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Abstract -    This paper proposes an optimized algorithm for 
3-D Point Based Rigid Registration. This algorithm uses an 
Unscented Kalman filter (UKF) for estimating the state vector 
of transformation, which can be interpreted as a nonlinear 
function of translation and rotation. In the previous work, we 
showed that the drawback of the UKF algorithm in estimating
high range rotations is due to its sensitivity to initial state 
vector. To address this drawback, we proposed using a pre-
registration step to find an appropriate initial state vector [9]. 
In this paper we optimize our proposed algorithm to trade off
running time with accuracy by selecting the initial state 
vectors out of a uniformly sampling and using a large error 
threshold for stopping the pre-registration stage. It is shown 
that by applying these strategies we can have an enhanced
UKF algorithm, which can robustly estimate any rigid 
transformation with high accuracy and acceptable time 
consumption.

Keywords:  rigid body registration, absolute orientation 
problem, unscented kalman filter.

1 Introduction
As imaging industries grow, the need for registering 

various images grows incredibly. Image registration is the 
process of searching for the best alignment that transforms the 
points in the subject image to the corresponding points in the
reference image. 

One of the important processes in the image registration 
procedure is finding the best transformation, which aligns an 
input image to the reference image [1]. In the rigid body 
model, the object has no shape change, so the distance 
between two points in the first image is preserved after 
mapping into the second image. In the case of point-based 
rigid body image registration, it is essential to estimate the 
true transformation, which is containing translation and 
rotation, which is called the absolute orientation problem, and 
by this transformation we can register two 3-D point based 
data sets belonging to rigid objects. This type of registration 
has many applications in medical and computer vision
images. It plays an essential role in procedures such as 
surgical planning, image-guided surgery and other systems 
that are used for both diagnosis and therapy. Also in the field 
of computer vision, 3D registration has many applications in 
areas such as object reconstruction and reverse engineering. 
This involves taking multiple scans of an object, which are 

then registered and combined to form the complete surface 
model [1, 2]. From 1966 up to now, many attempts have been 
done to find the best solution for absolute orientation
problem. In 1997, Pennec and Thirion [3] proposed an 
iterative estimator by using the Extended Kalman Filter 
(EKF) for estimating the parameters of transformation. The 
Unscented particle filter (UPF) algorithm in 2004 was 
proposed by Ellis and Ma [4] for registering small data sets in 
presence of Gaussian noise but this algorithm converges very 
slowly due to the large number of particles and thus is not 
suitable for large data sets. Because of these limitations, in 
2007 Hejadzi and Aboulmasoumi [5, 6] proposed the 
Unscented Kalman Filter (UKF) algorithm for rigid body 
registration in comparison to the EKF algorithm. In the 
previous work we pointed out an UKF algorithm drawback in 
estimating transformation parameters when the translations 
are in high ranges. Moreover, we proposed to use pre-
estimation before applying the UKF [7]. In this paper we will 
address the high computational complexity of our previous
algorithm. This new optimized algorithm can estimate any 
transformation in any range quickly and accurately with a 
significantly shorter running time. 

The rest of the paper is organized as follows: In the next 
section, we will give a brief review of the Kalman filter. Then 
we will review the UKF and UKF registration algorithms in 
Sections 3 and 4. We will describe our proposed algorithm in 
Section 5. Experimental results will be given in Section 6 and 
a brief conclusion will follow.

2 Kalman Filter 
Kalman filtering was proposed in 1960 by E. Kalman 

for finding the recursive and incremental solution for discrete 
data linear problems. Kalman filtering has many applications 
such as navigation and target tracking. In general, a Kalman 
filter estimates the state vector of a general discrete time 
control process model as follows:
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In addition, the observation model is a linear function as 
below:
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where A and C are defined by the system dynamics, iy is the 

observation vector at time i , x
in and y

in represent the 

process and the observation noise at time i , respectively, and 
are independent Gaussian random variables with 

distributions ),0( x

i
N and ),0( y

i
N . The main idea is to

estimate sequentially the state vector x by minimizing its 
mean squared error. The algorithm assumes the knowledge of 
initial value for the state vector and its covariance matrix. We 
estimate the state vector x from the process model as follows 
(time update):
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Secondly, the filter uses the observation vector and the 
observation model to update its estimated state vector in the 
previous step as follows (measurement update):
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where ii xCy ˆˆ  and iK is called Kalman gain that is 

calculated as follows:
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If the process and the observation models are defined by 
linear equations, and if the process and observation noises are 
independent Gaussian random variables, then the estimation 
is optimal. However, in a general case, the process and the 
observation models can be governed by nonlinear equations:
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f and h are nonlinear functions. In this situation, the Kalman 
filter estimation of the state vector is not optimized since the 
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be calculated in closed form manner. In rigid registration, we 
encounter the nonlinear function of transmission which we 
should estimate sequentially so we cannot use the Kalman 
filter in the basic manner. For solving this problem, there are 
two solutions, which deal with nonlinearities in the process of 
the observation model. The first option is using the Extended 
Kalman Filter (EKF) and the second one is the Unscented 
Kalman Filter (UKF). The UKF [8, 9] is more accurate and 

less computationally intensive than the EKF for rigid body 
registration. It is concluded that because of these benefits 
using UKF is the best solution for this problem [5] [6].

