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Abstract. We consider time-dependent systems and their 
possible states or situations. In order to do this, we define 
suitable algebraic structures, including time. Situation 
descriptions are represented with the corresponding 
formulas and we look at inferences from formulas, where 
the inference may be partially incorrect. We define the 
measure of correctness and show how it can be used to 
compare the plausibility of the described situations. 
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1. Introduction 
In this work we consider time-dependent systems. These 
are systems, where the sets of elements and the properties 
of and relations between elements are dependent on time 
(see Lorents, Matsak 2011). At any moment of time t the 
system M is in a certain state M(t), or in other words, 
there is a certain situation in the system (see Jakobson 
2011). At some moment of time t’, which comes after the 
moment t, the corresponding situation can be the same, 
or shorter - M(t)=M(t’). However, it can also change. In 
the latter case, where M(t)≠M(t’), we speak of an event 
(see, for example, Jakobson 2007, 2011).  

It is often reasonable to handle the time-dependence of 
systems in such a way that the relation between time 
moments and possible states is not necessarily one-to-one 
(see Lorents, Matsak 2011; Lorents 2006). In such a case 
we need instruments that would help to compare the 
possible situations at the next moment. This is primarily 
necessary in order to find the most plausible future 
situation before making a decision on how to act. 

There are several approaches to assess plausibility. For 
example, we can rely on the corresponding probabilities 
(see, for example, Polya 1954). Another approach is to 
use a suitably defined notion of possibility and the 
corresponding distribution functions that are related to 
so-called fuzzy sets, which have the values of real 
numbers from the range of [0,1] (see, for example, Zadeh 
1978; D. Dubois, H. Prade, R. Sabbadin 2001; Jakobson 
2011). The plausibility can also be handled in the 
framework of a certain multi-valent logic (see Sigarreta, 
Ruesga, Rodriguez 2007). 

One option for assessing and comparing plausibility is to 
use the principle of correlation of developments and 

deduction, according to which the more logical an 
inference, where the starting point is the description 
DesM(t) of the current situation M(t) of the system M 
and the where the result is the description DesM(t’) of a 
possible following situation M(t’), the more probable it is 
that this situation develops in the system (see Lorents 
1998, 2006; Lorents, Matsak 2011).  

At this point we need to explain how to understand the 
phrase “more logical“. For this we use the notion of the 
correctness of inference steps (see, for example, Takeuti 
1975) and we define the measure of correctness. By 
using the measure of the correctness of inference steps 
(which is represented by the rational number that we get 
by applying the corresponding procedure), we can 
compare single inference steps and also the reasoning 
based on these inference steps. Based on this, the 
corresponding descriptions, and relying on the principle 
of correlation of developments and deduction, we can 
compare the following possible situations, in order to 
make a decision about which one of them is more 
plausible. 

According to the chosen approach, the key question is 
how to define the measure of correctness of inference 
steps, so that it 

(1) would be in accordance with the notion of correctness 
of inference steps used in mathematical logic 

(2) would allow to operate with comparable values, 
preferably numbers, and would have the corresponding 
algorithm for getting these values 

(3) would allow to assess the correctness of an inference 
consisting of single inference steps 

(4) would allow (based on the principle of correlation of 
developments and deduction) to assess, which inference 
process produces a description of a situation that will 
more plausibly take place compared to some other 
situation. 

 

2. Systems and time 
When dealing with systems in this work, we use the 
notion of an algebraic system (see, for example, Maltsev 
1970; Grätzer 2008) and we look at such ordered pairs, 
where the first is the collection of sets of elements of 



interest and where the second is the collection of the 
properties of or relations between the elements of 
interest.  

Definition 1. A system is an ordered pair 
〈{X,Y,Z,…};{P,Q,R,…}〉, where X, Y, Z, … are the 
main sets of the system (note that in a special case the 
system can have just one main set, for example X) and P, 
Q, R, ... are the predicates of the system (the properties 
or relations of the elements of the sets in question). 
The collection of predicates is called the signature 
of the system.  

