaboost is a performance guided greedy algorithm. On
each round one sub-optimal discriminating feature which
can generate the best performance is chosen and a weak
classifier is built upon this feature. After several rounds, the
final feature space is built by combining a set of these sub-
optimal discriminating features and a strong classifier is built
by combining a collection of weak classifiers. Adaboost has
some disadvantages when applied to real applications. First,
it can not deal with large-scale training set because of its
great time and space requirement; second, in some cases,
especially when the characteristic of training samples vary
in a large range, the convergence of the training procedure
can not be guaranteed; finally, the speed of both training
and testing procedure is very slow, which can not meet the
real-time requirement.

In this paper, we present a novel discriminating Haar
(D-Haar) features, which reside in low dimensional space
and have great discriminative power. The D-Haar feature
extraction starts with a Principal Component Analysis (PCA)
followed by a whitening transformation on the Haar feature



space. A discriminant analysis is then performed on the
reduced feature space. A set of basis vectors, based on the
novel definition of the within-class and between-class scatter
vectors and a new criterion vector, is defined through this
analysis. The D-Haar features are derived in the subspace
spanned by these basis vectors. Experiments will show the
promising discriminating power of D-Haar features.

We then present an accurate eye detection approach using
the D-Haar features. Eye detection has a significant impact
on the performance of an automatic face recognition system
due to the "Curse of Alignment" [11]. Even a slight detection
error will dramatically reduce the face recognition accuracy
[11] [12]. Although lots of eye detection methods have been
proposed recently [11] - [13], most of them evaluate their
methods according to a loose criterion based on the binocular
distance. This kind of error can be more than ten pixels
depending on the different size of images and thus lead
to a poor face recognition performance. The eye detection
method proposed in this paper can achieve more accurate
detection performance over existing methods. In particular,
experiments on Face Recognition Grand Challenge (FRGC)
show that our method has an overall 91.37% accuracy, with
the detected eyes within five pixels from the ground truth.

2. Haar Wavelet Features
The Haar wavelet is a natural set basis functions which en-

code the differences in average intensities between different
regions in different scales. It has three kinds of represen-
tations in two dimension space: (i) a two horizontal neigh-
boring rectangular regions, which computes the difference
between the sum of pixels within each of them, (ii) a two
vertical neighboring rectangular regions, which computes the
difference as (i) does, and (iii) a four neighboring rectangular
regions, which computes the difference between diagonal
pairs of rectangles. Figure 1(b) lists some examples of these
Haar basis. Mathematically, the 2D Haar basis are given by
a set of scaled and translated box like functions defined as
follows:

fω,µ,ν(x, y) = fω1,µ1,ν1(x) ∗ f t
ω2,µ2,ν2

(y)

fω1,µ1,ν1(x) =

 1 µ1 ≤ x ≤ µ1 + ν1/2
−1 µ1 + ν1/2 + 1 ≤ x ≤ µ1 + ν1
0 otherwise

fω2,µ2,ν2(y) =

 1 µ2 ≤ y ≤ µ2 + ν2/2
−1 µ2 + ν2/2 + 1 ≤ y ≤ µ2 + ν2
0 otherwise

(1)
where ω = (ω1, ω2) ∈ {1, 2, ..., S}, µ = (µ1, µ2) ∈
{20, 21, ..., 2ω−1}, and ν = (ν1, ν2) ∈ {0, 1, ..., 2ω − 1} de-
note the scale, step, and shift of Haar wavelets in horizontal
and vertical directions, respectively. Haar basis vector ψω,µ,ν

is then given by concatenating the columns of the box like

(a) Samples of Eye Images after Illumination Normalization

(b) Samples of Haar Basis Images (Haar Basis)

(c) First 10 Haar Basis Images after PCA (P-Haar Basis)

(d) The Only One Haar Basis Images after FLD (F-Haar Basis)

(e) First 10 D-Haar Basis Images

Fig. 1: Samples of eye images, Haar basis, P-Haar basis,
F-Haar basis, and D-Haar basis.

function fω,µ,ν(x, y). Let Ψ = {ψω,µ,ν : ω = (ω1, ω2) ∈
{1, 2, ..., S}, µ = (µ1, µ2) ∈ {20, 21, ..., 2ω−1}, ν =
(ν1, ν2) ∈ {0, 1, ..., 2ω−1}} denotes a set of basis vectors. A
Haar feature space is constructed based on the set of basis
vectors Ψ. Given an image column vector X ∈ Rnr×nc ,
where nr and nc denote the number of rows and columns
of the image respectively. A Haar wavelet feature vector Y
on image X is defined as follow:

Y = ΨtX (2)

The Haar feature vector is then normalized to zero mean
and unit variance in case one feature excessively dominates
the others. One advantage of Haar feature is that the inner
product can performed by just several integer additions and
subtractions instead of floating point multiplication [4].