3 Unscented Kalman Filter
The UKF algorithm, which uses the Unscented 

transform basis, computes the mean and covariance matrix of 

the state vector ix governed by the nonlinear process model 

and nonlinear observation model as follows (similar notations 
to [5,6] have been used):

a) Define the state random variable a
iX as the concatenation 

of the original state and noise variables as: 
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We initialize the parameters as follows:
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b) The sigma points will be calculated as follows:
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c) In the time update stage, we propagate sigma points 
through the process and observation models to estimate the 
means and covariance matrices:

d) We update the measurements as follows:
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4 UKF Registration Algorithm
As mentioned before, the UKF algorithm is based on the 

unscented transform theory. The unscented transform is the 
optimal solution for estimating the nonlinear state vector 
which is the combination of translation and rotation. The 
UKF algorithm, which is proposed for rigid registration, has 
the accuracy equal to the second order of the Taylor series. In 
this algorithm the point of moving data sets append to the 
estimation process incrementally, so this utilizes the 
algorithm to use real time in applications. In the previous 
work [7] we reviewed the UKF algorithm in the case of 
isotropic noise and also with the assumption that the 
corresponding points between two data sets are unknown. In 
that case, we had two data sets. The first one is the fixed data 
set, which is used as the reference image, and the other one is 
the moving data set which is the transformed points with rigid 
transformation containing translation and rotation. We 
assumed the correspondence points in the two data sets are 
unknown so we should find the corresponding point in the 
two data sets at the first stage. For this reason in the UKF 
algorithm, we utilized the Closest Point function, which 
searches for each transformed point its correspondence point 
in the fixed data set. Since searching the correspondence 
point is a computational procedure, we use the KD- tree 
search, which can accelerate the searching procedure. [10, 6]

In the UKF registration algorithm, the state vector 

is TTT
t

T
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defined as, ),0(1   Qii Nxx with the initial value and 

covariance matrix 0x and 0
xP .Here ),0( Q

N   is a zero-

mean Gaussian random vector with a covariance 

matrixQ
. In this case, because the observation model is a 

nonlinear function of state vector X, it is necessary to use the 
UKF algorithm for estimating this nonlinear transform.
Although the EKF can also be used, according to comparison 

between UKF and EKF, the UKF is more effective and has 
higher accuracy [5]. The procedure of the UKF algorithm is 
shown in Fig. 1[6].

Fig.1. Flowchart of the UKF Algorithm [3]

1) Initializing the state vector x and its covariance matrix with 
zero and the identity matrix, respectively. Also set the 
covariance matrix of the observation 

model,  
 int

i

y

ii
.Then, set the covariance 

matrix of the process model for every point in the data sets, 

x

i
,to the initial uncertainty for each transformation 

parameter.

2) Append the i random point from the moving data set U to 
the previously selected points from that data set. 

3) Find the corresponding points between the selected points 
from the moving data set U and the fixed data set Y by using 

),( tRuYfy iCIPi  and the KD-tree algorithm [10],[6], and 

determine the mean square distance error, E[d2], among the 
estimated point matches.

4) Use the estimated corresponding points to compute the 
rotational and translational parameters.

5) Use the estimated transformation parameters to update the 
moving data set U:
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6) If ][ 2dE is less than a certain threshold, stop the 

algorithm; otherwise, update the covariance matrix of the 

observation model with ][ 2dE
y

i
i
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

Also, anneal x

i
with the factor of 0.95 and go to Step 2.

5 Extended UKF Algorithm
As it was mentioned in the previous work [7] the 

sensitivity of the UKF algorithm depends on selecting the 
initial state vector appropriately. We compared different 
strategies and it is shown that the sequence of points has no 
significant influence on the UKF performance. In this 
regards we proposed an enhanced UKF algorithm, which uses 
a pre estimation stage in the registration procedure. It uses 
200 random initial state vectors in the range of between 0 and 
90 degree and millimeters which indicate transformation 
parameters and for each of these initial state vectors we used 
UKF registration for registering the limited points of data 
sets. At the end of this pre-registration algorithm, we have the 
correspondence error, which belongs to each initial state 
vector. Among the 200 correspondence errors, which are 
generated after registering limited points, we select the initial 
state vector which generates the minimum average error. This 
state vector is optimum among others and we can use it for 
registration according to the UKF flowchart. The flowchart of 
this algorithm is shown in Fig. 2. By this pre-estimation 
algorithm, we can compensate the UKF limitation for 
estimating state vectors with large rotation. For examining the 
performance of this enhanced algorithm, in the pre-estimation 
stage, with the 200 initial random points the UKF registration 
algorithm is run according to the flowchart shown in Fig. 1. 
For each initial state vector the registration procedure 
continued up to appending the 50th point from the moving 
data set. At the end of each trial, after registering 50 points 
from the 200 points data set, we save the correspondence 
errors. The correspondence point at each trial is generated by 
applying the nearest closed point function. The minimum 
average correspondence error indicates the best selection for 
the initial state vector.

