
Multiple Offer Strategy for Automated Negotiation Agents

Kivanc Ozonat
HP Labs

1501 Page Mill Road
Palo Alto, CA

kivanc.ozonat@hp.com

ABSTRACT
Automated negotiation agents negoatite issues of an e-commerce
transaction with human consumers on behalf of e-commerce
vendors, and they can increase the financial benefits of the
consumer and the vendor jointly. Both the artificial intel-
ligence community and the economics (game-theory) com-
munity have proposed methods for negotiation agent design.
The focus has been on agents that are restricted to make a
single counteroffer to the consumer at every round of the ne-
gotiation. Recent studies from the psyhchology community,
however, indicate that making multiple counteroffers per ne-
gotiation round can be beneficial to both the consumer and
the vendor. In light of this, we design an automated soft-
ware agent that makes multiple offers at every round. We
devise a probabilistic strategy that guides the agent to find
the optimal set of counteroffers.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
automated, negotiation, multiple offers, statistics

1. INTRODUCTION
Negotiation is the process of reaching an agreement be-

tween two (or more) parties on the issues underlying a trans-
action. Negotiations are an integral part of business life, and
are instrumental in reaching agreements among the parties.
Over the last two decades, electronic commerce has be-

come widely adopted, providing consumers with the ability
to purchase products and services from businesses online.
Electronic commerce offers many advantages, including in-
creased operational efficiency for the businesses, reduction
of the inventory costs, and availability of the product and
service 24 hours a day. Yet, after two decades, electronic
commerce systems still lack the ability to enable the busi-
nesses to negotiate with consumers during the purchases.
There is a need for automated, online software agents that
can negotiate with consumers on behalf of businesses.
Designing automated agents for negotiation has been ex-

plored across multiple disciplines, in artificial intelligence [5,
6, 7], human psychology [17, 18, 19, 22] and statistical learn-
ing [3, 9]. One form of negotiation that has received much
attention in these disciplines is the bilateral sequential ne-
gotiation. A bilateral sequential negotiation typically starts
with one party (e.g., the buyer) making an offer on each of
the negotiated issues. The issues can include, for instance,

the price of a product or service, its delivery time and its
quantity. The opposing party (e.g., the seller) has three
options: (i) it accepts the offer, (ii) it rejects the offer and
makes a counter offer on each issue, or (iii) it rejects the
offer and terminates the negotiation. The process continues
in rounds, where, the buyer and the seller make and respond
to counter offers.

The artificial intelligence community has focused on find-
ing game-theoretic solutions to the bilateral sequential ne-
gotiation problem. Each of the two parties is assumed to
have a utility function of the negotiated issues. The utility
function measures how preferable an offer is to the party.
In the game-theoretic model, each party is assumed to have
the goal of maximizing its utility function, and the aim is
to find an agreement that is Pareto-optimal, i.e., an agree-
ment where the utility of one party cannot be increased any
further without decreasing the utility of the other [6].

Many game-theoretic models of negotiation assume that
each party knows the opposing party’s utility function [6],
while more realistic models employ statistical algorithms
that learn the opposing party’s utility function [3, 5, 9].
The learning can be based, for instance, on a training set of
issue offers from the parties.

One of the primary goals of an automated agent during
the negotiation is to prevent the buyer from terminating the
negotiation without reaching an agreement. If the agent’s
offers are consistently far away from what is acceptable to
the buyer, the buyer is likely to walk away from the ne-
gotiation. Recent studies from the psychology community
indicate that making multiple counteroffers per negotiation
round can be beneficial to both the consumer and the vendor
[21]. The focus of the game theory and artifical intelligence
literature, however, have been on agents that are restricted
to make a single counteroffer to the consumer at every round
of the negotiation.

We address the question of designing an automated soft-
ware agent that makes multiple offers at every round. We
devise a probabilistic strategy that guides the agent to find
the optimal set of counteroffers. Our approach to position-
ing the multiple offers strategically would be to cluster the
issue vectors based on their proximity under some distance d
such that the intra-cluster distances are small and the inter-
cluster distances are large [10]. Then, from each cluster, we
select the cluster member that is closest to the buyer’s last
offer.