Compared with some other state-of-the-art image repre-
sentation methods such as Gabor [1], HoG [2] and LBP
[3], Haar feature is considered the optimal representation
for eye detection through our experiments, since its intensity
difference encoding scheme is most suitable to capture
the structure characteristic of eyes: centered dark pupil is
surrounded by a relatively white sclera. A comprehensive
assessment of Haar features with others can be found in our
previous work [14].

3. Discriminating Haar Features
As we mentioned in Section 1, the extracted Haar features

not only reside in a extremely high dimensional space but
can not guarantee the discriminability property. We present
in this section a novel discriminating Haar (D-Haar) features,
which reside in low dimensional space and have great



discriminative power. The D-Haar feature extraction starts
with a Principal Component Analysis (PCA) followed by a
whitening transformation on the Haar feature space. A dis-
criminant analysis is then performed on the reduced feature
space. A set of basis vectors, based on the novel definition
of the within-class and between-class scatter vectors and a
new criterion vector, is defined through this analysis. The D-
Haar features are derived in the subspace spanned by these
basis vectors.

Let the extracted Haar feature vector introduced in Section
2 be Y ∈ RN , where N is the dimensionality of the Haar
feature space. PCA is firstly performed to solve the high
dimensionality problem. The covariance matrix is:∑

Y
= ε{[Y − ε(Y)][Y − ε(Y)]t} (3)

where ε(·) is the expectation operator and
∑
Y ∈ RN×N .

The PCA of a random vector Y factorizes the covariance
matrix

∑
Y into the following form:∑

Y
= ΦΛΦ with Φ = [φ1φ2...φN ],

Λ = diag{λ1, λ2, ..., λN}
(4)

where Φ ∈ RN×N is an orthogonal eigenvector matrix and
Λ ∈ RN×N a diagonal eigenvalue matrix with diagonal
elements in decreasing order (λ1 ≥ λ2 ≥ ... ≥ λN ). Then,
the PCA transformation is defined as follows:

R = P tY (5)

where P = [φ1φ2...φm], m < N , and P ∈ RN×m. The first
ten basis vectors that form the reduced Haar feature space
after PCA is shown in Figure 1(c).

After PCA, the new feature vector R resides in a lower
dimensional space (Rm). In this Rm feature space, we
then perform the whitening transformation to sphere the
covariance matrix of R. The whitening transformation W
is defined as follows:

W = Γ−1/2P (6)

where Γ = diag(λ1, λ2, · · · , λm). This whitening transfor-
mation not only eliminates the correlation between variables
but also normalizes the deviation of each variable.

Next, we will define two scatter vectors and a criterion
vector in order to derive the D-Haar features. Let W =
{W1,W2, · · · ,Wm}, where W ∈ RN×m. Note that W
contains m vectors. The idea of the D-Haar transformation
is to choose a smaller set of vectors, from these m vec-
tors, with the most discriminating capability. The D-Haar
transformation is then defined based on this smaller set of
vectors. Toward that end, we first define the within-class
scatter vector, α ∈ Rm, and the between-class scatter vector,
β ∈ Rm, as follows:

α = P1

n1∑
i=1

s(W ty
(1)
i −W tM1)+P2

n2∑
i=1

s(W ty
(2)
i −W tM2)

(7)
and

β = P1s(W tM1 −W tM) + P2s(W tM2 −W tM) (8)

where P1 and P2 are the prior probabilities, n1 and n2

are the number of samples, and y
(1)
i and y

(2)
i are the Haar

features of the eye and the non-eye samples, respectively.
M1, M2, and M are the means of the eye class, the non-
eye class, and the grand mean in the original Haar feature
space, respectively. The s(·) function defines the absolute
value of the elements of the input vector. The significance
of this new scatter vectors is that the within-class scatter
vector, α ∈ Rm, measures the clustering capability of the
vectors in W , and the between-class scatter vector, β ∈ Rm,
measures the separating capability of the vectors in W . In
order to choose the most discriminating vectors from W to
form a set of vectors to define the D-Haar transformation,
we then define a new criterion vector γ ∈ Rm, as follows:

γ = β./α (9)

where ./ is element-wise division. The value of the elements
in γ indicates the discriminating power of their correspond-
ing vectors in W : the larger the value is, the more dis-
criminating power the corresponding vector in W possesses.
Therefore, we choose the p vectors, Wi1,Wi2, · · · ,Wip,
in W corresponding to the p largest values in γ to form
a transformation matrix T = [Wi1,Wi2, · · · ,Wip], where
T ∈ RN×p and p < m. The D-Haar features are thus defined
as follows:

Z = T tY (10)

Recall that, in Eq. (2), we have that Y = ΨtX . The D-
Haar transformation is then defined as follows:

Z = U tX (11)

where U = ΨT , U ∈ R(nr×nc)×p, is the set of basis vectors
that forms the D-Haar feature space. Figure 1(e) shows
the first ten basis vectors of D-Haar features. The D-Haar
features thus resides in the feature space Rp and capture the
most discriminating Haar information of the original data
X .

