
Entity Resolution for Longitudinal Studies in Education

using OYSTER

E. D. Nelson
1
 and J. R. Talburt

2

1
 Department of Information Quality, University of Arkansas, Little Rock, AR, USA

2
 Department of Information Quality, University of Arkansas, Little Rock, AR, USA

Abstract - This paper describes the application of Oyster,

an open source, general purpose entity resolution (ER)

system, to the problem of conducting multi-year longitudinal

studies of student achievement. Although originally

designed to support ER instruction and research, this paper

demonstrates that OYSTER can be used in practical

applications with processing requirements on the order of

one million records, a range that includes many existing

small-scale information systems. The paper also discusses

an enhancement to the basic R-Swoosh algorithm

implemented in OYSTER that allows higher performance in

processing student files with high duplication rates.

Keywords: Entity Resolution, OYSTER Open Source

System, R-Swoosh Algorithm, Longitudinal Studies

1 Introduction

 Entity Resolution (ER) is the process of determining

whether two references to real world objects are referring to

the same, or to different, different objects [1]. This is done

by successively locating and merging multiple records [2],

[3], [4], [5]. References that refer to the same entity are said

to be “equivalent references.” In ER it is important to

understand that entities are real world object that do not

exist within information systems. Information systems only

contain representations of these objects called entity

references [1].

 ER can be applied to any type of entity reference.

When the underlying object is a customer, whether the

customers are individuals or other businesses, is called

customer data integration (CDI). CDI allows companies to

maintain an accurate, timely, complete and comprehensive

representation of a customer across multiple channels, lines

of business, and enterprises. Often times, the ability to

recognize a customer at any point within the enterprise

allows improved customer experience and the ability to up-

sale or cross-sale new services or products. If the data is

product in nature it is called Product Information

Management (PIM). This type of process is integral to large

reseller and wholesale companies that often times product

but with different descriptive attributes.

 Newcombe, Kennedy, Axford, & James [6] state that

ER consists of two steps locating or prospecting the records

to be used in the merge step, then a comparison step to match

the records. They specifically look at ways to optimize both

the location and merge steps. Fellegi and Sunter [7] give the

statistical basis for linking data. Newcombe, Fair, and

Lalonde [8] provide a history of probabilistic record linkage

and show empirical results. The SERF project [9] looks at a

generic description of ER. They treat the match and merge

processes as generic black boxes and describe a series of

algorithms to resolve sets of references.

2 Oyster

 OYSTER is an open source project sponsored by

Center for Advance Research in Entity Resolution and

Information Quality (ERIQ) and the University of Arkansas

at Little Rock. OYSTER was originally designed to support

instruction and research in ER by allowing users to configure

its entire operation through XML scripts executed at run-

time. The resolution engine of the current version (3.0) can

be configured to run in several modes including record-

linking/merge-purge, identity resolution, identity capture,

and identity update. In addition the system’s attributes and

identity rules are defined with run-time scripts, as well as, the

location and type of each reference source to be processed.

OYSTER source code and documentation is freely available

from the ERIQ website (1).

3 Problem Definition

 We are working with an organization that will be

providing data to researchers who request data. The

organization receives multiple types of files from different

state agencies. The initial files that were a part of this study

are the student enrollment files for all of the public schools

within the state. There is a total of seven years of data

totaling 3.8 million records. There are also test scores, ACT

records, BMI records and other records. Within these

records a student can be seen across multiple years, i.e.

students entering, exiting, and being promoted to higher

grades. Student can also often be seen multiple times within

a year, i.e. student moves for school district A to district W,

the students parents get married or divorced necessitating a

name change, etc. All these issues create a large level of

duplication between the files. It is the implications of this

large amount of duplication on the effects of Entity

Resolution processing that is the focus of this paper.

 In resolving the data files 11 simple rules (Table 1)

were used to determine equivalence. It was also decided to

use R-Swoosh [10] to ensure that all possible merges where

processed. When each file was run alone R-Swoosh worked

very well. But it was noticed that when the files where run

together there was a larger number of R-Swoosh iterations.

