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Treatments for liver cancer requires the information of 

liver such as its boundary, precise size and localization 

of tumors, and spatial relations among these tissues. A 

computer-aided diagnosis (CAD) system can to help 

doctors conveniently acquire the information and 

provide valuable second opinions. In our study, we aim 

to developing a fully automatic method for detecting 

liver tumors using abdominal CT images. The proposed 

method consists of three modules. First, a DICOM 

image was read and preprocessed using an adaptive liver 

window to enhance its contrast. Then we used statistical 

and morphological features to extract the liver mass. 

Finally, we extracted texture features for each pixel in 

the extracted liver regions and applied neural network to 

classify pixels and to identify whether they were 

belonged to normal tissues or liver lesions. In order to 

validate the proposed study, we have tested our method 

in a database from 50 liver patients. We demonstrated 

the accuracy of the tumor segmentation method using a 

cross-validation protocol and three area error metrics. 

The performance was evaluated using TP, FP, and FN 

percentages, which were 71.82%, 37.83% and 28.17%. 
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I.  INTRODUCTION  

Planning a liver intervention is usually a 
challenging task for a surgeon [1]. However, by 
using imaging technology, medical decisions of 
liver tissue pathology can be portrayed with 
various medical imaging modalities such as 
ultrasonography (US), computed tomography 
(CT), or magnetic resonance imaging (MRI). 
Among them, CT is considered the most robust 
imaging technique for the detection of liver 
lesions, such as hepatocellular [2]. Furthermore, 
the success of modern and future liver 
interventions also relies on a computer-aided 
diagnosis (CAD) systems that can assist doctors 
to carry out surgical planning and simulations [3].   

Any kind of liver local treatment requires the 
information for liver such as its contour, precise 
size and localization of tumors, accurate liver 
vessel topography, and spatial relations among 
these tissues. Thus, an objective and 
reproducible method to detect liver tumors 
would be profitable for clinical use. Moreover, 
such an approach should also work for various 
tumor types and can avoid multiple and 
successive segmentations. Nevertheless, such a 
task is quite difficult due to the ambiguities of 
brightness changes between normal tissues and 
tumors. A striking resemblance usually exists 
between abnormal and normal tissues. At image 
level, tumors could have diverse intensities and 
appearances within healthy liver tissues and 
become less distinguishable. Another 
challenging problem is due to the liver itself, 
since it contains a high level of vascularization, 
and therefore, the acquired images could 
therefore become noisy.  

We would like to address the problems both 
on liver segmentation and the detection of liver 
lesions using abdominal CT images. The 
proposed CAD system was based on neural 
network technique. In our study, we initially 
used the liver window to enhance the contrast of 
the input image. A sequence of morphological 
operations was then applied to find the contours 
for ribcage and liver. Next, a texture analysis 
was performed to extract statistical features for 
each pixel of the liver. Finally, we used these 
features as inputs for neural network to classify 
tumor pixels within the liver region. The rest of 
this paper is organized as follows. We show the 
detailed steps for the proposed method in Section 
III, which consists of three subsections to 
describe the details of preprocessing, liver 
segmentation, and texture analysis. In Section IV, 
we present the results and statistical analysis for  



 

 

 

Figure 1.  Flowchart of liver segmentation. 

 
our method. Finally, we make discussion and 
conclusions in Section V. 

II. DATA AQUISITION 

 
The dataset included abdominal CT images 

acquired from 50 patients, with each patient 
averagely having 30 images. Totally, 1500 
DICOM images were used in our study. Each 
CT image was was scanned at an interval of 5 
mm. The technique of 300 mAs was used with 
120 KVP, field of Vision we can achieve image 
enhancement to highlight he- 

(fov) 280. The dimension of image matrix 
was 512 x 512. For each patient, 100cc of 
omnipaque 350 was injected intravenously at the 
rate of 3cc per second. Scanning delay was 30 
seconds, where 20 second spiral scanning was 
used with a pitch of 0.984. We assumed that the 
liver located on the left of the abdomen for all 
the input images. 

