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Figure 1: ConGrap contour detection: (a) Initial image. (b) Gradient Map (blue horizontal, red positive diagonal, yellow vertical and green
negative diagonal edges). (c) Resulting contour image. (d) Contours including their bounding boxes.

ABSTRACT

In this paper, we present ConGrap, a novel contour detector that
uses the Gradient Map and results in closed contours with seman-
tic connections. In contrast to common edge and contour detec-
tions, ConGrap not only produces an edge image, but also provides
additional information (e.g. the borderline pixel coordinates, the
bounding box, etc.) about every contour.

Additionally, the resulting contour image provides closed con-
tours without discontinuities and merges regions with semantic con-
nections together. Consequently, the ConGrap contour image can
be seen as an enhanced edge image as well as a kind of segmenta-
tion and object recognition.
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1 INTRODUCTION AND MOTIVATION

Object recognition in digital images is one of the most important
and challenging tasks of computer vision. The type of objects to be
detected can range from abstract geometric objects like lines or cir-
cles to complex real objects like human faces or finger prints. The
majority of object recognition algorithms involve edge detection as
a preprocessing operation to perform a simple structural analysis of
a digital image.

However, edge detection only provides a pixel-wise classifica-
tion of edges, which does not allow conclusion on the shape of
complex objects present in the image. A much better representa-
tion for the visible shape of objects can be achieved by finding the
silhouettes of objects. In contrast to edges, silhouettes already pro-
vide an abstract representation of the image contents and can be
used to divide the image into foreground objects and background.
Moreover, it is an interesting question of computer vision to divide
the scene of an image not only in foreground and background, but
also in semantic segments.

Therefore, we present ConGrap, a novel algorithm that finds
closed contours of objects as polygon line paths. This contour
detection generates the Gradient Map of the image by using a
gradient-based edge detection that results in borders of contours by
present edges and their orientations.

ConGrap works as a multiple-stage algorithm. Using the edge
image and the generated Gradient Map, a contour tracer divides the
image in semantic parts. For each edge pixel a three-stage hierar-
chical analysis of neighbored pixels is performed. In this process



each edge pixel is mapped to a closed contour. Following this step,
the borderline is extracted by tracing each contour for detecting its
outside pixels. A final postprocessing optimizes the contour image
by merging contours with the same semantic relation.

This paper is structured into 5 sections. The next section inves-
tigates related edge and contour detection as well as segmentation
algorithms. Section 3 describes the requirements and the concept of
our novel contour detection for finding closed contours of objects
as polygon line paths. The following section 4 presents the imple-
mentation of ConGrap as well as produced results and evaluates
them. The last section provides a summary and discusses issues
about potential future work.

2 STATE-OF-THE-ART

Dominant edges in an image are important cues for finding abstract
shapes – both for computers and humans. Edges are locations in an
image, where the intensity in a small local area along a direction
varies strongly. The higher the variation, the more significant the
edge appears in the image. Mathematically, edges can be calculated
as the first order derivative of the image intensity function.

The most common gradient-based operators for edge detection
are Sobel, Prewitt, Roberts, Kirsch and Sobel [4]. They use the
first order derivative and differ in usage of direction and size of the
pattern for selecting the candidate pixel. This results in thick and
not locatable edges.

The Laplacian edge detector also calculates the second order
derivative for thinner and exacter edge lines. The most widespread
variation is known as Laplacian of Gaussian (LoG) or the Marr-
Hildreth operator, which extends the basic approach by noise sup-
pression [4].

Another edge detector for thin and exact edge lines is presented
from John Canny [2]. The Canny algorithm is also based on the
first-derivative combined with noise reduction. It uses a set of di-
rected filters that are used on different levels of detail and the result
is summarized into an edge-map. The purpose of this approach is
to reach three goals: Good detection, good localization and one re-
sponse to edge. The first stage of the algorithm is to convolve the
gray scaled image with a Gaussian function - with an appropriate
pattern size - to get a smooth image. After that, the first gradient
operator is used to find the edge strength. The third stage is called
non-maximal suppression and delivers a set of edge points in the
form of a binary image. Finally a double thresholding with low and
high thresholds, called hysteresis, is applied to the output of stage
three and delivers the edges in the image.