2. MULTIPLE OFFER MODEL

2.1 Assumptions
We assume the following about the buyer’s behavior dur-

ing the negotiation:

1. The agent has the knowledge of (or can estimate from
the buyer’s history of offers during the negotiation)
how close any two offers are from the perspective of
the buyer.

2. For any buyer, there exist an “indifference volume”
V (u) around each vector u in the issue space, defined
as the set of issue vectors where the buyer’s gains from
preferring any v ∈ V (u) over u is very small. In par-
ticular, the buyer is unlikely to risk termination of the
negotiation by insisting on u instead of some other
v ∈ V (u). The agent does not know the size or shape
of the volume V (u).

The first assumption is very common in the artificial intel-
ligence view of the negotiation literature. While the game-
theoretic approaches assume that the agent makes its coun-
teroffers based on a buyer’s utility function known to both
parties, the artificial intelligence-based approaches often fo-
cus on designing agents that make counteroffers by estimat-
ing distances between issue points in the vector space. In [5],
for instance, the agent offers the point closest to the buyer’s
last offer based on some estimated distance.
The second assumption follows from that the buyer is un-

likely to form mathematical functions (e.g., utility functions,
iso-curves, etc.) upon which its decisions are based. Instead,
the buyer is more likely to make its decisions based on a
mixture of quantitative and qualitative criteria. We note
that we only assume the existence of an indifference volume
around each issue vector. We do not make any assumptions
about the size or the shape of the volume.

2.2 Model
In designing negotiation agents in the artificial intelligence

community, a very common offer strategy is to offer the is-
sue, which is closest to the buyer’s last offer among a set of
issue vectors. Often, the agent forms the set such that all
issue vectors in the set has the same utility for the agent,
i.e., the issue vectors are on the same agent utility isocurve.
Then, the agent offers the member that is closest to the
buyer’s last offer.
In this strategy, the distance between an issue vector u

and the buyer’s last offer y is often measured as a weighted
sum of their elementwise distances, i.e.,

D(u, y) =
∑
i

wiDi(ui, yi), (1)

where the ui and yi are the i
th elements of the vectors u and

y, and the weights wi are computed based on the estimated
preferences of the buyer. The agent can estimate these pref-
erences from the buyer’s offer history. The distance measure
Di can be, for instance, the elementwise absolute difference
(|ui − yi|) between the two vectors.
What if the agent is to make two offers at each round?

Extending the approach in [5], the agent can select the clos-
est two issue vectors to y on the agent’s isocurve as offers.
However, this is not necessarily a good strategy especially if

these two offers are very close to each other. If the two clos-
est vectors are within a close neighborhood of each other, for
instance, this strategy would not add much beyond offering
just one of these two vectors.

At the other extreme is to select the first offer as the
closest one to y on the isocurve, and the second offer on the
isocurve as far from the first offer as possible. This strategy
is far from optimal since the second offer takes into account
neither the buyer’s offer y nor his/her preferences.

To quantify the discussion, assume the buyer offers y in
the last round. Let py(u1) denote the probability that the
buyer terminates the negotiation in response to agent’s of-
fer u1, and let py(u2|u1) denote the conditional probability
that the buyer terminates the negotiation in response to the
offer u2 given the buyer would terminate it in response to
u1. Then, by the definition of conditional probability, the
probability of the buyer continuing with the negotiation is

1− py(u1, u2) = 1− py(u1)py(u2|u1). (2)

How to model py(u1) and py(u2|u1)? From the discussion
in [2002] and [2006], one viable option is to let py(u1) to be
proportional to the distance between u1 and y, i.e.,

py(u1) = k1|y − u1|, (3)

for some constant k1.
What about py(u2|u1), i.e., the probability that u2 gets

rejected given that u1 would be rejected? Intuitively, this
conditional probability should depend on both the distance
between y and u2, and the distance between u1 and u2. In
particular, if the distance between u1 and u2 is small, the
conditional probability should depend more on the distance
between u1 and u2. On the other hand, if the distance be-
tween u1 and u2 is large, the conditional probability should
be more dependent on the distance between y and u2. Ac-
cordingly, we let

py(u2|u1) =

{
k2|y − u2| if |u1 − u2| ≥ ϵ,

1 if |u1 − u2| < ϵ,
(4)

for some constants k2 and ϵ.
Then, the probability that the buyer will continue with

the negotiation becomes

1−py(u1, u2) =

{
1− k1k2|y − u1||y − u2| if |u1 − u2| ≥ ϵ,

1− k1|y − u1| if |u1 − u2| < ϵ.