 

III. METHOD 

A. Image Enhancement 

Pixels in a CT image are displayed in terms of 
relative radio-density. The pixel itself can be 
quantified according to the mean attenuation of 
the tissues.  The Hounsfield unit (HU) scale, 
which ranges from -1024 to +3071, is measured 
by a linear transformation of original linear 
attenuation coefficients in a material. Using liver 
window level, patic lesion brightness. Liver 
windows have a window level equal to the 
attenuation levels of hepatic parenchyma (50 HU 

without contrast material; 100 HU after the 
intravenous administration of contrast material) 
and a narrower window width (150 HU) than 
conventional soft-tissue window levels. However, 
medical images differ in every body and every 
taking. A fixed liver window may not result in a 
good enhancement for liver and liver lesions. In 
our study, we computed an adaptive threshold 
value as window center to solve the problem. 
Since liver is located on the left side of the 
abdomen according our scanning protocol, we 
computed the mean of pixels which have HU 
values ranging from 0 HU to 300 HU in the left-
half of the input image as the new window center. 
The window width was determined by 
experiments. A small window width can enhance 
details of liver compositions, but could also 
increase the amount of other irregular patterns, 
such as noise. In our study, the window width 
was chosen 150.  

 

B. Liver segmentation 

Our liver segmentation method consists of 
several steps as shown in Figure 1, which we 
will describe the details in the following sections.  

 
1) Rib-cage Extraction 

The infiltration of fat content lowers the HU 
values in human liver. A fatty liver could 
become less distinguishable when it neighbors 
upon the extra-abdominal fat closely, which may 
induce an erroneous segmentation result. 
Because the extra-abdominal fat locates outside 
the rib cage, we can find the location of ribs and 
draw a contour to exclude the fat.  

First, the initial CT scan image was 
thresholded using values ranging from 0 to 300 
HU to obtain the body periphery. A center R was 
then determined by the spatial center of the body 
region. The boundary for body can therefore be 
represented by its signature, denoted by )(s , 

which is a 1-D function that describes the distant 
from R for a specific angle  . Next, it is 
necessary to compute the signature )(r  for rib 

cage so that we can evaluate the size  
 
of structuring element for the erosion by 
subtracting )(r  from )(s  for any  .  
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Figure 2.  The steps for obtaining rib-cage contour. 

TABLE I.  CRITERIA FOR FOUR DEFINED CATEGORIES. 

 
Thresholding 

(gray value) 

RS 

(pixel) 
RHW RA RL 

Category 1 0-0.8σ >100 >0.4 >0.35 >1.6 

Category 2 0-30 >100 >0.6 >0.6 >0.5 

Category 3 10- (ū-1.2σ) >100 >0.7 >0.5 >0.9 

Category 4 25- (ū-1.2σ) >100 >0.5 >0.4 >1.3 

 

 
We computed )(r  according to the locations 

of rib bones. Initially, the image enhanced by 
liver window was thesholded using gray level 
values of 230. Next, we used morphological 
operations (opening using a structuring element 
with diameter of 7) to eliminate small unwanted 
irregularities, such as noise and the hospital bed. 
The largest region and any other regions locating 
in a distance less than ε were also removed 
because they may be resulted from spine bones 
and liver vascularity. In our study, the value of ε 
was given by 0.6 times of the maximum distance 
among all )(r . For the regions left, we computed 

the length from R to each pixel in these regions. 
The value of )(r  was assigned by the average 

length for each  . Since rib bones do not form a 
connected contour for the rib cage, we calculated 
the average )(r , denoted by mr, and its standard 

deviation 
r  to adjust the values of )(r , For 

some   where )(r  is not in the range of 
rrm  , 

)(r  will be replaced by mr. Additionally, for 

each  , we recomputed )(r  using median and 

average filtering within ± 17
o
 for obtaining a 

smooth contour. Figure 2 describes the process 
in this section. 

