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Abstract - About 80% of paediatric intractable epilepsy 
patients have accompanying cortical dysplasia.  However, 
there are no established methods for noninvasive detection of 
cortical dysplasia.  This paper proposes a novel method for 
automatically detecting cortical dysplasia using paediatric 
MR images.  In order to evaluate cortical dysplasia in MR 
images, texture features and fractal dimension were extracted 
with an automated method and support vectors were used to 
evaluate the degree of cortical dysplasia.  The proposed 
method was applied to three paediatric epilepsy patients.  The 
automated method identified the cortical dysplasia lesion with 
a sensitivity of 94%, a mean specificity of 85%, and a mean 
efficiency of 87%. 
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1 Introduction 
 Epilepsy patients have symptoms such as sudden 
convulsions, stroke, and absence seizures.  Today, epilepsy 
patients comprise about 1% of the population [1].  Epilepsy 
seizures can be suppressed with antiepileptic medication in 
many but not all patients: about 20% of epilepsy patients 
cannot be treated with current antiepileptic medications.  
These patients are said to have intractable epilepsy. 

 Cortical dysplasia is one origin of intractable epilepsy 
[2].  In the case of paediatric patients, about 80% of 
intractable epilepsy patients have accompanying cortical 
dysplasia [3].  Cortical dysplasia is a congenital anomaly of 
the cerebral cortex resulting from abnormal neuronal 
migration.  It appears as an indistinct boundary between white 
matter (WM) and gray matter (GM) on magnetic resonance 
(MR) images.  The area and degree of cortical dysplasia 
lesions are different between patients.  When a cortical 
dysplasia lesion is localized, treatment may be possible.  In 
order to suppress the epileptic seizures, the focal cortical 
dysplasia lesion is surgically excised [4]. 

 Although intractable epilepsy with cortical dysplasia can 
be treated surgically, many patients are not treated because 

there are only few methods that can be used to non-invasively 
locate cortical dysplasia.  The current gold-standard for 
detection of focal cortical dysplasia is based on 
electrocorticography (ECoG).  With ECoG, the cerebral 
surface is exposed and electrodes are directly attached to the 
cerebral surface for a number of weeks.  Because ECoG is 
very invasive, it is not appropriate for use as a screening tool.  
A noninvasive screening method for patients with suspected 
intractable epilepsy patients is needed.  If cortical dysplasia 
could be discovered during childhood, the quality of life of 
such patients would improve. 

 An imaging technique that could be used for 
identification of cortical dysplasia is magnetic resonance 
(MR) imaging.  An MR image can noninvasively acquire 
sectional images with a high soft-tissue contrast.  However, 
the accuracy of manual detection of cortical dysplasia lesions 
from MR images largely depends on the observer’s skill and 
experience.  In addition, there is both large intra- and inter-
observer variability.  Therefore, an automated method for 
detection of cortical dysplasia lesions from brain MR images 
could be of clinical use. 

 It is especially important to detect cortical dysplasia 
lesions in the paediatric brain, because many patients with 
epilepsy experience onset of symptoms in childhood.  
Optimal treatment in childhood may suppress epileptic 
seizures, facilitate development and improve outcomes.  
However, few studies have reported on detection of cortical 
dysplasia with MR images of the paediatric brain. 

 A few conventional methods can be used for detection 
of cortical dysplasia in adult brain MR images.  Colliot et al. 
has proposed a detection method that uses a pattern classifier 
that is learned by features extracted from MR images [5].  
One important feature used in their method is cortical 
thickness.  However, it is difficult to apply their method to 
children because there is currently no way to calculate 
cortical thickness for the paediatric brain.  Colliot et al. [6] 
and Srivastava et al. [7] have proposed imaging methods 
based on voxel-based morphometry (VBM).  VBM 
normalizes the cerebrum of subjects into a standardized 



cerebrum, and compares GM density with that of the normal 
brain [8].  These conventional methods cannot be applied to 
the paediatric brain because a standardized paediatric 
cerebrum does not yet exist.  In addition, the conventional 
methods evaluate each voxel through extraction of image 
features from each voxel.  The basic hypothesis behind the 
current method is straightforward: because cortical dysplasia 
is due to an anomaly of the cerebral cortex, then cortical 
dysplasia could be examined by extracting features of the 
cerebral cortex. 

 The present paper proposes a method for detecting 
cortical dysplasia lesions in paediatric brain using MR images.  
The proposed method evaluates the cerebral cortex by 
extracting texture features and fractal dimensions from 
regions perpendicular to the cerebral surface.  The cortical 
dysplasia degree (CDD) of the perpendicular region was 
estimated by using a support vector machine (SVM) [8][9]. 

