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Abstract - This paper describes the application of Oyster, 

an open source, general purpose entity resolution (ER) 

system, to the problem of conducting multi-year longitudinal 

studies of student achievement.   Although originally 

designed to support ER instruction and research, this paper 

demonstrates that OYSTER can be used in practical 

applications with processing requirements on the order of 

one million records, a range that includes many existing 

small-scale information systems.  The paper also discusses 

an enhancement to the basic R-Swoosh algorithm 

implemented in OYSTER that allows higher performance in 

processing student files with high duplication rates. 

Keywords: Entity Resolution, OYSTER Open Source 

System, R-Swoosh Algorithm, Longitudinal Studies  

 

1 Introduction 

  Entity Resolution (ER) is the process of determining 

whether two references to real world objects are referring to 

the same, or to different, different objects [1].  This is done 

by successively locating and merging multiple records [2], 

[3], [4], [5]. References that refer to the same entity are said 

to be “equivalent references.”  In ER it is important to 

understand that entities are real world object that do not 

exist within information systems.  Information systems only 

contain representations of these objects called entity 

references [1].   

 ER can be applied to any type of entity reference. 

When the underlying object is a customer, whether the 

customers are individuals or other businesses, is called 

customer data integration (CDI).  CDI allows companies to 

maintain an accurate, timely, complete and comprehensive 

representation of a customer across multiple channels, lines 

of business, and enterprises.  Often times, the ability to 

recognize a customer at any point within the enterprise 

allows improved customer experience and the ability to up-

sale or cross-sale new services or products.  If the data is 

product in nature it is called Product Information 

Management (PIM).  This type of process is integral to large 

reseller and wholesale companies that often times product 

but with different descriptive attributes.   

 

 Newcombe, Kennedy, Axford, & James [6] state that 

ER consists of two steps locating or prospecting the records 

to be used in the merge step, then a comparison step to match 

the records. They specifically look at ways to optimize both 

the location and merge steps.  Fellegi and Sunter [7] give the 

statistical basis for linking data.  Newcombe, Fair, and 

Lalonde [8] provide a history of probabilistic record linkage 

and show empirical results. The SERF project [9] looks at a 

generic description of ER.  They treat the match and merge 

processes as generic black boxes and describe a series of 

algorithms to resolve sets of references. 

2 Oyster 

 OYSTER is an open source project sponsored by 

Center for Advance Research in Entity Resolution and 

Information Quality (ERIQ) and the University of Arkansas 

at Little Rock.  OYSTER was originally designed to support 

instruction and research in ER by allowing users to configure 

its entire operation through XML scripts executed at run-

time.  The resolution engine of the current version (3.0) can 

be configured to run in several modes including record-

linking/merge-purge, identity resolution, identity capture, 

and identity update.  In addition the system’s attributes and 

identity rules are defined with run-time scripts, as well as, the 

location and type of each reference source to be processed.  

OYSTER source code and documentation is freely available 

from the ERIQ website (1). 

 

3 Problem Definition 

 We are working with an organization that will be 

providing data to researchers who request data. The 

organization receives multiple types of files from different 

state agencies. The initial files that were a part of this study 

are the student enrollment files for all of the public schools 

within the state. There is a total of seven years of data 

totaling 3.8 million records. There are also test scores, ACT 

records, BMI records and other records. Within these 

records a student can be seen across multiple years, i.e. 

students entering, exiting, and being promoted to higher 

grades. Student can also often be seen multiple times within 

a year, i.e. student moves for school district A to district W, 

the students parents get married or divorced necessitating a 

name change, etc. All these issues create a large level of 



duplication between the files. It is the implications of this 

large amount of duplication on the effects of Entity 

Resolution processing that is the focus of this paper. 

 In resolving the data files 11 simple rules (Table 1) 

were used to determine equivalence. It was also decided to 

use R-Swoosh [10] to ensure that all possible merges where 

processed. When each file was run alone R-Swoosh worked 

very well. But it was noticed that when the files where run 

together there was a larger number of R-Swoosh iterations. 

The multiple processing or churn was causing excessively 

long run times. Initially it was thought that the 

implementation of the R-Swoosh algorithm was incorrect but 

it was determine that it was correct and that the problem was 

a combination of how R-Swoosh processed records and the 

fact that there was a large percentage of duplication between 

the files. This was further compounded by the distance 

between many of the duplications, i.e. one file would have to 

be completely processed before the duplicates in the next file 

would be seen. 

R-Swoosh is easy to implement and it avoids some 

unnecessary comparisons because of the merge and 

replacement of the initial entity references with the merged 

value. 