All the introduced edge detectors give no information about po-
tential relations between the edge pixels. The detection of a con-
nected region or an object is not possible.

In contrast to edge detection, the Hough-Transformation [11] de-
tects straight lines. Its basic idea is to accumulate all line candidates
for all edge pixels. The line parameters slope and intercept define a
line candidate and span a two-dimensional parameter space. A 2D
accumulator array is used as discretized version of this parameter
space to collect votes for individual line candidates. After that, lo-
cal maxima in the accumulator array represent significant lines in
the image. Duda and Hart [6] generalized the hough transforma-
tion to detect any kind of shapes (e.g. circles or ellipses) that can
be described by a suitable parametrizations. Also they introduced
a more efficient parametrization for straight lines by using normal
angle and distance from origin as parameter.

In contrast to the gradient based operators, [19] presented an ap-
proach to detect edges with anisotropic diffusion. Black et. al.
[1] presented an improved version of this by using a new edge-
stopping function based on the Tukey’s biweight estimator to get
sharper boundaries. Also these approaches do not detect connected
regions.

Many approaches for automatic edge and contour detection as

well as image segmentation have been proposed over the years. In
[10] Grigorescu et al. presents a biologically motivated algorithm to
improve the results of the Canny edge detection in natural images
by distinguish between isolated contours of a shape and edges or
lines that are part of a texture. A further development presented in
[9] involves the mechanism of the primary visual cortex of primates
that influences the perception of groups of edges or lines to suppress
the responses in surrounding textures. Joshi and Sivaswamy [12]
purpose a similar scheme inspired by the mechanism of surround
influence recognized in the primary visual cortex, where locally
found responses by a gradient computation are modulated by the
responses of the global image. This scheme uses a Sobel edge de-
tector followed by a mask operation for the surrounding influence.
Another approach of a biologically motivated multi-resolution con-
tour detection is proposed in [18]. First, the gradient at different
resolutions is computed. Next the biologically motivated inhibition
step is applied to suppress lines or edges of surrounding textures.
Finally, long connected lines are preferred in a contour-oriented bi-
narization algorithm rather than short lines, which mostly belong
to a texture. All these approaches result in edge images, giving no
information about they belong to each other. Also closed contours
are not guarantied.

An isoperimetric graph partitioning method for image segmen-
tation is presented in [7], which produces the same quality segmen-
tation of spectral graph methods, but requires only the solution to a
linear system rather than an eigenvector problem.

Another approach based on a fuzzy logic implementation is pre-
sented by Losson et al. [14]. The pixel classification is performed
by detecting the modes of a spatial-color compactness function,
witch classifies the colors by the location in its associated color-
space and the location in the image itself. Again, these methods
only provide an edge image as result.

A none fuzzy logic classifier was proposed by Martin et al. in
[16] to detect boundaries in natural scenes using measurements like
changes in brightness, color, and association to textures. The classi-
fier is trained by human labeled images as ground truth and outputs
the posterior probability of a boundary at each image location and
orientation. In [15] a further development to detect and localize
junctions is presented. Also a highly parallelized implementation
based on the method of Marin et al. running on commodity graph-
ics processors from Nvidia was proposed in [3]. The disadvantage
of this method is the necessity to train the algorithm with ground
truth images labeled by humans.

3 CONCEPT

This section presents ConGrap, a novel contour detector by us-
ing a Gradient Map of the initial image. In contrast to edge and
other contour detectors, ConGrap does not not only provide a re-
sult image, but also calculates the borderline and the bounding box
of every contour. This is similar to segmentation results, because a
contour represents a segment of the initial image. Unlike a common

Figure 2: Clamping of edge orientation angle θ into four cases [8].
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Figure 3: Gradient map of a synthetic image: (a) Initial image show-
ing a circle. (b) Corresponding Gradient Map.

segmentation process, the result image of ConGrap also represents
an enhanced edge image.