The multiple processing or churn was causing excessively

long run times. Initially it was thought that the

implementation of the R-Swoosh algorithm was incorrect but

it was determine that it was correct and that the problem was

a combination of how R-Swoosh processed records and the

fact that there was a large percentage of duplication between

the files. This was further compounded by the distance

between many of the duplications, i.e. one file would have to

be completely processed before the duplicates in the next file

would be seen.

R-Swoosh is easy to implement and it avoids some

unnecessary comparisons because of the merge and

replacement of the initial entity references with the merged

value.

Supposed that you have the records shown in Table 2,

for a record to match at least four attribute fields must be an

exact match. Merging is a simple merge of each attribute

field into an attribute field set. Using R-Swoosh and

processing each record in order none of the records match

until record 7 is read. It then takes an additional 6 matches to

determine that all 7 references refer to the same entity. In

fact it doesn’t matter which order the records are in it will

always take 7 matches. A walk through in Listing 1 shows

the entire progression.

First Name Last Name

First Middle
Name Full Name

Date of
Birth SSN

Rule 1 Exact Ignore Case Exact Ignore Case Exact Exact

Rule 2 Exact Ignore Case Exact Exact

Rule 3 QTR(0.25) Exact Ignore Case Exact Exact

Rule 4 QTR(0.25) Exact Ignore Case Exact Exact

Rule 5 Exact Ignore Case Exact Exact

Rule 6 Exact Ignore Case Exact Exact

Rule 7 SUBSTRLEFT(5) SUBSTRLEFT(5) Exact Exact

Rule 8 Exact Ignore Case Exact Ignore Case Exact

Rule 9 Exact Ignore Case Exact Ignore Case Exact

Rule 10 Hyphenated Exact Exact

Rule 11 Exact Exact
 Table 1. Identity Rules used for all Runs

4 R-Swoosh

 According to the SERF project, R-Swoosh uses two sets

R and R’. R is the set of all input records and R’ is the set of

all non matched records. Records from R are compared to R’

in a pair wise fashion. If a match is found the records are

merged. The matched record is removed from R’ and the

merged record is placed on the bottom of R. This continues

until all records have been removed from R. In this respect

Field1 Field2 Field3 Field4

Field1 Field2 Field3 Field4

1 A B C D

Rule 1 Exact Exact Exact
 2 D E F G

Rule 2 Exact Exact

Exact

3 A B F G

Rule 3 Exact

Exact Exact

4 D E C D

Rule 4

Exact Exact Exact

5 A E F D
 6 D B C G
 7 A E F G
 Table 2. Example Data and Rules

1. Read in record 1, No match, New Entity
2. Read in record 2, No match, New Entity
3. Read in record 3, No match, New Entity
4. Read in record 4, No match, New Entity
5. Read in record 5, No match, New Entity
6. Read in record 6, No match, New Entity
7. Read in record 7, Matches Record 2 on Rule 4,

Merge records and put on bottom of the list as RS1.
8. Read in record RS1, Matches Record 5 on Rule 1,

Merge records and put on bottom of the list as RS2.
9. Read in record RS2, Matches Record 4 on Rule 2,

Merge records and put on bottom of the list as RS3.
10. Read in record RS3, Matches Record 6 on Rule 3,

Merge records and put on bottom of the list as RS4.
11. Read in record RS4, Matches Record 1 on Rule 1,

Merge records and put on bottom of the list as RS5.
12. Read in record RS5, Matches Record 3 on Rule 1,

Merge records and put on bottom of the list as RS6.
13. Read in record RS6, No match, New Entity
14. No more records, end

of Consolidation Steps: 6

 Listing 1. R-Swoosh applied to example data

A simple example shows the benefits of this slight

change. In the enhanced R-Swoosh method, again no records

are matched until record 7 is read. At that time records 2, 3 &

5 are all found to match. At that point they are all merged

with record 7 and put on the bottom of the list as RS1. The

next record read is RS1 since it is the only record in the list

and it is found to match to 1, 4, & 6 (Listing 2).