Example 1.1. Married people could conservatively be 
represented as the system 〈{H};{♂,♀,Mar}〉, where the only 
main set is the set H of humans and the signature consists of the 
properties “male“, “female“ and a binary marriage relation Mar. 
At the same time, we could look at the same people as the 
system 〈{M, F};{Mar}〉, which has two main sets: the set of 
men M and the set of women F; and which has only one binary 
relation, marriage relation Mar, in its signature. 

According to the Systematic principle, things that can 
reasonably be represented as systems or belonging to 
systems, should be (see Lorents 1998, 2006). Therefore, 
we can also approach time from the systematic 
perspective: 

Definition 2. Time is a system 〈{T, D};  {Bef, Aft, Sim, 
Dur}〉, where the main sets are the set of time moments T 
and the set of the lengths of time intervals D and where 
the signature consists of binary relations: the relation of 
being before Bef, the relation of being after Aft, the 
relation of being simultaneous Sim, and the ternary 
relation Dur, which relates any two observed time 
moments and the time interval, which includes all the 
time moments that occur between them. 

Example 2.1. The budget year time  

〈{{01.01,02.01,…,30.12,31.12},{1,…,365}};{<,>,=,–+1}〉,  

where –+1 is a ternary relation, which relates two dates with the 
difference of the later date and the earlier date that is increased 
by one. 

For example, if some work starts on the second of January and 
also finishes on the second of January (of the same year), then 
the number of days one should get paid for is 2–+12=2–2+1=1 
(NB! Not 2–2=0). If, however, the work begins on the second 
of January and ends on the twelfth of January, then one should 
get paid for 12–+12=12–2+1=11 (NB! Not 12–2=10) days. 

In order to define time-dependent systems (see Lorents, 
Matsak 2011) we must first identify the (concrete) 
system ∇=〈{T,D};{Bef,Aft,Sim,Dur}〉 that is our time 
and the classes CSets and CPred. The elements of class 
CSets are collections of sets or sets, where the elements 
are some other sets. The elements of class CPred are 

collections of predicates or sets, where the elements are 
predicates (let us recall that we have unary predicates as 
properties or subsets of some sets, and that we have k-
order predicates (where k > 1) as relations between k 
elements or, in other words, the subset of the Cartesian 
product of some sets). Next we must identify the 
relations Set and Sig, which allow us to relate time 
moments with sets of elements from class CSets and 
signatures (or collections of the properties of elements 
and the relations between elements) from class CPred. 
Only now can we present the definition of a time-
dependent system: 

Definition 3 (Lorents, Matsak 2011).  An ordered triplet 
〈∇,Set,Sig〉 is called a time-dependent system, if the 
following condition is fulfilled: 

       If, for some time moment t∈T, the collection of sets 
s∈CSets  and the collection of predicates p∈CPred,   

(1) Set(t,s) and (2) Sig(t,p),   

then, without exceptions, all predicates from 
collection p must be the properties of or relations 
between the elements of the sets from collection s. 

Let us agree that the main sets of system 〈∇,Set,Sig〉 at 
time moment t can only be such sets that are elements of 
collection s. Let us also agree that only such predicates, 
which come from collection p, can be the predicates of 
system 〈∇, Set, Sig〉 at time moment t. Finally, let us 
agree that the possible state of the system 〈∇, Set, Sig〉 at 
time moment t is the ordered pair 〈s;p〉, or a system where 
the collection of main sets is s (where Set(t,s)) and the 
signature (or collection of predicates) is p (where 
Sig(t,p)) and where, without exceptions, all predicates 
from collection p must be the properties of or relations 
between the elements of the sets in collection s). The 
collection of all possible states of the system is called the 
development space of the system in time ∇. 

