
Integrating CMS Features Into The HTML Markup
Language

Ismaila Ikani Sule
Zaafirah Web and Media Design, Aberdeen, Scotland, United Kingdom

Abstract - This paper looks at the concept idea for further
developing the HTML markup language by introducing
attributes and tags which would enable content editing and
management by final web page users while making it easier
for designers and developers to build Content Management
System features into their codes. One editor page would
work with a corresponding web page and CSS file to display
editable content to the user. The web designer/developer
would code pages as usual setting out editable portions
within the HTML to be accessed by the user merely calling
up the editor versions of the same pages on his/her browser.

Keywords - HTML, content management, CMS, CSS,
web browser, code.

1 Introduction

 Web designing has come a long way over the past
decade with more dynamic and easy-to-use web sites
being designed and developed for the World Wide Web.
The HTML scripting language has provided the key
framework upon which a majority of pages for web sites
are built [1]. The latest incarnation, HTML5 has been
revamped to give web designers even richer tools for
coding their web pages.

 The basic way to build a web page is simply via a text
editor such as Microsoft's Notepad. The relevant HTML
markup syntax is typed out and saved with the .htm or .html
file extension and the resulting web page can then be
viewed in a browser. Modern web pages have HTML
working with CSS (Cascading Style Sheets) which help
share out the task of laying out page framework (HTML)
and handling the display and appearance of page contents
like text, pictures, colours and so on (CSS). Thus in the
portion of code below, you can have HTML specifying the
display of a paragraph of text while the CSS aspect sets
styling for the font size and colour of the text:.

<p style=”font-size: 14pt; color:
red;”>Roses are red</p>

Coupled with the use of other scripting languages such as
JavaScript, PHP and the .NET framework, web designers
and developers now can produce a wider variety of web
sites for their clients be it for personal or organisational use,
e-commerce, social networking or even gaming.

 However, while more tools are being made for the web

 coders, another trend gained popularity in recent times.
The creation of editing tools for the web site owners and
users themselves who generally have little or no knowledge
of the HTML and CSS aspects of their web pages has been
booming.

 This class of people aren't interested in the codes for their

web pages – they are interested in the content of their web

pages. So emerged the era of Content Management Systems

(CMS) allowing them to edit the web pages produced for

them by others or even use set templates to produce the

pages on their own.

2 The CMS Challenge

 Web designers and developers worldwide today have
to meet the demands of their clients to come up web pages
which can be edited and updated through some form of
CMS or the other, ever more frequently. They have had to
build pages in such a way that allows content to be
accessed, edited and updated on other pages. A variety of
methods exists for web coders to give users these CMS
control features and a number of them will be examined in
this paper.
 The question, however, is: why not have CMS features
integrated into the HTML language itself so designers and
developers can code web pages and corresponding editing
pages without the need for scripting separate CMS bundles
or using third-party CMS packages?
HTML can work with CSS internally within its codes or
externally linked to a CSS file to produce the visual
appearance of the web page displayed on a browser.
HTML5 comes with additional features for the coder to
manipulate graphics and media directly from within
HTML.
 The concept being proposed here would, thus, enable
the coder to build a web page as usual then set editable
sections of the HTML codes. Another HTML file (on the
same web server) containing only a link to the first
corresponding page would use CSS to build up its own
content and display those identified portions in editable
form to the user on a browser. This way an authorised
user can access this editor page with content displayed as
on the other public page and when the user clicks on any
part of the page which is editable, he/she can go on to
modify the content [2].

3 Basic CMS Structure

would help us visualise the kinds of tags and attributes we
would be needing to add to the HTML markup language to
produce simple controls for both coders and end users.
While the CRUD functions [3] - Copy, Retrieve, Update
and Delete - detail the basic editing capabilities available to
a CMS user, it would be helpful to study the steps involved
in using the CMS as well and then design controls based
around a typical user experience [4].
 Common steps involved in using a CMS can be
summarised as follows:
i) user logs into secure CMS editing page/environment
ii) user selects web pages and content to be edited
iii) user edits or updates selected web page content
iv) user can preview changes made
v) user saves changes to page(s)
vi) user logs out of secure CMS editing page/environment

4 Methods of Providing Users with
CMS Capabilities for Their Web Pages

4.1 Use of CMS packages

 Web pages are built using CMS software or application
packages such as WordPress, Joomla and Drupal, amongst
others. These CMS packages come with preset themes and
features for web pages which can be customised by web
designers and developers and also later edited by the user
who is the authorised web administrator.