Furthermore, ConGrap works with many different classes of im-
age content (like outdoor and indoor photos, panoramas, photos
with large or shallow depth of field, synthetic images, etc.), as long
as the underlying Gradient Map contains all significant edges of an
image.

The algorithm of ConGrap works in several steps:

1. Gradient-based edge detection,

2. contour tracing,

3. extraction of borderlines, and

4. optimization.

3.1 Gradient-based Edge Detection
Like already mentioned in section 2, a usual edge detection com-
putes the discontinuities of the image intensity function in two
– horizontal and vertical – dimensions. Thereby, the derivatives
( f ′(x) and f ′(y)) in both directions are used to find the gradient of
intensity, which is a measure to identify an edge [5].

Additionally to a gradient image (edge image), the derivatives
give information about the edge direction. With the calculated angle
θ in eq. 1, the orientation of an edge is known [8].

θ =


0◦ if f’(y) = 0 and f’(x) 6= 0
90◦ if f’(y) = 0 and f’(x) = 0

arctan
(

f ′(x)
f ′(y)

)
if f’(y) 6= 0 and f’(x) 6= 0

(1)

In discrete domain, direct neighbor pixels of a location can only
accept four directions. Thus, θ needs to be clamped. Fig. 2 shows
the clamp range of θ .

ConCrap stores the clamped orientation θ for every pixel of the
initial image. We call this result Gradient Map. Fig. 3 shows the
visualized Gradient Map, consistent with the clamp range of fig. 2.

3.2 Contour Tracing
The contour tracing mechanism passes through the lines of the edge
image. If an edge pixel is detected, which does not belong to a
contour yet, the pixel will be the start pixel of a new contour. This
ensures that all edge pixels will be part of a contour. Based on
this contour pixel cp, a three-stage hierarchical analysis of the pixel
neighbors in a specified radius r will be started. It will be checked,
if they are

1. edge pixels, when this returns no results then

2. own contour pixels, when this returns no results then

3. other contour pixels.

For each of the three steps, the analysis process searches for the
neighbor pixel np that has the highest significance to be part of the
contour. This significance is expressed by the match value m. The
lowest value of m expresses the highest significance to add np to
the contour. Match value m is defined for each neighbor pixel np
as the distance between cp and np. Thereby, the distances of both
directions will be stored separately in distX and distY (in pixel co-
ordinates). The specified parameter w represents a constant weight
to privilege np with the same orientation (θ of the Gradient Map)
as cp. This results in the following pseudo code:

i f ( θ ( np ) == θ ( cp ) )
m = Max ( d i s tX , d i s t Y )

e l s e
m = Max ( d i s tX , d i s t Y ) + w

An illustration of calculated match values can be seen in the fol-
lowing sample image showing a red line. Pixel cp belongs to a
diagonal red line and is the current pixel to analyze. The parameter
w is set to 7.

Figure 4: Illustration of calculated match values: Initial image with a
diagonal red line and the corresponding match value matrix.

The resulting match value matrix shows that the direct neighbor
top right has the lowest match value (m = 1) and hence the highest
significance. Congruously, this neighbor np becomes part of the
contour of pixel cp. A line will be drawn into the edge image and
connects cp with np. If the analysis process works in step 2 or 3, the
contour tracing closes the contour with this pixel. If the the anal-
ysis process works in step 1, the analysis starts from the neighbor
position again. This recursive process is done until the contour will
be closed or no pixels will be detected inside the specified radius r.

3.3 Extraction of Borderlines
After contour tracing, the edge image is transformed into an image
with advanced edges as contours. In the final step, all contours have
to be reduced to their borderlines as a closed polygon line path.