Example 3.1 Let us look at the system VF (Vooglaid family): 

VF(2002)= 〈{{Varro, Helena}};{♂,♀,Mar}〉 (Mar represents 
the relation “are married“) 

VF(2003)=〈{{Varro,Helena},{Iida}};{♂,♀,Mar,Par}〉 (Par 
represents the relation “is a parent of”; the set {Varro,Helena} 
is the set of spouses in year 2003 and {Iida} is the set of 
children in year 2003) 

VF(2004)=〈{{Varro,Helena},{Iida}};{♂,♀,Mar,Par}〉 

VF(2005)=〈{{Varro,Helena},{Iida}};{♂,♀,Mar,Par}〉 

VF(2006)=〈{{Varro,Helena},{Iida,August}}; 
{♂,♀,Mar,Par,BoS}〉 (BoS represents the relation “is a Brother 
or Sister of”)                                                                                      
… … … 



VF(2008)=〈{{Varro,Helena},{Iida,August}};    
{♂,♀,Mar,Par,BoS}〉 

VF(2009)=〈{{Varro,Helena},{Iida,August,Benita}};      
{♂,♀,Mar,Par,BoS}〉. 

In here CSets={{{Varro,Helena}},{{Varro,Helena},{Iida}}, 
{{Varro,Helena},{Iida,August}}, 
{{Varro,Helena},{Iida,August,Benita}}} and 

CPred={{Mar},{Mar,Par}, {Mar,Par,BoS}}. 

Set ⊆ {02,03, …,09}× 
×{{{Varro,Helena}},{{Varro,Helena},{Iida}},  

{{Varro,Helena},{Iida,August}},{{Varro,Helena},          
{Iida,August,Benita}}} 

Set={〈02,{{Va,He}}〉,〈03,{{Va,He},{Ii}}〉,         
〈04,{{Va,He},{Ii}}〉,〈05,{{Va,He},{Ii}}〉, 
〈06,{{Va,He},{Ii,Au}}〉,〈07,{{Va,He},{Ii,Au}}〉, 
〈08,{{Va,He},{Ii,Au}}〉,〈09,{{Va,He}, {Ii,Au,Be}}〉}  

Sig ⊆ {02,03, …, 09}×{{♂,♀,Mar}, {♂,♀,Mar,Par}, 
{♂,♀,Mar,Par,BoS}} 

Sig={〈02,{♂,♀,Mar}〉,〈03,{♂,♀,Mar,Par}〉, 
〈04,{♂,♀,Mar,Par}〉,〈05,{♂,♀,Mar,Par}〉, 
〈06,{♂,♀,Mar,Par,BoS}〉,〈07,{♂,♀,Mar,Par,BoS}〉, 
〈08,{♂,♀,Mar,Par,BoS}〉, 〈09,{♂,♀,Mar,Par,BoS}〉}. 

 

3. Describing situations 
By studying the descriptions of time-dependent systems 
at one or another time moment, we can see that in a large 
part of the cases the descriptions consist of arguments in 
natural language text (for example, some elements have 
these properties but lack those properties; some elements 
are related somehow, but others are not; if some elements 
have such properties, then they are not related in that 
way, etc.). If we transform texts like this (for example, by 
using the DST dialogue system (see Matsak 2005; 
Matsak 2010; Lorents, Matsak 2011) we get certain 
predicate calculus formulas. 

Example 3.1.1. We can describe the situation of family 
Vooglaid in 2007 with, for example, the following formulas: 
♂(Va), ♂(Au), ♀(He), ♀(Ii), Mar(Va,He), Par(Va,Ii), 
Par(Va,Au),  Par(He,Ii), Par(He,Au), BoS(Ii,Au).  

For “aliens” who are not very familiar with Earthly affairs, we 
can add the following: ∀h(♂(h)∨♀(h)), ∀h(♂(h)⇔¬♀(h)), 
∀h1h2(Mar(h1,h2)⊃(¬(♂(h1)&♂(h2))∨¬(♀(h1)&♀(h2)),  
∀h1h2(Mar(h1,h2)⊃¬BoS(h1,h2)), 
¬(∃∀h1h2)(BoS(h1,h2)&Mar(h1,h2)), etc. 

By assigning to individual and predicate symbols suitable 
meanings drawn from the main sets and signature of the 
system, we get knowledge related to that specific system 
(see Lorents 2009). This knowledge is necessary both for 
handling the current state of the system, as well as for 

getting knowledge about the states of the system or 
situations at some later time moments. 