(5)
We note that the probability k|y − u| < 1 for any k1,k2

and u since py is a probability mass function.
If u2 is placed very close to u1 (i.e., within a distance of

ϵ), then the acceptance probability is guaranteed to be lower
than the case with u2 placed far away from u1 (i.e., outside
a distance of ϵ). This follows from

1− k1k2|y − u1||y − u2| > 1− k1|y − u1|, (6)

since k|y − u| < 1 for any k1,k2 and u.
One can then extend the probability of continuing with

the negotiation to N > 2 offers, and show that with N sim-
ulatenous agent offers, the probability of the buyer walking
away from the negotiation is minimized if no two offers are

within a distance of ϵ. In this case, the probability of the
buyer walking away from the negotiation is

∏
i

ki|y − ui|, (7)

provided no two offers are within a distance of ϵ of each
other.
Minimizing (8) is equivalent to minimizing

∑
i

log ki + log |y − ui|. (8)

The optimization problem in (8) is, in general, intractable,
and thus we use a suboptimal strategy to minimize (8).
Our multiple offer strategy is to first partition the issue

space using graph partitioning [10] into multiple clusters
such that the partitioning satisfies the following conditions:

1. Any two issue vectors, u and v, within the same clus-
ters are (very likely to be) close to each other, i.e.,
within a distance ϵ.

2. Any two issue vectors, u and v, between two clusters
are (very likely to be) far from each other, i.e., outside
a distance of ϵ.

Once the partitioning stage is done, we select one issue
vector from each cluster as an offer. In each cluster, we
select the offer that is closest to the last offer of the buyer.
This strategy ensures that the offer closest to the buyer’s
last offer in the issue space is always selected. Thus, the first
offer is the same as that one would get from the strategies
in [5]. It further ensures that the remaining offers are not
very close.
The motivation for the multiple offer strategy is that it is

rare for the agent to have perfect estimates of the buyer’s
preferences wi. The inaccuracies in estimating the prefer-
ences will impact the distance function. For most negotia-
tion scenarios, it is reasonable to assume that Di would be
the Euclidean distance or the city-block distance. In fact,
some prior work just assume that Di is simply the absolute
elementwise difference between vectors (i.e., the city-block
distance).

3. CLUSTERING

3.1 Definitions
Let V denote a finite set of elements, and E be a set of

edges e such that each edge is connects of the elements in
V . G = (V,E) is called a graph with the vertex set V , and
edge set E. A weighted graph is a graph that has a positive
number w(e) associated with each edge e, called the weight
of edge e. Denote a weighted graph by G = (V,E,w). An
edge e is said to be incident with a vertex u when e connects
u to another edge.
We say that there is a path between vertices v1 and vk

when there is an alternative sequence of distinct vertices
and edges v1, e1, v2, e2,..., ek−1, vk such that vi, vi+1 ∈ ei,
for 1 ≤ i ≤ k − 1. A graph is connected if there is a path
for every pair of vertices. We assume that the graphs in this
work are connected.

3.2 Graph clustering
The graph clustering problem with k clusters is formalized

as follows [10]: Given a graph G = (V,E), find the clustering
V1, V2,..., Vk that minimizes the number of edges of E whose
incident vertices belong to different subsets, provided

• Vi ∩ Vj = ∅ for i ̸= j,

• |Vi| = |V |/k, and ∪iVi = V ,

If the edges have weights associated with them, the graph
clustering problem can be extended to account for the edge
weights. In this case, the problem can be formulated as
minimizing the sum of the edge weights belonging to differ-
ent subsets provided the two conditions listed above. Given
a clustering, the number of edges whose incident vertices
belong to different subsets is called the edge-cut of the clus-
tering.