 This paper is organized as follows.  Section 2 introduces 
subjects and materials used in this study.  Section 3 proposes 
a method for extraction of features of cortical dysplasia along 
with a CDD estimation method using SVM.  Section 4 
describes experimental results. 

2 Subjects and Materials 
 To assess the proposed method, this study recruited 3 
paediatric volunteers (Subjects 1, 2, and 3) with focal cortical 
dysplasia in the left or right lateral hemisphere.  Subjects 1 
and 2 were boys (6 years old and 10 months old) and Subject 
3 was a girl (3 years old).  Their cortical dysplasia lesions 
were determined using ECoG, and the excised lesions were 
pathologically confirmed.  Parental informed consent was 
obtained in all cases.  Axial T1-weighted MR images were 
acquired before the operation using a 1.5 Tesla MRI scanner 
(GE Medical Systems, WI, USA).  Acquisition parameters for 
Subjects 1, 2 and 3 were repetition times of 8.46, 8.71 and 
550 ms, echo times of 1.81, 1.82 and 9.00 ms, slice 
thicknesses of 1.30 mm, 1.40 mm, and 5.00 mm, and spatial 
resolutions of 0.86, 0.86 and 0.78, respectively.  Matrix size 
was 256 by 256. 

 Figure 1 shows pre- and post-operative MR images of 
Subject 1.  In this case, the cortical dysplasia lesion was 

found on the right hemisphere.  In the lesion, the boundary 
between the cerebral cortex and WM tended to become 
indistinct as shown in Fig. 1(a).  After surgical excision of the 
cortical dysplasia lesion, the MR signal of the excised area 
became hypointense (Fig. 1(b)). 

 In preliminary processing, bias of the MR signal was 
eliminated using FMRIB Software Library (FSL) [11][12] 
and the cerebral region was extracted by applying a 
previously developed method [13].  Then, the intensity of the 
extracted cerebral region was lineally normalized by using 
upper and lower thresholds.  The thresholds were determined 
by using p-tile method.  Also, the images were linearly 
converted into isovoxels. 

3 Proposed Analysis Method 
3.1 Overview 
 Cortical dysplasia is a brain dysplasia that is 
accompanied by morphological aberration of a nerve cell and 
a glia cell.  The abnormal cerebral cortex is constructed from 
such abnormal nerve cells of various sizes.  The six laminar 
structures of the cerebral cortex become irregular in 
appearance because of these abnormal nerve cells [10]. 

 To assess the six laminar structures, the proposed 
method evaluates cerebral surface voxels and extracts features 
from both the voxel of interest (VOI) and also the 
surrounding voxels (together called the processing region).  
From the processing region, the method extracts two types of 
features: one evaluating the spatial distribution of the MR 
signal, and the other evaluating the shape of the cerebral 
contour.  Using the extracted features, CDD is estimated by 
means of a pattern classification technique. 

 In summary, the proposed method consists of the 
following steps described in detail below. 

For each cerebral surface voxel: 
 [Step 1]  Construct a processing region, 
 [Step 2]  Extract two types of features, and 
 [Step 3]  Estimate CDD using SVM. 
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(a) Pre-operation. (b) Post-operation. 
Fig. 1.  Pre- and post-operative MR images of a cortical 
dysplasia lesion (Subject 1).  A; anterior, P; posterior, R; 
right, and L; left. 
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Fig. 2.  Processing region.  BG; background, GM; gray 
matter, WM; white matter, and VOI; voxel of interest. 



3.2 Processing region 
 To extract the smooth surface of the cerebrum, 
mathematical morphology operators are applied to the surface 
of the segmented cerebral region.  VOIs used in the proposed 
method to assign CDDs were on the smooth cerebral surface. 

 For each VOI, a processing region is constructed as 
shown in Fig. 2.  The processing region is formed by a square 
whose size is L [voxels] × L [voxels] perpendicular to the 
cerebral surface, and the VOI is located at the center of the 
outer vertex. 

3.3 Feature extraction 
 To evaluate the anomaly of cerebral cortex layer, two 
types of features are extracted from the processing region.  
The first feature evaluates the spatial distribution of the MR 
signal because cortical dysplasia appears as irregular order of 
the MR signal.  The second feature evaluates the shape of the 
cerebral surface because the cortical dysplasia will deform the 
cerebral surface, called polymicrogyria, which shows an 
excessive number of small gyri on the cerebral surface [17]. 