One option for such forecasting is to rely on deduction, 
which people often do. However, they do not always use 
logically correct inference steps. On the other hand, we 
must admit that people often perform quite successfully 
even without “iron logic” (see, for example, Rescher 
1976). In other words (NB!) people can be relatively 
successful even if not all the inference steps in a 
deduction process are logically correct. This brings us to 
the main problems of this work: 

- how to assess the correctness of given inference 
steps or inferences that contain them? This problem 
is related to the observation that “good” decisions, 
which led to “good results” are often based on 
“better logic” (compared to others). Therefore, if it is 
not possible to build the decision process to full 
extent on logically correct inference steps, then what 
is our expectation that a situation matching the 
description that was generated in such a way (using 
somewhat broken logic) actually occurs? 

- if and how can we compare the plausibility of the 
arrival of the described future situations, based on 
the measure of correctness of the inference steps that 
make up the deduction process? 

The first step to solve these problems is to find a suitable 
definition for the measure of correctness of inference 
steps. 

 

4. Measure of correctness of 
inference steps  

In mathematical logic, we call an inference step correct if 
the following condition is met: for any interpretation, if 
for some interpretation ϕ all the direct premises of the 
observed inference steps are correct, then in the same 
interpretation ϕ the direct conclusion of the observed 
inference step must also be correct (see, for example, 
Takeuti 1975).  

At this point we turn our attention to the phrase “for 
some interpretation ϕ all the direct premises of the 
observed inference steps are correct”. It is here where we 
exclude all interpretations, where all the direct premises 
are not correct at the same time (in the framework of the 
given interpretation), from our process of defining the 
measure of correctness. From the remaining 
interpretations we choose such interpretations that also 
have the correct direct conclusion. When we compare the 
collection of chosen interpretations to the previous 
collection, we find the corresponding proportion, which 



we take to be the measure of the correctness of the given 
inference step. 

Definition 4. Let us observe an inference step, which has 
the formulas X, Y, …, Z as direct premises and the 
formula W as the direct conclusion. Let us look at 
interpretations, where the meanings of the individuals 
and predicates present in formulas come from a system 
with finite elements and signature. Let us look at the set 
of interpretations Pres={ϕϕX=1&ϕY=1&…&ϕZ=1} 
and Cons={ϕϕX=1&ϕY=1&…&ϕZ=1&ϕW=1}. The 
measure of correctness of the inference step S is the 
number cor(S), where cor(S)=E(Cons):E(Pres), if 
E(Pres)>0 and cor(S)=0, if E(Pres)=0, where E(H) 
represents the number of elements of a finite set H. 

Example 4.1. From the reasoning of a two and a half 
year old child we find out that if it is cold outside then 
one cannot be naked outside, but if it is warm then one 
can (see 
http://childes.psy.cmu.edu/browser/index.php?url=Other/Estoni
an/Vija/20612.cha). This is an inference step, where the only 
direct premise is the formula X⊃¬Y and the direct conclusion 
is the formula ¬X⊃Y.  It is not difficult to find that 
E(Cons):E(Pres)=2:3. Therefore, the measure of correctness of 
this inference step is 2:3. 

Example 4.2. Why does our country have so many enemies, 
asks a youth from a known politician. Well, says the politician, 
on the one hand, of course, it is because if a country is wealthy 
and strong, many will want to be friends (or at least not 
enemies). On the other hand, wealth and strength is not liked by 
competitors and therefore all other countries are our enemies. In 
this case the wily politician seems to use the inference step, 
where the direct premises are the formulas X&Y⊃Z and 
X&Y⊃¬Z and the direct conclusion is ¬Z. The measure of 
correctness of such an inference step is 1:2. 

Note. The fact that an inference step is performed “according to 
rules” does not automatically guarantee that the inference step 
is correct! 

Example 4.3. Let us consider a rule that belongs to sequential 
predicate calculus inference rules – introducing disjunction into 
the antecedent (see Gentzen 1936, Takeuti 1975). Let us now 
implement an inference step, where the direct premises are 
sequences X→X&¬X and ¬X→X&¬X and the direct 
conclusion is the sequence X∨¬X→X&¬X. The measure of 
correctness of such an inference step is 0. 