Note that our D-Haar Transformation is different from
the commonly used discriminant analysis methods, such
as Fisher Linear Discriminant (FLD) [10]. FLD seeks a
set of basis vectors that maximizes the criterion J =
trace(S−1

w Sb) [10], where Sw and Sb are the within-class
and between-class scatter matrices. The criterion is maxi-
mized when the basis vectors are the eigenvectors of the



Fig. 2: System architecture of our eye detection method.

matrix S−1
w Sb corresponding to its largest eigenvalues. FLD

can find up to L − 1 basis vectors for the L-class pattern
recognition problem. For a two-class eye detection problem,
FLD is just able to derive only one feature, while our D-
Haar transformation is able to derive multiple features for
achieving more reliable eye detection results. The single
discriminating Haar feature derived from FLD is showed
in Figure 1(d).

4. Overview of Our Eye Detection
Method

In this section, we present an accurate eye detection
method using D-Haar features. Figure 2 illustrates the ar-
chitecture of the method. First, a face is detected using
the Bayesian Discriminating Features method (BDF) in [15]
and normalized to the size of 128 × 128. Then Geometric
constraints are applied to localize the eyes, which means
eyes are only searched in the top half (within the size
of 55 × 128 in our experiment) of the detected face. The
effect of illumination variations are alleviated by applying
an illumination normalization procedure combining of the
Gamma Correction, Difference of Gaussian (DoG) filter-
ing, and Contrast Equalization (Figure 1(a)). Then the eye
detection is achieved by two steps: the feature based eye
candidate selection and appearance based validation. The
selection stage chooses eye candidates through an eye color
distribution analysis in the YCbCr color space based on the
observation that the pixels in the eye region, compared with
other skin area, have higher chrominance blue (Cb) value,
lower chrominance red (Cr) value, and lower luminance (Y)
value [14]. 99% pixels of an image are rejected in this
stage and only remaining 1% pixels are further processed
by the validation stage. The validation stage first extracts
the D-Haar features of each candidate and then a nearest
neighbor classifier with different distance metrics is applied
for classification to detect the center of the eye among these
candidates. Usually, there are multiple eyes detected around
the pupil center. The final eye location is the average of these
multiple detections.

5. Experiments
In this section, we evaluate the performance of D-Haar

features and the proposed eye detection method. The ex-
periments are performed using the Face Recognition Grand
Challenge (FRGC) version 2 experiment 4, which contains
both controlled and uncontrolled images [16]. Note that
while the faces in the controlled images have good image
resolution and illumination, the faces in the uncontrolled
images have lower image resolution and large illumination
variations. In addition, facial expression changes are in a
wide range from open eyes to closed eyes, from without
glasses to with various glasses, from black pupils to red and
blue pupils, from white skin to black skin, and from long
hair to wearing a hat. All these factors increase the difficulty
of accurate eye-center detection. In our experiments, we do
the test on the whole training data set of FRGC 2.0, which
contains 12,776 images. So there are 25,552 eyes totally to
be detected. In order to train a robust eye detector, 3,000
pairs of eyes and 12,000 non-eye patches are collected as
training samples from different sources.

5.1 Experiments on D-Haar Features
In this section, we use the compact Haar features after

PCA (P-Haar features) as the baseline to evaluate the per-
formance of D-Haar features. The reasons we treat P-Haar as
the baseline are that (i) considering the high dimensionality
of the original Haar feature space (which is 1,024 in our
experiments), training on Haar features requires an extremely
large scale of training date set in order to achieve decent
performance; and (ii) PCA is probably the most widely used
feature extraction technique with the property of optimal data
representation in the sense of minimum mean-square error.

The comparison between D-Haar and P-Haar features is
performed through the experiments on eye detection under
three distance metrics: L1 (city-block) distance metric δL1 ,
L2 (Euclidean) distance metric δL2 , and cosine distance
metric δcos, which are defined as follows:

δL1(X,Y ) =
∑

i

|Xi − Yi| (12)



Table 1: Comparison of eye detection accuracy between P-Haar and D-Haar under different distance metrics (ED stands for
the Euclidean distance)

Method mean(x) std(x) mean(y) std(y) ED (mean) Detection Rate

P-Haar+L1 3.32 4.43 3.47 6.56 5.68 77.85%

P-Haar+L2 3.98 4.99 6.85 8.76 9.02 60.68%

P-Haar+COS 3.33 4.31 4.40 7.39 6.48 74.14%

D-Haar+L1 2.81 3.92 1.66 4.12 3.79 88.32%

D-Haar+L2 2.51 3.42 1.41 3.71 3.35 91.37%

D-Haar+COS 2.82 4.28 1.73 4.43 3.84 89.21%

δL2(X,Y ) = (X − Y )t(X − Y ) (13)

δcos(X,Y ) =
−XtY

‖X‖‖Y ‖
(14)

where
∑

is the covariance matrix, and ‖·‖ denotes the norm
operator.