Again the (advanced) edge image will be passed through the
lines and also through the columns. The first and last contour pixel
per line and per column will be kept, all other pixels will be re-
moved. After passing through the image, the contour pixels are
divided into four groups: All left, right, upper and lower pixels.
The pixels of a group will be connected by a line. Additionally the
first pixel of the left group will be connected with first pixel of right
group. The same procedure is done with the last pixels. Also the
first and last pixels of the upper and lower groups will be connected.
This results in a closed contour represented as closed polygon line
path. Fig. 5 shows the intermediate steps from an advanced edge
image to a closed contour.

3.4 Optimization
ConGrap is configurable with several parameters, like the radius r
for tracing neighbor pixels and the weight w to privilege neighbor
pixels with same θ at the Gradient Map.

A further parameter p defines a percentage rate for joining con-
tours. The edge image can contain discontinuities in an edge line.
When the contour tracer cannot compensate a discontinuity an edge
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Figure 5: Getting a closed contour: (a) All pixels of one contour after
analysis algorithm. (b) Detected borderline of the contour including
discontinuities inside the borderline. (c) All borderline pixels con-
nected by a polyline to a closed contour.

will be divided into multiple contours. Also an edge image with
thick edges results in wrong multiple contours. Parameter p de-
termines how many percent of a smaller contour has to intersect a
bigger contour for merging together. Fig. 6(a) shows an edge im-
age, which results in multiple contours after contour tracing (see
fig. 6(b)). With p = 90%, the inner contours are merged to the
biggest contour (see fig. 6(c)).

The last parameter for manipulating ConGrap is mcs. mcs de-
termines the minimum contour size, more precisely the minimum
number of pixels belonging to a contour. This parameter avoids,
that image noise results in many very small wrong contours.

4 REALIZATION AND RESULTS

4.1 Details Of Implementation
ConGrap is implemented as a component of the open source im-
age and video processing framework SBIP [17]. Like described in
section 3, the realization of ConGrap works in four steps. The first
step realizes a gradient-based edge detection. Therefore, a modified
version of the canny edge detection of the AForge.Net Framework
is used [13]. Based on the canny edge implementation, ConGrap
generates the Gradient Map. For this purpose, the Sobel edge de-
tection as first step of the canny algorithm is enhanced and stores
the edge orientation θ in a temporary image.

To avoid stack overflow problems, the recursive processes of the
contour tracer (see section 3.2) are implemented as iterative rou-
tines. Also in contrast to our approach in section 3.3, our imple-
mentation does not remove non-borderline pixels obligatory. This
can be activated by an additional parameter. The reason for this
modification is to hold all edge information in the result image.
If only the contour borderlines are shown, potential semantic in-
correct contours could remove important edge pixels. This would
reduce the quality of the resulting contour image as enhanced edge
image. The resulting contour image has an 8 bits per pixel format
and uses indexed colors / pseudo colors [20]. This results in a col-
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Figure 6: Merging smaller contours, which intersect a bigger contour
(contour images with corresponding bounding boxes ): (a) Edge im-
age with two too thick edge areas on left semi circle and two discon-
tinuities on right semi circle. (b) Four detected contours after contour
tracing. (c) Merging the inner contours with the outer red contour.
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Figure 7: ConGrap contour detection of a synthetic image: (a) Initial
image. (b) Result image with four closed contours. (c) Contours with
their bounding boxes.

ored contour image and the color index is used as contour identifier.
Furthermore, ConGrap provides all corresponding information of a
contour like a list of the borderline pixel coordinates, the bonding
box coordinates and the contour identifier.

4.2 Results And Evaluation
ConGrap realizes a contour detector that finds closed contours of
objects as polygon line paths. Fig. 7 shows the result of a syn-
thetic image. The image contains four objects, which are accurate
detected as four contours.