Supposed that you have the records shown in Table 2, 

for a record to match at least four attribute fields must be an 

exact match. Merging is a simple merge of each attribute 

field into an attribute field set. Using R-Swoosh and 

processing each record in order none of the records match 

until record 7 is read. It then takes an additional 6 matches to 

determine that all 7 references refer to the same entity.  In 

fact it doesn’t matter which order the records are in it will 

always take 7 matches. A walk through in Listing 1 shows 

the entire progression. 

 

 
First Name Last Name 

First Middle 
Name Full Name 

Date of 
Birth SSN 

Rule 1 Exact Ignore Case Exact Ignore Case     Exact Exact 

Rule 2       Exact Ignore Case Exact Exact 

Rule 3 QTR(0.25) Exact Ignore Case     Exact Exact 

Rule 4     QTR(0.25) Exact Ignore Case Exact Exact 

Rule 5   Exact Ignore Case     Exact Exact 

Rule 6 Exact Ignore Case       Exact Exact 

Rule 7 SUBSTRLEFT(5) SUBSTRLEFT(5)     Exact Exact 

Rule 8 Exact Ignore Case Exact Ignore Case       Exact 

Rule 9 Exact Ignore Case Exact Ignore Case     Exact   

Rule 10   Hyphenated     Exact Exact 

Rule 11         Exact Exact 
  Table 1. Identity Rules used for all Runs 

4 R-Swoosh 

 According to the SERF project, R-Swoosh uses two sets 

R and R’. R is the set of all input records and R’ is the set of 

all non matched records. Records from R are compared to R’ 

in a pair wise fashion. If a match is found the records are 

merged. The matched record is removed from R’ and the 

merged record is placed on the bottom of R. This continues 

until all records have been removed from R. In this respect  

 

 
Field1 Field2 Field3 Field4 

  
Field1 Field2 Field3 Field4 

1 A B C D 
 

Rule 1 Exact Exact Exact 
 2 D E F G 

 
Rule 2 Exact Exact 

 
Exact 

3 A B F G 
 

Rule 3 Exact 
 

Exact Exact 

4 D E C D 
 

Rule 4 
 

Exact Exact Exact 

5 A E F D 
      6 D B C G 
      7 A E F G 
        Table 2. Example Data and Rules 



 

 

1. Read in record 1, No match, New Entity 
2. Read in record 2, No match, New Entity 
3. Read in record 3, No match, New Entity 
4. Read in record 4, No match, New Entity 
5. Read in record 5, No match, New Entity 
6. Read in record 6, No match, New Entity 
7. Read in record 7, Matches Record 2 on Rule 4, 

Merge records and put on bottom of the list as RS1. 
8. Read in record RS1, Matches Record 5 on Rule 1, 

Merge records and put on bottom of the list as RS2. 
9. Read in record RS2, Matches Record 4 on Rule 2, 

Merge records and put on bottom of the list as RS3. 
10. Read in record RS3, Matches Record 6 on Rule 3, 

Merge records and put on bottom of the list as RS4. 
11. Read in record RS4, Matches Record 1 on Rule 1, 

Merge records and put on bottom of the list as RS5. 
12. Read in record RS5, Matches Record 3 on Rule 1, 

Merge records and put on bottom of the list as RS6. 
13. Read in record RS6, No match, New Entity 
14. No more records, end 

# of Consolidation Steps: 6 

  Listing 1. R-Swoosh applied to example data 

 
 

 

A simple example shows the benefits of this slight 

change. In the enhanced R-Swoosh method, again no records 

are matched until record 7 is read. At that time records 2, 3 & 

5 are all found to match. At that point they are all merged 

with record 7 and put on the bottom of the list as RS1. The 

next record read is RS1 since it is the only record in the list 

and it is found to match to 1, 4, & 6 (Listing 2). 

1. Read in record 1, No match, New Entity 
2. Read in record 2, No match, New Entity 
3. Read in record 3, No match, New Entity 
4. Read in record 4, No match, New Entity 
5. Read in record 5, No match, New Entity 
6. Read in record 6, No match, New Entity 
7. Read in record 7, Matches Record 2, 3 & 5, 

Merge records and put on bottom of the list as 
RS1. 

8. Read in record RS1, Matches Record 1, 4 & 6, 
Merge records and put on bottom of the list as 
RS2 

9. Read in record RS2, No match, New Entity 
10. No more records, end 

# of Consolidation Steps: 2 

  Listing 2. Enhanced R-Swoosh Applied to Example Data 

 

5 R-Swoosh Enhanced 

 The enhanced version uses three sets but instead of 

reading in all the records into R, records are read one at a 

time from the input stream (R). This initially reduces the 

memory requirements needed since R is transient by nature. 