Pros:
i) Pre-packaged scripts and templates ready for quick use
and customization.
ii) No need for the designer or developer to build
complex codes for editing features from scratch.

Cons:
i) One may be limited to the set of templates and features
available unless you can build up your own codes then
integrate as new theme templates.
ii) Usually these packages need to be installed and set up
first on a local system and/or server.
iii) There may be less room for creativity than when one has
total control over code manipulation for pages.

4.2 Custom scripting the CMS package

 Separate CMS packages are built by the developer
for editing the web pages via scripting languages such as
XML, PHP and ASP.NET in association with databases.
Rich text editor scripts, such as TinyMCE and Aloha, can
be incorporated into the finished packages.

Pros:
i) Customizable codes with direct manipulation by the
developer.
ii) Re-useable solutions like code libraries can be
incorporated into the product.

An understanding of the basic features of a typical CMS

iii) CMS codes can be scripted directly by the developer
without the need for special software or applications
being installed.

Cons:
i) Long periods of coding, testing and debugging might be
required for developing the CMS package in addition to the
web pages.
ii) The database to be used will need to be installed.
iii) The scripted codes, like those for PHP and ASP.NET,
cannot be run and used except on a server or within a
framework environment.

4.3 Use of web editing software

 Web editing software such as Adobe's Dreamweaver
can be used to design, develop and edit web pages.

Pros:
i) Professional tools and features are provided for
building the website.
ii) A graphical user interface makes building pages easy
with or without direct code editing.

Cons:
i) The software package needs to be bought and installed.
ii) Pages need to be re-uploaded each time they are
edited.
iii) Not all users are savvy enough to use such software
and master techniques involved.

4.4 Use of online CMS editors

 Another option would be to build a web page then
mark out editable sections of code which can be accessed
online using web CMS services like CushyCMS
(http://www.cushycms.com) and SurrealCMS
(http://www.surrealcms.com).

Pros:
i) Free versions available for use.
ii) Web pages can be custom coded using a text-editor then
editable sections simply marked out.
iii) No installations required.

Cons:
i) The CMS account exists on one server while the user's
web pages are hosted on another server which can
sometimes lead to communication problems between
them.
ii) The CMS web account requires FTP access to the
webhosting account in order to access the codes which
may sometimes be restricted.
ii) These CMS tools rely on rich-text editors built on
JavaScript which may be switched off on some users'
web browsers.
iii) Content editing can sometimes alter the web pages'
codes in a way unintended by the designer or developer.

5 Proposed Concept for CMS Features
to Be Added to HTML and CSS

Figure 1: Illustration of how the concept would work

 Figure 1 above shows the interaction between web

files and the user’s browser within the proposed concept.

A web page created has sections in its HTML codes

marked out as editable. Another web page file acts as the

editor file which is linked to both the first web page and a

CSS file. Contents from the first web page are displayed

on the user's web browser as editable text, images and

other media on the page, when the user accesses the

editor file. The user can click on these contents, edit and

update them.

The editor file would be writing changes directly into the

web page and related CSS file.

 This system would enable web designers and

developers to:

i) focus primarily on building their HTML and CSS files as

usual, merely marking out editable elements within the web

pages’ content

ii) have editor files not requiring complicated coding and

linked to the related files

iii) have the web files and editor files stored together in the

same location

iv) give users a means of directly editing their web pages’

content without the need for databases storing users’

inputted values first

v) have a much lighter CMS setup involving just the files

created at the time of coding (no complex setup procedures

or installations requiring numerous other additional CMS

files) [5].

 Everything would be taking place basically within the

HTML codes. One could conceptualise a web page and

its editor file codes to look something as in the following

examples.

<html>

<head>

<title>Welcome to Webpage 1</title>

<link href="cssfile.css"

rel="stylesheet" type="text/css"/>

</head>

<body>

<p id=”main_content_section”

editable=”on”>Zaafirah and the Ibrahim

kids shouting ‘Hello World!’</p>

<img id=”Aberdeen_Hybrid”

src=”abhybrid.jpg” width=”400”

height=”100” title=”Aberdeen’s Hybrid

celebrity” editable=”on”/>

</body>

</html>

Figure 2: Proposed HTML codes for the web page

The codes in Figure 2 are for a typical web page called

‘webpage1.htm’. Content on this page consists of text in

t h e p a r a g r a p h b l o c k m a r k e d b y t h e i d

main_content_section and an image marked by the id

Aberdeen_Hybrid. Both have the proposed editable

function switched on and so can be edited. We assume that

the CSS file, cssfile.css, controls the display styles for the

page’s content (fonts, font colour, image positioning and so

on).