Concluding, ConGrap works well with synthetic images. But the
question is, how does ConGrap work with original photos. In fig. 1,
a photo of a real object is divided in several contours (see fig. 1(c)
and 1(d)). Every contour represents a semantic part of the object.
Depending on the configuration of the parameters of ConGrap, se-
mantic errors can be minimized, but the amount of contours will be
increased. Fig. 8 shows the results of the lettering of fig. 1(a) with
different configurations. The higher the parameters r and p are,
the more contours will be summarized. The higher w is, the more
insusceptible is ConGrap for semantic errors, caused by crossing
edges, but also the more contours will not summarized, caused by
over restrictive behavior.

A second example is shown in fig. 9. An outdoor photo of a
cathedral consists a very complex image content structure. Thus, a
gradient-based edge detection results in many unordered edge pix-
els. Again, in dependency of its configuration, ConGrap result con-

(a)

(b)

(c)

Figure 8: ConGrap results with different configurations: (a) Only one
contour for all letters (w = 1, r = 3px, p = 70%, min = 5px). (b) 8 con-
tours with many semantic errors (w= 5, r = 10px, p= 80%, min= 5px).
(c) Multiple contours, almost one contour per letter, a few semantic
errors (w = 1, r = 10px, p = 90%, min = 5px).
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Figure 9: ConGrap result of an outdoor photo: (a) Initial image, show-
ing the cathedral of Erfurt. (b) ConGraps result image (24 contours)
including the bounding box of the contours.

tains many contours with minimized semantic errors versus a low
number of contours with higher number of semantic errors. Fig.
9(b) shows a result of ConGrap with 24 contours (w = 5, r = 3px,
p = 80%, min = 1px).

4.3 Use Case
Last example in fig. 10 shows a monument, also with complex im-
age content structure. ConGrap divides the image in 719 contours,
caused by a configuration for minimized semantic errors (w = 5 ,
r = 3px, p = 0% - no summarizing, min = 5px). We use these con-
tours for texture analyzing and evaluating, which contours contain
to the monument. The extraction of objects from photos (like the
monument) can be used for potential occlusion problems of embed-
ded virtual parts in a photo (Augmented Reality) or for image-based
3-D reconstruction of objects.

5 CONCLUSION AND FUTURE WORK

In this paper ConGrap, a new approach for detecting closed con-
tours with semantic connections was presented. In contrast to com-
mon edge and contour detections, ConGrap not only produce an
edge image, but also the information, which pixels belong to the
borderline of the contour. It is optimized to find silhouettes of ob-
jects or semantic connected parts in single images. Therefore, a
multiple-stage algorithm was implemented. Based on a gradient-
based edge detection, a Gradient Map was generated to store the
orientation of every edge pixel. In the Implementation, the canny

edge detector was used, because of its robust results. Using the edge
image and the generated Gradient Map, a contour tracer separated
the image in semantic parts and objects. For each edge pixel a three-
stage hierarchical analysis of neighbored pixels was performed. In
this process each edge pixel was mapped to a closed contour. Af-
terwards the borderline was extracted by tracing each contour for
detecting its outside pixels. A final post-processing optimized the
contour image by merging contours with same semantic relation.
The results had shown, that ConGrap can work without semantic er-
rors in synthetic images. Also in common photos, the results show
minimal semantic errors. But this demands a high number of con-
tours. A smaller number of contours produces a higher number of
semantic errors. Related to the resulted image, ConGrap can com-
pensate potential discontinuities in an edge image and produces a
enhanced edge image with closed contours.

In current implementation, ConGrap does not consider color in-
formation of the image content. More precisely, the hue and satura-
tion will be ignored. In future work, the multiple-stage algorithm of
ConGrap will be extended with the evaluation of the object color by
converting the photo to the HSL color model. This means, the con-
tour tracer will consider edges, edge orientations and the color of a
contour. For gradient-based edge detection, the canny edge detector
is used. This detection converts the initial image into gray- scale.
The RGB color information get lost. In future work, an alternative
edge detection will be used, which processes separately every color
channel. This results in three edge images with different gradient
values. Based on this, the contour tracer will consider three edge
images instead of one, which results in more accurate contours.
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