 The first feature is evaluated using texture features.  
They are calculated using gray level co-occurrence matrix 
(GLCM) [14][15].  In order to reduce processing time of 
calculating GLCM, the normalization images are converted 
into 32 gray levels where 0 represents the minimum MR 
signal of the cerebrum, and 31 represents the maximum.  
Texture features are calculated using parameters; (d, θ, φ) = 
(3.0, 0.0, 45.0).  The following seven features are calculated 
as texture features (1) angular second moment, (2) contrast, 
(3) variance, (4) sum entropy, (5) entropy, (6) differential 
variance, and (7) fractal dimension.  The texture features are 
defined previously [14], and examples are shown in Fig. 3. 

 The second feature is fractal dimension.  The fractal 
dimension is a statistical measure of how completely a fractal 
fills space in fractal geometry.  There are several ways to 
define fractal dimension.  One principal method is the box-
counting method [18].  To apply this method, the contour line 
of the target object is needed.  However, brain MR images are 
given as grayscale images, and it is difficult to extract the 
cerebral surface in detail from these images.  Thus, the 
present paper modified the box-counting method for 2-
dimensional grayscale images as follows. 

 The processing region (L × L voxels) is covered with a 
grid of square cells with cell size r by r voxels.  The intensity 
of each cell is calculated by a linear interpolation.  Instead of 
calculating the number of cells needed to cover the structure, 
the number of edge voxels in the grid of square cells, N(r), is 
calculated.  The edge voxels are extracted by applying the 
Sobel operator.  Also, the number N(r) is given by a power 
law: 

 ( ) BDN r const r−= i . (1) 

where DB is the fractal dimension.  Using this equation, the 
total area A covered by the squares of size r is calculated by: 

 ( ) ( ) 22 2B BD DA r N r r const r r const r− −= = =i i i i . (2) 

Thus, DB is determined by: 

 
Fig. 4.  Fractal dimension with the box-counting method. 

 
(a) Raw MR image. 

 

 

 
(b) Texture features.  Upper-left to lower-right: angular 
second moment, (2) contrast, (3) variance, (4) sum entropy, 
(5) entropy, and (6) differential variance. 
Fig. 3.  Texture feature extraction. 
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by a power of 2, and the slope of the regression line is 
calculated by a least squares method.  Figure 4 shows an 
example of calculating the fractal dimension with a box-
counting method.  In this case, the slope of the regression line 
is 1.95, and the fractal dimension is 0.05. 

3.4 CDD estimation 
 CDD is estimated by using SVM, which is trained by 
using preoperative MR images of a subject with focal cortical 
dysplasia.  To train the SVM, two classes of voxels are 
prepared.  One is a cortical dysplasia class, and the other is a 
healthy class. 

 The cortical dysplasia class voxels are extracted by a 
physician by delineation of the cortical dysplasia lesion with 
respect to the surgically excised region, the post-operative 
MR images, and operation records. 

 Healthy class voxels are extracted from a longitudinal 
fissure-symmetric region in the contra-lateral hemisphere in 
order to obtain features of normal cortical layers at the same 
gyri as the cortical dysplasia region. 

 For each cortical dysplasia voxel and each healthy class 
voxel, the seven features described in the previous section are 
calculated.  Using a set of the calculated feature values and 
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(b) CDD Estimation. 

Fig. 5.  Cortical dysplasia estimation using SVM. 
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Fig. 6.  Experimental results of the learning capability test.  Upper images show the CDD map around the cortical dysplasia 
lesion, and lower images show the CDD map around the healthy region, superimposed on the raw MR images. 
 



the given class, SVM is trained.  That is, a voxel corresponds 
to an object, feature values of the voxel correspond to a vector 
of variables, and the cortical dysplasia class and the healthy 
class correspond to classes (+1 or -1) of the objects. 

 By training the SVM using the prepared training 
datasets, an optimum separation hyperplane is obtained which 
is a linear classifier with a maximum margin for the training 
data as illustrated in Fig. 5(a).  Using the trained SVM, CDD, 
here δ, is defined as a distance from test data vector of the 
processing region to the hyperplane.  It is illustrated in Fig. 
5(b), and calculated by: 

 - hδ = w xi . (4) 

where w denotes a normal vector that is perpendicular to the 
optimum separation hyperplane, /h ω  denotes the offset of 
the hyperplane from the origin along the normal vector ω, and 
x is a feature vector of evaluated object.  CDD takes a value 
between -1 and +1: positive values denote the degree of the 
layer of the abnormal layer with cortical dysplasia, and 
negative values denote the degree of the healthy layer. 