Publicly viewing webpage1.htm displays a normal web

page and reveals none of the editing features.

<html>

<head>

<link href="cssfile.css"

rel="stylesheet" type="text/css"/>

<link href="webpage1.htm"

rel="webpage" type="text/html"/>

</head>

<body>

<edit>

<text id="main_content_section"

update="font-family; color; align;" />

<image id="Aberdeen_Hybrid"

update="size" />

<input type="submit" value="Save" />

</edit>

</body>

</html>

Figure 3: Proposed HTML codes for the editor file

The editor file accessing webpage1.htm could be called

webpage1_edit.htm and the codes in Figure 3 above show

it being linked to both webpage1.htm and cssfile.css. While

the same paragraph block and image from the first web

Display
results

Edit content

Save user’s changes

Save user’s changes

Link

Link

WEB PAGE

Editable HTML
section

CSS FILE

EDITOR FILE
USER’S WEB
BROWSER

webpage1_edit.htm

Zaafirah and the Ibrahim kids shouting ‘Hello World!’

Width:

Height:

200px

200px

webpage1_edit.htm

Zaafirah and the Ibrahim kids shouting ‘Hello World!’

Font Colour Align

Arial Black Left

page are displayed in the same format in editor file, one can

notice the new tags now surrounding them.

The layout and display of content on webpage1_edit.htm

would be controlled by the webpage1.htm and cssfile.css

files leaving only the editing options on the page for the

user. Thus, a hypothetical <edit> tag is added to the HTML

codes surrounding other elements to be edited, namely the

text and image from webpage1.htm.

Given that we would not need to repeat the same HTML

tags from the original web page file (as this file would

already have some control over the display of its contents in

the editor file), the content to be edited can be represented

by another set of hypothetical tags <text> and <image> for

the text and image respectively. Both and any others to used

would be contained within the <edit> environment.

In this example, the text content from the paragraph block to

be edited would be represented as:

<text id="main_content_section"

update="font-family; color; align;" />

where the text is identified by the id, main_content_section,

marking the paragraph block in webpage1.htm. An update

attribute allows the web coder to set the editing options that

would be available to the user in updating this block of text

content. In this instance, the user can change the font type

(that is, font family), the text colour and alignment.

Just as with regular form elements in HTML , these editing

options would be displayed in graphical mode for the user.

So, say the user were to click on the editable text on the page

displayed on his/her browser, drop-down options, buttons

or the like would be displayed. The user can then view, click

on and implement the options desired for font, colour and

alignment of the text.

For the editable image, we have:

<image id="Aberdeen_Hybrid"

update="size" />

where the image bearing the id Aberdeen_Hybrid can have

it’s dimensions modified by the user as set in the update

attribute. The size option would allow this. Other plausible

options definable within the image’s update attribute could

include upload (so when the user clicks on the image, there

is an option to upload a new image), title (so the user can

change the title attached to the image) or quality (so the user

can adjust the tone, shade, brightness, contrast and so on).

Figure 4: User browser view for editing text in the

 editor file

Figure 5: User browser view for editing the image

 in the editor file

Figures 4 and 5 above illustrate what the editor page could

look like when viewed on the user’s browser

6 Requirements for the Proposed
Concept

i) HTML codes will need to be able to specify editable

attributes for sections of code to be identified for editing.

ii) Editable code sections need to be capable of being

displayed on web browsers for manipulation by users via

HTML coding using a minimal number of files (that is, not

building or using an entire CMS package in addition).

iii) Edited pages need be capable of being saved.

iv) The editing process needs to focus on just the editable

portions of the page alone and not have to keep re-writing

the entire page each time the user makes changes. The

system needs to offer similar efficiency levels or more as

with one working with a database [6].

v) Access to web pages for editing needs to be secure.

vi) Adequate web browser support and compatibility will be

needed on the different browser platforms available to

users.