Records that are not matched are placed in R’. Because ER is 

expensive [10] a simple inverted index is used to reduce any 

unnecessary comparisons. R-Swoosh compares records in a 

pair wise fashion. In the R-Swoosh algorithm, when a match 

is found the records are combined and they are both placed 

back into the record queue at the end to be recheck at some 

later time for additional matches. Matching continues until 

the queue is emptied. The enhanced version makes one slight 

change; with the use of the index it pulls back a candidate list 

of all possible matches to R’. If multiple records are found to 

match they are all merged with the input record, removed 

from R’ and placed on R’’. R’’ is used to hold all records that 

have been matched and merged. In R-Swoosh these are 

placed on the end of R but since R in the enhanced version is 

a stream R’’ represents the end of the stream. Once the 

stream is extinguished R’’ takes the place of R.  

 

 

This slight change was able to reduce the number if 

iterations from 6 to 2. But here order is important, move the 

glue record (record 7) to a different point in the file can 

change the number of iterations required to fully resolve the 

entity. Even then the number of consolidation steps is less 

than regular R-Swoosh. If we take the permutation of the 

order of these 7 records we get 5040 different dataset. 

Running R-Swoosh on each one shows that order is 

unimportant as they all return 6 consolidation steps. If we 

run the enhanced R-Swoosh on the same data sets we find 

that in 3,168 (62.9%) of the data sets it takes 3 consolidation 

steps and 1,872 (37.1%) it takes 2 consolidation steps. But in 

all cases this requires fewer steps than R-Swoosh to produce 

the same results. 

 

  

 



6 Results 

 To determine how the Enhanced R-Swoosh compares to 

R-Swoosh, three files containing First and Last Name, SSN 

and DOB were processed with the Oyster system. The files 

were run separately and then together using both the R-

Swoosh and Enhanced R-Swoosh methods. File A contained 

588,279 records and file B contains 463,405 records and file 

C contains 585,409 records. Each test is run on a Dell Server 

running Linux (CentOS release 5.5) using 8 GB of main 

memory and Java 1.6 VM. 

 

7 Conclusion and Future Work 

 In using the Enhanced version of R-Swoosh during the 

project we have seen several gains in processing speed while 

producing the same result. Based on the empirically results 

that we are seeing, Enhanced R-Swoosh seems to be a viable 

alternative to the standard R-Swoosh ER algorithm. But as 

can be seen in the results section there are some differences 

that are not completely understood. Future work includes 

determining in what circumstances Enhanced R-Swoosh 

should be used, determining the amount of duplication that is 

necessary for efficient ER with Enhanced R-Swoosh and 

refining the implementation to allow for a more efficient 

matching. 

 

Run 
Total 
Records Clusters 

Max 
Cluster 
Size 

Min 
Cluster 
Size > 
1 

Average 
Cluster 
Size 

Num. of 
Duplicate 
Records 

Duplication 
Rate 

Elapsed Seconds 

R-Swoosh 
Enhanced 
R-Swoosh 

File A 588,279 523,068 9 2 1.12467 120,301 11.085% 4,818 5,129 

File B 463,405 462,815 3 2 1.00127 1,177 0.127% 2,254 2,286 

File C 585,409 528,714 8 2 1.10723 105,821 9.685% 5,094  4,981 
File A 
& B 1,051,684 581,569 9 2 1.8084 893,750 44.701% 13,521 13,351 
File A 
& C 1,173,688 654,135 12 2 1.7943 945,006 44.267% 17,193 17,238 
File B 
& C 1,048,814 558,915 9 2 1.8765 930,615 46.710% 13,369 13,679 
All 
Files 1,637,093 655,861 13 2 2.4961 1,477,165 59.937%  30,134 27,634 

  Table 3. Comparison of Regular and Enhanced R-Swoosh Performance 

 

Running each file individually using R-Swoosh, 

reasonable consistent times when the duplication rate is fairly 

low. Duplication rate is calculated by dividing the clusters by 

the total records and subtracting from 1. But when the 

duplication rate increases, the run times also increase. This is 

due to the fact that R-Swoosh only matches one record at a 

time, and when it finds a match, puts the merged record back 

on the bottom of the set.  The extended R-Swoosh, does 

much better on the higher duplication rates as can be seen in 

Table 3. There was a difference in run time by 2500 seconds 

a time savings of 8.3%. Interestingly, the Enhanced R-

Swoosh under performs when the duplication is low actually 

taking longer to run. It is believed that the cost of the more 

complex coding is what is causing this increase. Two, other 

anomalies where noticed when Files AC and CB were 

processed it was found that the Enhanced R-Swoosh took 

longer to resolve these records. It is unknown what caused 

these two ER processes to run slightly longer. We are not 

running on a dedicated machine so there is the possibility that 

there was resource contention issue. 
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