In our experiments, the training samples are normalized
to 32 × 32 pixels. The four-scale Haar basis vectors are
applied and the dimensionality of the original Haar features
is 1, 024. For the best performance, we use 150 P-Haar basis
vectors under L1 distance metric, 60 P-Haar basis vectors
under L2 distance metric, and 80 P-Haar basis vectors under
cosine distance metric, respectively; we use 60 D-Haar basis
vectors under L1 distance metric, 80 D-Haar basis vectors
under L2 distance metric, and 80 D-Haar basis vectors under
cosine distance metric, respectively. The detection accuracy
is measured as the Euclidean distance between the detected
pointed and the ground truth. Fig. 3 shows the comparison
between P-Haar and D-Haar under different distance metrics.

From Fig. 3, it is observed that D-Haar features signifi-
cantly outperforms P-Haar features no matter what kind of
distance metric is applied. In average, D-Haar improves the
detection accuracy of P-Haar by 5.17% under L1, 15.57%
under L2, and 7.27% under cosine, respectively. Table 1
lists the pixel errors of eye detection in order to further
show the improvement of D-Haar over P-Haar. Take the L2
distance metric as an example. D-Haar reduces the average
localization error from 3.98 pixels to 2.51 pixels in the
horizontal direction, from 6.85 pixels to 1.41 pixels in the
vertical direction, and from 9.02 pixels to 3.35 pixels in the
Euclidean distance, respectively. If we consider the eye is
detected correctly when the Euclidean distance between the
detected point and the ground truth is within 5 pixels, Table
1 also lists the comparison of the specific detection accuracy
between P-Haar and D-Haar as well. The highest detection
rate is reached by using D-Haar features and L2 distance
metric, which is 91.37%.
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Fig. 3: Performance comparison between P-Haar and D-Haar
under different distance metrics.

5.2 Performance Comparison of Eye Detection
In Fig. 4, the distribution of the Euclidean distance of

detected eyes compared to the ground truth is listed, which
is based on the D-Haar+L2 that is proved to be the best
in accuracy. The average Euclidean distance is about 3.35
pixels. Some examples of the detection results are listed in
Fig. 5.

Although the author does not think the normalized errors
is a strict criterion to measure the performance of an eye
detection method as explained in Section 1, it is still intro-
duced in this section in order to make a fair comparison
with other eye detectors. The normalized error is defined as
follows:

Nerror =
|Edet − Egt|

Dbio
× 100% (15)

where Edet denotes the detected eye, Egt denotes the ground
truth, and Dbio denotes the binocular distance.
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Fig. 5: Example of detected eyes.

It is hard to make an exactly fair quantitative comparison
with other methods due to the different data sets used.
Fig. 6 shows a typical comparison, with a hybrid classifier
of Jin [17], who reported results on 3816 images of FERET
database, and with the SVM based method of Campadelli
[18], who reported results on 862 images of FRGC 1.0
database. Some other work reported the localization error in
pixels, like Wang and Ji [19] and Everingham and Zisserman
[20]. The comparison on the localization pixel error listed
in Table 2 is probably a better criterion to measure the
performance of different detection methods. Please note that
the detection performance would decrease to some extent
when the experiments do on large-scale and complicated
dataset. This is can be seen from the Wang and Ji’s report.
When the same detection method is applied to the 3000

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Error

D
is

tr
ib

ut
io

n

 

 

D−Haar+L2
Jin
Campadelli

Fig. 6: Comparison of normalized detection error with
different methods.

images of FRGC 1.0 database, the performance is worse
than that on 400 images of FERET. Considering the FRGC
2.0 database we used has the huge size (12,776 images)
and great complicacy (various illumination, pose, expression,
and occlusions), our method indicates better and reliable
performance.

6. Conclusion
In this paper, we present a novel Discriminating Haar

(D-Haar) features. The D-Haar features reside in a low
dimensional space spanned by a set of D-Haar basis vectors
and have promising discriminating power. We then present
an eye detection method using D-Haar features. Experiments
on FRGC database show that (i) D-Haar features illustrate
great discriminating power compared with P-Haar features
and (ii) the proposed eye detection method outperforms the
other state-of-the-art methods in accuracy. Future work will
focus on designing an automatic face recognition system
using the D-Haar features and eye detection method.
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