1. Read in record 1, No match, New Entity
2. Read in record 2, No match, New Entity
3. Read in record 3, No match, New Entity
4. Read in record 4, No match, New Entity
5. Read in record 5, No match, New Entity
6. Read in record 6, No match, New Entity
7. Read in record 7, Matches Record 2, 3 & 5,

Merge records and put on bottom of the list as
RS1.

8. Read in record RS1, Matches Record 1, 4 & 6,
Merge records and put on bottom of the list as
RS2

9. Read in record RS2, No match, New Entity
10. No more records, end

of Consolidation Steps: 2

 Listing 2. Enhanced R-Swoosh Applied to Example Data

5 R-Swoosh Enhanced

 The enhanced version uses three sets but instead of

reading in all the records into R, records are read one at a

time from the input stream (R). This initially reduces the

memory requirements needed since R is transient by nature.

Records that are not matched are placed in R’. Because ER is

expensive [10] a simple inverted index is used to reduce any

unnecessary comparisons. R-Swoosh compares records in a

pair wise fashion. In the R-Swoosh algorithm, when a match

is found the records are combined and they are both placed

back into the record queue at the end to be recheck at some

later time for additional matches. Matching continues until

the queue is emptied. The enhanced version makes one slight

change; with the use of the index it pulls back a candidate list

of all possible matches to R’. If multiple records are found to

match they are all merged with the input record, removed

from R’ and placed on R’’. R’’ is used to hold all records that

have been matched and merged. In R-Swoosh these are

placed on the end of R but since R in the enhanced version is

a stream R’’ represents the end of the stream. Once the

stream is extinguished R’’ takes the place of R.

This slight change was able to reduce the number if

iterations from 6 to 2. But here order is important, move the

glue record (record 7) to a different point in the file can

change the number of iterations required to fully resolve the

entity. Even then the number of consolidation steps is less

than regular R-Swoosh. If we take the permutation of the

order of these 7 records we get 5040 different dataset.

Running R-Swoosh on each one shows that order is

unimportant as they all return 6 consolidation steps. If we

run the enhanced R-Swoosh on the same data sets we find

that in 3,168 (62.9%) of the data sets it takes 3 consolidation

steps and 1,872 (37.1%) it takes 2 consolidation steps. But in

all cases this requires fewer steps than R-Swoosh to produce

the same results.

6 Results

 To determine how the Enhanced R-Swoosh compares to

R-Swoosh, three files containing First and Last Name, SSN

and DOB were processed with the Oyster system. The files

were run separately and then together using both the R-

Swoosh and Enhanced R-Swoosh methods. File A contained

588,279 records and file B contains 463,405 records and file

C contains 585,409 records. Each test is run on a Dell Server

running Linux (CentOS release 5.5) using 8 GB of main

memory and Java 1.6 VM.

7 Conclusion and Future Work

 In using the Enhanced version of R-Swoosh during the

project we have seen several gains in processing speed while

producing the same result. Based on the empirically results

that we are seeing, Enhanced R-Swoosh seems to be a viable

alternative to the standard R-Swoosh ER algorithm. But as

can be seen in the results section there are some differences

that are not completely understood. Future work includes

determining in what circumstances Enhanced R-Swoosh

should be used, determining the amount of duplication that is

necessary for efficient ER with Enhanced R-Swoosh and

refining the implementation to allow for a more efficient

matching.