 
2) Contour Extraction for Liver 

The mass of liver consists of two parts: normal 
liver tissues and the abnormalities induced by 
liver cancer. The normal liver can be obtained 
simply by thresholding with new threshold 
values recomputed from the inside of the 
extracted ribcage. Given the enhanced gray scale 
image as input, we first filtered out pixels with 

gray levels equal to 0 or larger than 200 within 
the rib-cage, since they could belonged to 
abdominal fat tissues or bones. We excluded 
them by assigning these pixels with 255. A 
median filer was then applied on the image to 
reduce the interference of noise. We recomputed 
the average u , and its standard deviation σ 
within the left side of the image. The candidate 
pixels of liver was selected according to the 
range within 2.1u . Finally, we performed 
morphological operations of 3 closings to 
connect gaps, followed by 7 openings to separate 
from other organs or tissues. Finally, the largest 
region was chosen as the possible liver region. 

Tumor masses show a distinct appearance in 
the liver. Compared to normal tissues, they 
usually have lower intensities, and could 
generate holes and caves in the liver region 
obtained from the previous thresholding 
procedure. Therefore, we must apply additional 
steps for detecting these parts to assemble a full 
liver mass. We defined four categories for 
different intensity ranges as shown in Table 1. A 
unique binary image Bp was generated for some 
category p. For every region q in Bp, we 
computed the smallest rectangle R enclosing q, 
and evaluated three shape features of q, as shown 
in (1) to (3), where w and h denote respectively 
the width and height of the rectangle. We 
specifically defined a set of criteria for each p to 
select regions in Bp. For each category, regions 
that satisfied its criteria were selected and joined 
to the liver mass. 

qofAreaRS   

},min{
w

h

h

w
RHW 

 

RofArea

qofArea
RA 

 

massliver togneighborin NOT pixels ofNumber 

massliver  to ngneighnbori pixels ofNumber  
RL

 

3) Texture Analysis 
We require features to differentiate between 

normal liver tissue and hepatic lesions. Haralick 
texture features are generally used for image 
classification on abdominal CT [4,5]. The 
features are calculated based on the construction 
of a co-occurrence matrix. Suppose that a co-
occurrence matrix P is used to describe the 
patterns of neighboring pixels in an image at a 
given distance d. In the calculation of texture 



features, four co-occurrence matrices are 
necessary to describe different orientations, 
including P0, P90, P45, and P135, which 
respectively represent a co-occurrence matrix 
that describes pixels adjacent to one another in 
four directions. We computed Haralick texture 
features for every point where it has four co-
occurrence matrices. Therefore, we summed 
them up to one matrix to calculate its statistical 
features. There were total 16 texture features 
computed for each liver pixel, including 13 
Haralick textures and four local statistical 
features. The three local statistical features were 
normalized mean, local variance, local, and 
entropy The normalized mean was a ratio of 
local mean to global mean for liver region, 
because the gray level values for liver and liver 
lesions in a CT scan image vary in different 
patients. A normalized ratio would be better to 
capture the difference between normal liver and 
the abnormalities. However, not all the texture 
features were used for classification. After 
computing features for all pixels, we first 
evaluated their feasibility by using the unpaired 
Student’s t-test (two -tailed) to evaluate and keep 
the feature that its t-test value under 0.01. The 
proposed features were statistically significant 
over the entire database and were used to 
classify pixels.  In our study, only six features 
among the 16 texture features were chosen, 
including normalized mean, local variance, local 
entropy, Haralick entropy, Haralick energy, and 
Haralick sum of  squares, which we used for 
tumor detection. 