4 Experimental results 
 To evaluate the proposed method, two experiments were 
conducted: a learning capability test and a generalization 
capability test.  The learning capability test trained the SVM 
using MR images of each subject, and evaluated the CDD 
estimation performance using the same subject.  The 
generalization capability test trained the SVM using MR 
images of two subjects, and evaluated the CDD estimation 
performance using the remaining subject according to the 
leave-one-out method.  The analysis parameter used was the 
size of the processing region; L = 32 [voxel], and the same 
parameter was used for all subjects. 

 Figure 6 shows experimental results of the learning 
capability test for each subject.  To evaluate the experimental 
results visually, a CDD map was generated in which the CDD 

was described by a yellow-red colour scale.  As shown in 
these images, higher CDD values were assigned for almost all 
voxels in the cortical dysplasia lesion.  Lower CDD values 
were assigned for almost all voxels in the healthy region. 

 The experimental results were quantitatively evaluated 
using sensitivity, specificity and efficiency as shown in Table 
1.  Metrics were calculated using ground truth data given by a 
physician.  Every measure takes the higher value for better 
results.  With the present three subjects, the mean sensitivity 
was 85%, mean specificity was 94%, and mean efficiency 
was 87%. 

 Experimental results of the generalization capability test 
were also quantitatively evaluated in the same manner.  Table 
2 tabulates the sensitivity, specificity and efficiency.  In this 
table, “Subject” denotes the test subject, while the remaining 
2 subjects were used to train the SVM.  With the present three 
subjects, the mean sensitivity was 89%, the mean specificity 
was 86%, and the mean efficiency was 87%. 

5 Discussion 
 Two methods for estimating CDD using MR images 
have been previously reported [19][20].  The first method 
constructs a processing region by forming a 3-dimensional 
triangular prism perpendicular to the cerebral surface, and 
extracts texture features [19].  The second method constructs 
a processing region in 2 dimensions by connecting a line from 
a VOI on the cerebral surface to the nearest voxel on the 
boundary between GM and WM, and calculates a signal 
change from the intensity profile on the line and texture 
features [20]. 

 The mean sensitivity, specificity and efficiency of the 
learning capability and generalization tests with the two 
conventional methods and the proposed method are 
summarized in Table 3.  Although both of the conventional 
methods showed better results for the learning capability test, 
the results worsened with the generalization test.  The 
proposed method exhibited a similar performance for both 

Table 3.  Comparison with conventional methods. 

Method 
Learning capability test Generalization test 

Mean 
Sensitivity 

Mean 
Specificity 

Mean 
Efficiency 

Mean 
Sensitivity 

Mean 
Specificity 

Mean 
Efficiency 

Ref. [19] 72.8 % 80.6 % 77.1 % 50.2 % 46.9 % 48.2 % 
Ref. [20] 90.9% 93.1% 92.0% 90.5% 54.7% 73.0% 
Proposed 
method 84.5% 94.3% 87.2% 88.5% 85.8% 87.0% 

Table 1.  Experimental results of the learning capability 
test. 

Subject Sensitivity Specificity Efficiency 
#1 81.0% 97.2% 86.4% 
#2 100.0% 85.7% 92.9% 
#3 72.6% 100.0% 82.4% 

Table 2.  Experimental results of the generalization 
capability test.  For each test, SVM was trained using the 
remaining subjects' data. 

Subject Sensitivity Specificity Efficiency 
#1 84.2% 71.4% 77.5% 
#2 92.9% 86.0% 89.8% 
#3 88.4% 100.0% 93.9% 



tests.  These results indicate that texture features and signal 
changes vary from person to person.  In contrast, the fractal 
dimension extracted a characteristic feature of polymicrogyri 
well. 

6 Conclusions 
 In the present report, a novel system for noninvasively 
detecting cortical dysplasia lesions using MR images is 
proposed.  Because the conventional method of detecting 
cortical dysplasia using ECoG is highly invasive, this 
approach could be a non-invasive breakthrough in diagnosis 
of childhood-onset epilepsy.  The proposed method extracted 
fractal dimension and texture features from MR images.  The 
fractal dimension represents the characteristic change of the 
cerebral shape called polymicrogyri, and the texture features 
represent the characteristic change of the MR signal.  Using 
the extracted features, SVM assigns CDD for VOIs on the 
cerebral surface.  Experimental results on three paediatric 
epilepsy patients showed that the mean sensitivity and 
efficiency were higher than 80% for both the learning 
capability and generalization tests. 

 The main limitation of the proposed method is that it is 
implemented in 2-dimensional space.  However, the method 
will be easily extended into 3-dimensional space processing 
because the fractal dimension and texture features can be 
calculated in 3-dimensional space.  Another limitation is that 
the study group consisted of only three subjects.  
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