Let us now consider separately certain inference steps, 
which “introduce” quantifiers (that is, inference steps 
where the direct premise consists of formulas F(b1), 
F(b2), …, F(bm) and the direct conclusion is the formula 
∀xF(x) or the formula ∃xF(x), where b1, b2, …, bm are 
some elements of the finite system used for 
interpretation, m≤n and n is the number elements of the 
finite system used for interpretation). Based “directly” on 
the definition above (4), the measure of correctness in 

such inference steps is somewhat trivial: if there exists an 
element e in the system, so that ϕF(e)=0, then the 
measure of correctness of the step that introduces the 
universal quantifier is 0 in every case. On the other hand, 
if the system contains an element d, so that ϕF(d)=1, then 
the measure of correctness of the step that introduces the 
existential quantifier is 1 in every case. 

However, people often use the above described inference 
steps in a somewhat different way: the generalization is 
considered correct based on a finite number of suitable 
examples. One possible explanation for this is people’s 
weird (but ancient) belief that a collection of positive 
examples supporting some argument is enough to 
consider the argument proven for all cases. In such an 
approach, the measure of correctness of the step that 
introduces a universal quantifier is not at all important. In 
such cases some “measure of conviction” is much more 
important for people. There are undoubtedly several 
options for also defining this measure: 

Let us observe an inference step, where the premises are 
the formulas F(b1), F(b2), …, F(bm) and the direct 
conclusion is the formula ∀xF(x), where b1, b2, …, bm 
are such elements of the finite system used for 
interpretation, that ϕF(b1)=1, ϕF(b2)=1, …, ϕF(bm)=1 
where m≤n and n is the number of elements of the finite 
system used for interpretation. In such a case we can take 
as the measure of conviction, for example:  

(Definition 4A). The number m:n (which shows, what 
proportion of the full collection is represented by the 
“positive examples” that are offered as proof). 

(Definition 4B). The representation of the selection b1, 
b2, …, bm in the n-element collection (see Gliner J. A., 
Morgan G. A., Leech N. L. 2009). 

Note. It should be safe to agree with the argument: more correct 
is more convincing. The inverted argument: more convincing is 
more correct, is not very convincing. 

Example 4.AB. (see Matsak 2010) A child (5 years and 9 
months old) reasons why flowers do not talk. The child uses the 
premise that she has never heard the voice of a flower in order 
to reach this conclusion. By transforming the text we get to an 
inference step, where the premise consists of a finite number of 
formulas ¬Speak(f1),  ¬Speak(f2), …,  ¬Speak(fm) (where f1, 
f2, …, fm correspond to the flowers that the child has experience 
with), and the conclusion is the formula ∀f(¬Speak(f)). 
Convincing, right? 

 

5. The measure of correctness of 
inference  

The notion of the measure of correctness of inference is 
similar to the measure of correctness of inference steps. 

http://childes.psy.cmu.edu/browser/index.php?url=Other/Estonian/Vija/20612.cha�
http://childes.psy.cmu.edu/browser/index.php?url=Other/Estonian/Vija/20612.cha�


In order to define it, we use the definition of a tree 
shaped inference:  

Definition 5.  

- Every inference step     

      X1  X2  …  Xk  
              Y   

is an inference, where the premises are the direct 
premises X1,X2, …, Xk of this inference step and the 
conclusion is the direct conclusion Y of this 
inference step. 

- Let us have inferences D1, D2, …, Dn, where the 
premises are correspondingly A11, A12, …, A1m(1), 
A21, A22, …, A2m(2), … …, An1, An2, …, Anm(n) and 
the conclusions are correspondingly B1, B2, …, Bn. 
In addition, let us have such an inference step, where 
the direct premises are B1, B2, …, Bn and the direct 
conclusion is C. The inference of such a case is  

      D1  D2  …  Dn  
               C 

where the premises are A11, A12, …, A1m(1), A21, A22, 
…, A2m(2), … …, An1, An2, …, Anm(n) and where the 
conclusion is C. 