7 'localStorage' and 'contenteditable'
Features in HTML5

 Two exciting developments in HTML5 are those of the
localStorage object [7] and contenteditable attribute [8]
which allow HTML to store and recall data as well as define
aspects of code which are identified as editable. No
database is used nor cookies.
The HTML5 code for a sample editable web page below
uses Google's jQuery API (online access needed) to
highlight how contenteditable and localStorage work [9]:

<!DOCTYPE HTML>
<html>
<head>
<script
src="https://ajax.googleapis.com/ajax/
libs/jquery/1.4.2/jquery.min.js"></scr
ipt>
</head>
<body>
<p id="editsection"
contenteditable="true">Hi, edit this
text!!!</p>
<script type="text/javascript">
$(function() {
var editsection =
document.getElementById('editsection')
;
$(editsection).blur(function() {
localStorage.setItem('user_edit',
this.innerHTML);
});
if (localStorage.getItem('user_edit'))
{
 editsection.innerHTML =
localStorage.getItem('user_edit');
}
});
</script>
</body>
</html>

Figure 6: HTML5 example with contenteditable and
localStorage

Saving this code as an HTML file from a text-editor
produces an editable web page where the text “Hi, edit
this text!!!” has been identified using the id editcontent.
Contenteditable is set to “true” so on the resulting page
the user can edit the text by clicking on it.
The modified text is then passed as a variable also called
editcontent unto a JavaScript function making use of
localStorage to store the data locally on the user’s computer

while updating the web page on the browser.
With the changes now stored locally, the user can refresh
the web page and still get to see the modified text.

The modified text remains intact even when the user

returns to view the page at a later date after turning off

his/her computer.

 There are currently limitations to using contenteditable

and localStorage, however.

i) The HTML5 example in figure 6 relies on JavaScript

which is a client-side script – it executes functions on the

user's browser on a local system and does not apply

changes to the web page itself on the web server. For the

proposed CMS model to work, a means of getting content

edited via HTML and being saved on the web pages is

needed. This may require new functions and attributes

being developed for HTML allowing secure server-side

storage of data. Using XML, PHP or ASP.NET scripted

pages amongst others on the web servers would work but

the goal is integrate CMS features in HTML itself.

ii) The user has to be using an HTML5 compatible web

browser in order for these functions to work. Fortunately a

lot of the modern browsers now, including Explorer 9,

support HTML5.

iii) On its on so far, the user cannot use contenteditable to

carry out formatting tasks like setting fonts, font size,

colour and so on. Such capabilities could be added using

JavaScript but that would mean more coding by the

designer or developer.

iv) Using contenteditable along with localStorage as

demonstrated would also mean if the user changed his/her

computer, the changes made to the web page on the

previous computer would no longer be reflected. The same

is the case if the web page file is transferred on to a different

computer. The actual HTML codes remain unaltered and

changes are not saved within them.

 Nevertheless, even with these highlighted limitations

of features available in HTML5, the possibilities of an

improved method for an HTML/CSS-based CMS are

highlighted.

8 Conclusion

 Having a simplified HTML/CSS-based CMS coding

structure works to the benefit of both web designers and

developers and well as the users of their products.

Recent achievements with HTML5 show such a structure is

attainable with further research and development on the

markup language.

9 References

[1] Roger Lipera. “Introduction to HTML/XHTML,

Handout Companion to the Interactive Media Center’s

Online Tutorial”. University at Albany, State University of

New York, 2008.

[2] David R. Karger, Scott Ostler, and Ryan Lee. “The Web

Page as a WYSIWYG End-User Customizable Database-

Backed Information Management Application”.

Proceedings of UIST’09, 257 -260, October , 2009.

[3] Brian P. Hogan. “HTML5 and CSS3, Develop with

Tomorrow’s Standards Today”. Pragmatic Programmers,

LLC, 2010.

[4] Báscones, P. and Carreras, C. “Managing Memory

Institutions Portals: from HTML to CMS and Towards

Applications in XML for Multi-platforms”. Int. J. Digital

Culture and Electronic Tourism, Vol. 1, No. 1, 18–36, 2008.

[5] David Thomas Dudek and Heidi A. Wieczorek. “A

Simple Web Content Management Tool as the Solution to a

Web Site Redesign”. Proceedings of SIGUCCS ’03, 179 -

181, September, 2003.

[6] Edward Benson, Adam Marcus, David Karger and

Samuel Madden. “Sync Kit: A Persistent Client-Side

Database Caching Toolkit for Data Intensive Websites”.

Proceedings of WWW 2010, 121 - 130, April, 2010.

[7] Web3Schools. “HTML5 Web Storage”. Available at

http://www.w3schools.com/html5/html5_webstorage.asp

[8] Web3Schools. “HTML5 Global contenteditable

Attribute”. Available at

http://www.w3schools.com/html5/att_global_contentedita

ble.asp

[9] Jeffrey Way. “Quick Tip: Learning about HTML5

Local Storage”. Net Tuts Plus, 2010. Code modified in

this paper. Available at

http://www.youtube.com/watch?v=h0uZIljjElo

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