By using this pre-estimation to find an appropriate initial state 
vector in the enhanced UKF algorithm, it can be seen that the 
performance of registration grows incredibly and there is not 
any limitation for registering the high range transformations 
as shown in Fig. 3. We compare the performance of the UKF 
with the proposed enhanced UKF algorithm in Fig. 3. It is 
obvious that the time of registration will be increased by the 
enhanced UKF registration method. In this paper, we are 
developing this algorithm by applying some changes in our 
algorithm for improving the time consuming and also the 
accuracy of the algorithm.

Fig .2.Flowchart of Extended UKF algorithm
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6 Experimental Results
To increase the accuracy of the enhanced UKF 

algorithm, we sample the initial state vector uniformly for the 
pre-estimation stage. For examining this strategy in each 
interval of 10 degrees and millimeters, we selected 10 initial 
state vectors that are totally 198 initial state vectors. The 
comparison results between randomly selected initial state 

1-Select randomly 200 points as initial value 
for pre-estimation

2- Run the UKF algorithm for each initial state 
vector with registering the 50 points

3- Calculate the correspondence error for each 
initial state vector at the end of each trial

4- Find the optimum initial initial state vector
which generates the minimum error at the end

of pre registration for 200 points

5- Use the UKF algorithm with the optimum 
initial state vector

End



vector and the uniformly selected initial state vector are 
shown in Fig 4. We can see that by these changes made in the 
algorithm, we need fewer points for convergence of the 
enhanced UKF algorithm for reaching the solution. 
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the pre-estimation stage

For example, in the range of 70 to 80 degrees for rotation 
parameters, by uniformly selecting the random state vector 
we need approximately 10 points for the pre-estimation stage.
Otherwise according the previous method, we need 
approximately 25 points. The decrease in the number of 
points for registration has direct influence on running time for 
the registration procedure. We can see the influence of using 
uniformly the random state vector on time consumption in 
Fig. 5.

The second strategy for improving the enhanced UKF 
algorithm is to consider the certain threshold for registration 
error in the pre-estimation stage. In other words, instead of 
using a constant number of points for pre-estimation in the 
enhanced UKF algorithm, we can find the best threshold to 
minimize registration error. For this reason, we repeated the 
experiment in pre-estimation until the registration error is 
below the threshold and among these errors we select the 
state vector which produces the minimum error for using in 
the UKF registration algorithm. By this method, we can 
reduce the time significantly. For example, for rotation 
between 70 to 80 degrees we compared the performance of 
the algorithm for different strategies. First of all, we 
examined three different cases: 1) Without any enhancement; 
2) Uniformly selecting the state vector; 3) Uniformly 
selecting the state vector and applying the error threshold 
750-3000 for stopping the pre-estimation algorithm. In the 
last strategy, we used 5 thresholds of error equal to 750, 1500,
2000, 2500 and 3000 which indicate the square of 
correspondence error which is determined by the nearest 
closed point function. This error is the distance between two 

correspondence data sets. In Fig 5, we can easily compare 
these various strategies’ performance and for each method we 
can see the accuracy of the algorithm for estimating the 6 
parameters of transformation and also the time which is 
needed for registration. According to this comparison with a 
good tradeoff between time and accuracy, the combination 
method, which uses uniform distribution for initial state 
vectors in the pre-estimation stage with applying the pre-
estimation threshold for a corresponding error equal to 2000, 
is the best choice for rigid registration in these simulations.
To do the simulations, MATLAB Version 7.1.0.246 software 
from Math Works, running on a desktop PC with 1 GB RAM 
and Intel (R) Core (TM) 2 CPU 2.00GHz, has been used.
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7 Conclusions
We conclude that for the rigid registration of 3-D points 

in the case of unknown correspondence data sets with high 
transformation, we can use the proposed enhanced UKF 
registration algorithm that is an effective method for 
estimating transformation between two data sets instead of
UKF. We compared different strategies and found that the 
sequence of points has no significant influence on the UKF 
performance, but selecting the appropriate initial state vector
has a strong influence on UKF performance in high range 
rotations. We compared the performance of enhanced UKF to
UKF for convergence and accuracy and we found that the
enhanced UKF algorithm was sufficiently accurate in 
estimating high rotations despite the UKF, which cannot
estimate high range rotations. In this paper, we optimized the 



enhanced UKF registration algorithm to decrease the running 
time of the algorithm. We proposed to uniformly sample
initial state vectors and using various thresholds for stopping 
the pre-estimation stage in the enhanced UKF algorithm and 
we compared running time and accuracy of each method. We 
showed that the combination of uniform sampling and 
primary threshold = 2000 and secondary threshold = 3
identity gives the most favorable time accuracy trade-off.
This makes the enhanced UKF algorithms very strong and 
efficient in estimating any range of rigid transformation and 
makes it an efficient tool that can handle much larger rotating 
angle for rigid image registration. .
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