 
4) Neural Network 

To identify whether a region is a normal liver 
tissue or liver lesions, we adopted a general 
multi-layered perceptron (MLP) neural network 
and chose the back-propagation algorithm as the 
learning rule. The value produced by the output 
node of the neural network lies between 0 and 1. 
The output value was used as a probability 
evaluation for the prediction of tumor regions. In 
the study, we used four layer back-propagation 
algorithms. The first layer was an input and 
included five neurons (nodes) that denote the 
foregoing six features. The framework of this 
neural network consisted of two hidden layers, 
with the number of neurons being given seven 
and three respectively, and the last layer was the 
output layer with two neurons which classifies 
the input pixels whether it is of tumor or of liver.  

 

Figure 3.  Areas for evaluating TP, FP, and FN rates. 

 
In order to stabilize this neural network, we 
trained the data with 500 iterations. The learning 
parameter was set 0.01 and the momentum was 
chosen as 0.01 for converging quickly. 
 

IV. EXPERIMENT RESULTS 

The k-fold cross-validation method was used 
to estimate the accuracy of feature classification. 
With the k-fold cross-validation method, the 50 
case were randomly divided into k groups. The 
first group was chosen as test set, and the 
remaining (k-1) groups were used as train set for 
training the neural network. The trained model 
produced by the network was then used to test 
the former group that we left aside. The process 
repeated until every group has been tested. Each 
time when a group was to be tested, the other (k-
1) groups were used to train the network first. In 
our study, k was 5. A trial is predicted right if the 
tumor region can be successfully selected.  

To evaluate the accuracy of our segmentation, 
we quantitatively compared the automated 
results with the liver lesions. In order to measure 
the performance of the proposed segmentation 
method, we used three different error measures. 
They were true-positive (TP), false-positive (FP) 
and negative-positive volume fractions, which 
were defined as follows [6]. 

m

na

A

AA
TP




 

m
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A

AAA
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


 

m
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A
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


 

where the term Am refers to the area of the tumor 
determined by manual segmentation and Aa is 
the area of the lesion determined by the proposed  

TP 

FP 

FN 
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Figure 4.  Segmentation results for liver and tumors using the 

proposed method (the red indicates TP. the blue FN, and the 

green FP area). 

method. Ideally, a good segmentation results in 
higher TP with FP and FN being relatively low. 
Figure 3 shows the area corresponding to TP, FP 
and FN. In our study, the average TP, FP, and 
FN percentages were 71.82%, 37.83% and 
28.17%. Figure 4 shows some examples of the 
final results for our proposed method. The cases 
displayed in Figures 4 (a)-(c) show better results, 
where the corresponding TP rates are 98.39%, 
88.64%, and 99.28%, and FP rates 1.6%, 0%, 
and 0.7%.  On the other hand, the cases  
displayed  in Figures 4 (d)-(f) are examples that 
results in erroneous segmentation, where the 
corresponding TP rates are 67.33%, 89.76%, and 
0%, and FP rates 77.98%, 41.96%, and 100%.  
 

V. DISCUSSIONS AND CONCLUSIONS 

In this paper, we present a fully automated 
segmentation system requiring no human 
intervention to segment tumor areas on 
abdominal CT images. It can portray the 
structural information of liver lesions to 
surgeons for further diagnosis. In our study, the 
average TP, FP, and FN percentages were 
71.82%, 37.83% and 28.17%. However, there 
are also limitations in our method. Due to the 
various structures of liver lesions, it is 
challenging for us to determine a region whether 
it is a tumor region or a background region if it 
locates between hepatic resection. Any faulty 
contour in the liver segmentation could therefore 
lead to erroneous detection results. In some cases, 
we observed that the TP rates drop when the 
tumor in question locates closely to the boundary 
of liver or blood vessels, so therefore it may be 
excluded as early as in the step of liver 
segmentation. In addition, if a tumor is too small, 
our system could also fail to detect its existence. 
So far, we used shape features and statistical 
evaluation to address this problem. In the future, 
we aim at improving the performance of 
segmentation by selecting reference image from 
continuous abdominal CT images. Moreover, we will 
reform the method of liver lesion segmentation by 
incorporating with more features. Furthermore, we 
will use contour tracking method to improve the edge 
of liver lesions segmentation. 
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