Run
Total
Records Clusters

Max
Cluster
Size

Min
Cluster
Size >
1

Average
Cluster
Size

Num. of
Duplicate
Records

Duplication
Rate

Elapsed Seconds

R-Swoosh
Enhanced
R-Swoosh

File A 588,279 523,068 9 2 1.12467 120,301 11.085% 4,818 5,129

File B 463,405 462,815 3 2 1.00127 1,177 0.127% 2,254 2,286

File C 585,409 528,714 8 2 1.10723 105,821 9.685% 5,094 4,981
File A
& B 1,051,684 581,569 9 2 1.8084 893,750 44.701% 13,521 13,351
File A
& C 1,173,688 654,135 12 2 1.7943 945,006 44.267% 17,193 17,238
File B
& C 1,048,814 558,915 9 2 1.8765 930,615 46.710% 13,369 13,679
All
Files 1,637,093 655,861 13 2 2.4961 1,477,165 59.937% 30,134 27,634

 Table 3. Comparison of Regular and Enhanced R-Swoosh Performance

Running each file individually using R-Swoosh,

reasonable consistent times when the duplication rate is fairly

low. Duplication rate is calculated by dividing the clusters by

the total records and subtracting from 1. But when the

duplication rate increases, the run times also increase. This is

due to the fact that R-Swoosh only matches one record at a

time, and when it finds a match, puts the merged record back

on the bottom of the set. The extended R-Swoosh, does

much better on the higher duplication rates as can be seen in

Table 3. There was a difference in run time by 2500 seconds

a time savings of 8.3%. Interestingly, the Enhanced R-

Swoosh under performs when the duplication is low actually

taking longer to run. It is believed that the cost of the more

complex coding is what is causing this increase. Two, other

anomalies where noticed when Files AC and CB were

processed it was found that the Enhanced R-Swoosh took

longer to resolve these records. It is unknown what caused

these two ER processes to run slightly longer. We are not

running on a dedicated machine so there is the possibility that

there was resource contention issue.

8 Acknowledgment

 The research described in the paper was supported in

part by a grant from the Arkansas Department of Education.

9 References

[1] Talburt, J. R. (2011). Entity Resolution and Data Quality. Morgan Kaufman.

[2] Benjelloun, O., Garcia-Molina, H., Gong, H., Kawai, H., Larson, T.E., Menestrina, D., Thavisomboon, S., (2007). “D-

Swoosh: A Family of Algorithms for Generic, Distributed Entity Resolution”, Proceedings of the 27th International

Conference on Distributed Computing Systems; Retrieved from HYPERLINK "http://infolab.stanford.edu/serf/"

http://infolab.stanford.edu/serf/

[3] Bhattacharya, I., Getoor, L., (2007). “Collective entity resolution in relational data”, ACM Transactions on Knowledge

Discovery from Data (TKDD); 1(1)

[4] Bilgic, M., Licamele, L., Getoor, L., Shneiderman, B., (2006). “D-Dupe: An Interactive Tool for Entity Resolution in Social

Networks”, IEEE Symposium on Visual Analytics Science and Technology; Retrieved from HYPERLINK

"http://infolab.stanford.edu/serf/" http://infolab.stanford.edu/serf/

[5] Garcia-Molina, H., (2006). “Pair-Wise entity resolution: overview and challenges”, Proceedings of the 15th ACM

international conference on Information and knowledge management; 1(1)

[6] Newcombe H. B., Kennedy J. M., Axford S. J. and James A. P., (1959). “Automatic Linkage of Vital Records”, Science

New Series; 130(3381):954-959

[7] Fellegi, I.P., & Sunter, A.B. (1969). A theory for record linkage. Journal of the American Statistical Association, 64(328),

1183-1210.

[8] Newcombe H.B., Fair M.E., Lalonde, P. (1992). “The Use of Names for Linking Personal Records”, Journal of the

American Statistical Association; 87(420)

[9] Benjelloun O., Garcia-Molina H., Kawai H., Larson T.E., Menestrina D., Su Q., Thavisomboon S., Widom J., (2006).

“Generic Entity Resolution in the SERF Project”, IEEE Data Engineering Bulletin; Retrieved from HYPERLINK

"http://infolab.stanford.edu/serf/" http://infolab.stanford.edu/serf/

[10] Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang, S. E., & Widom, J. (2009). “Swoosh: A generic

approach to entity resolution”. The VLDB Journal , 18 (1), 255-276.