Definition 6. Let us look at an inference D, which 
consists of inference steps S1, …, Su. Let the 
corresponding measures of correctness of the inference 
steps be c1, …, cu. The internal measure of correctness of 
the inference is the number Incor(D)=min{c1, …, cu}. 

Definition 7. Let us look at an inference D, where the 
premises are A11, A12, …, A1m(1), A21, A22, …, A2m(2), … 
…, An1, An2, …, Anm(n) and where the conclusion is C. 
Let us consider the interpretations, where the meanings 
of the individuals and predicates in the formulas come 
from a system with finite elements and signature. Let us 
look at the set of interpretations 
Pres(D)={ϕϕA11=1&ϕA12=1&……&ϕAnm(n)=1}, and 
the set 
Cons(D)={ϕϕA11=1&ϕA12=1&…&ϕAnm(n)=1&ϕC=1}. 
The measure of external correctness of the inference D is 
the number Excor(D), where Excor(D)= 
=E(Cons(D)):E(Pres(D)), if E(Pres(D))>0 and 
Excor(D)=0, if E(Pres(D))=0, where E(H) represents the 
number of elements of the finite set H. 

This raises the next problem: how are the external and 
internal measures of correctness of the inference related? 

If we follow the ancient folk wisdom that the strength of 
the chain is determined by its weakest link (or in other 
words, the chain can be no stronger than the individual 
links), then the inequality Excor(D)≤Incor(D) should 
apply. If, however, we follow the idea that one can 

assemble quite reliable systems (for example, buildings, 
machinery, software etc.) from components which 
include some unreliable ones, then the inequality 
Excor(D)≥Incor(D) could apply. 

Unfortunately, it turns out that neither case is true! 

Theorem. (I) There exist inferences, where the external 
measure of correctness is strictly larger than the internal 
measure of correctness. (II) There exist inferences, where 
the external measure of correctness is strictly smaller 
than the internal measure of correctness. 

Idea of the proof. To construct the necessary inferences, 
it is enough if in each so-called thread (see, for example, 
Takeuti 1975) the inference steps consist of such 
formulas, where the corresponding measures of 
correctness of the steps form a sequence of numbers, so 
that   

- for “option (I)”: no number is greater than 
E(Cons(D)):E(Pres(D)) and some number(s) are 
smaller than E(Cons(D)):E(Pres(D)) 

- for “option (I)”: no number is smaller than 
E(Cons(D)):E(Pres(D)) and some number(s) are 
greater than E(Cons(D)):E(Pres(D)). 

Example 7.1. Let us consider the tree shaped inference 
constructed in predicate calculus, which includes some 
incorrect inference steps: 

X→Y∨X                  Y→Y∨X 
X→Y&X                  Y→Y&X 
               X&Y→Y&X 

The measure of correctness of the two inference steps in the top 
is 3:4. The measure of correctness of the bottom step is 1. The 
external measure of correctness of the entire inference is 1, but 
the internal measure of correctness is 3:4. 

Example 7.2.  

Let us consider the tree shaped inference constructed in 
predicate calculus, which includes some incorrect inference 
steps: 

→¬X∨Y          X→Y 
→Y                   →Y 
         →X&Y 

The measure of correctness of the two inference steps in the top 
is 2:3. The measure of correctness of the bottom step is 1:2. The 
external measure of correctness of the entire inference is 1:3, 
but the internal measure of correctness is 1:2. 

 

6. Inferences and comparing 
plausibility  

We start with the approach of G. Jakobson, since it seems 
to best fit with the systematic approach that is based on 



the systematic principle (see section 2) and used by the 
authors. Therefore (see Jakobson 2011): We define 
plausible future situations as situations that in some 
dynamic system with some degree of likelihood could 
happen at some time moment in future. 

The development of time-dependent systems, or in 
Jakobson’s terminology - dynamic systems, in real macro 
world seems to happen according to the following 
principles (Lorents, Matsak 2011; Lorents 2006; Lorents 
1998): 

- The principle of diversity of development 
opportunities (A time-dependent system can have 
multiple different possible states for the next time 
moment) 

- The principle of being in one state (Each time-
dependent system is in each time moment t in 
exactly one state of all of its possible states) 

- The principle of no predestination (The system 
arriving to a specific state in time moment t is based 
on chance – it is an event with some probability) 

- The principle of the correlation of developments and 
deduction (A system is more probable to transit from 
the current situation to a new situation, when that 
situation’s description is more correctly inferable 
from the current situation’s description). 

Presuming that greater probability corresponds with 
greater likelihood, we can use the above described to 
formulate the following principle: 

- For the possible future situations of a time-
dependent system, the degree of likelihood that is 
based on what is known is greater for a situation, 
where the description has a known greater measure 
of correctness in the inference that follows from the 
description of the current situation. 

Note. The phrases “what is known” and “known” are very 
important in this part. 

Indeed, in order to make decisions for a situation that 
may develop, we can only use our knowledge (of the 
system and situation in question) and what is provided by 
chance. Knowledge, however, is represented by certain 
atomic formulas (see Lorents 2009), which form the 
formulas (or arguments written down in a “very strict 
form”) necessary to describe the system and the 
situations. When comparing the reasoning for the 
appearance of several possible future situations, we can 
still only use what we know and what we have. We just 
do not have anything else at our disposal. If we must 
decide which situation will occur in the situation, then 
we must very clearly identify the known descriptions of 
future situations and the inferences (or reasoning) that 
lead to those descriptions (since we are talking about the 

future!). Therefore, we can only compare known 
inferences, in order to make the decision on their 
measure of correctness. Thereat (NB!) it is possible that 
someone else who knows something else than we do at 
the moment, will provide a completely different 
assessment of the situation. There is no way around it. 

Important question: Which measure of correctness did 
we just discuss? 

Answer: Definitely only one of two – either internal or 
external measure of correctness, not two together or 
combined in some way! 

Recommendation: It looks like it is “technically” easier 
to use the internal measure of correctness for plausibility. 
This is because the correctness of single steps is easier to 
assess. 

Presuming that greater probability and likelihood 
corresponds to greater plausibility, we can formulate the 
most important principle of this work: 

- For two possible future situations of a time-
dependent system, the plausibility that is based on 
what is known is greater for such a situation, where 
the description follows the inference (that is based 
on the description of the current system) with the 
known higher measure of correctness, or in a more 
formal representation, if: 

(1) at the time moment t’, which follows the current time 
moment t, it is possible that the system M transits into 
situation M1(t’) or into situation M2(t’), and  

(2) the reasoning used is based on the description of the 
current situation DesM(t), and 

(3) it turns out that the reasoning 
(DesM(t)1DesM1(t’))  behind the description 
DesM1(t’) is “more correct” compared to the reasoning 
(DesM(t)2DesM1(t’)) behind the description 
DesM2(t’), 

then for situations related with these specific 
descriptions and reasoning, it is more plausible that the 
situation M(t) transits into situation M1(t’) and less 
plausible that it transits into situation M2(t’), or shorter - 

[Incor(DesM(t)2DesM2(t’))<Incor(DesM(t)1DesM
1(t’))] ⊃ [M2(t’)<plausM1(t’))]. 

Conclusion. The plausibility (based on what is known) 
of possible situations is greatest for the ones, where the 
description (consisting of corresponding formulas) has a 
logically impeccable (known!) inference. 

Summary. In this work we considered how time-
dependent systems transition to various possible 
situations and we explored which one of these transitions 



is more plausible. In order to do this we defined the 
necessary algebraic systems, including time as a system 
and the time-dependence of systems. It is possible to use 
formulas constructed from knowledge for describing the 
states of systems or situations. This way we can see if the 
description of one situation can be inferred from the 
description of another situation. We also considered a 
situation where not all inference steps are logically 
correct. By defining the measure of correctness we can 
compare the plausibility of possible future situations. We 
do this by comparing the measures of correctness of the 
inferences constructed to define and reason the 
corresponding descriptions. 
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