The graph G can be clustering using a multi-level algo-
rithm. The graph G is first coarsened down to a few hundred
vertices, a partitioning of this smaller graph into k clusters
is computed, and then this partition is projected back to-
wards the original graph (finer graph). At each step of the
graph uncoarsening, the partition is further refined. The
refinements reduce the edge-cut since Since the finer graph
has more degrees of freedom.

Consider a weighted graph G0 = (V0, E0) with weights
both on the edges. A multi-level graph clustering algorithm
consists of the following three stages:

• Coarsening Phase: The graph G0 is transformed into
a sequence of smaller graphs G1, G2,..., Gm such that
V0 > V1 > V2 > > Vm.

• Partitioning Phase A 2-way partition Pm of the graph
Gm = (Vm, Em) is computed that partitions Vm into
two parts, each containing half the vertices of G0.

• Uncoarsening Phase The partition Pm of Gm is pro-
jected back to G0 by going through intermediate par-
titions Pm−1, Pm−2,, P1, P0.

3.3 Matching
A matching of a graph Gi = (Vi, Ei) is a set of edges

such that no two edges are incident on the same vertex.
The coarser graph Gi+1 is constructed from Gi by finding
a matching of Gi and collapsing the matched vertices into
multinodes. The unmatched vertices are simply copied over
to Gi+1. The matching of a graph is obtained through form-
ing maximal matchings. A matching is maximal if any edge
in the graph that is not in the matching has at least one of
its endpoints matched.

A maximal matching can be generated efficiently using a
randomized algorithm as follows:

• Vist the vertices in random order.

• If a vertex u has not been matched yet, then randomly
select one of its unmatched adjacent vertices.

• If such a vertex v exists, include the edge (u, v) in the
matching and mark vertices u and v as being matched.

• If there is no unmatched adjacent vertex v, then vertex
u remains unmatched in the random matching.

The complexity of the above algorithm is O(E).
While random matching is an efficent technique to ob-

tain a maximal matching, it does not target minimizing
the edge-cut. Consider a graph Gi = (Vi, Ei), a match-
ing Mi that is used to coarsen Gi , and its coarser graph
Gi+1 = (Vi+1, Ei+1) induced by Mi. If A is a set of edges,
define W (A) to be the sum of the weights of the edges in A.
It can be shown that

W (Ei+1) = W (Ei)−W (Mi). (9)

Thus, the total edge-weight of the coarser graph is reduced
by the weight of the matching. Hence, by selecting a max-
imal matching Mi whose edges have a large weight, we can
decrease the edge-weight of the coarser graph by a greater
amount. As the analysis in [27] shows, since the coarser
graph has smaller edge-weight, it also has a smaller edge-
cut. Finding a maximal matching that contains edges with
large weight is the idea behind the heavy-edge matching. A
heavy-edge matching is computed using a randomized al-
gorithm similar to that for computing a random matching
described earlier. The vertices are again visited in random
order. However, instead of randomly matching a vertex u
with one of its adjacent unmatched vertices, we match u
with the vertex v such that the weight of the edge (u, v) is
maximum over all valid incident edges (heavier edge).

3.4 Partitioning
The second phase of a multilevel algorithm computes a

high-quality bisection (i.e., small edge-cut) Pm of the coarse
graph Gm = (Vm, Em) such that each part contains roughly
half of the vertex weight of the original graph. Since dur-
ing coarsening, the weights of the vertices and edges of the
coarser graph were set to reflect the weights of the vertices
and edges of the finer graph, Gm contains sufficient informa-
tion to intelligently enforce the balanced partition and the
small edge-cut requirements.
The Kernighan-Lin algorithm [31] is iterative in nature.

It consists of the following iterations:

1. Start with an initial partition of the graph.

2. Search for a subset of vertices from each part of the
graph such that swapping them leads to a partition
with a smaller edge-cut.

3. Stop if you cannot find such two subsets. This indi-
cates that the partition is at a local minimum.

Each iteration of the KL algorithm described in [31] takes
O(ElogE) time.
The Kernighan-Lin algorithm finds locally optimal parti-

tions when it starts with a good initial partition and when
the average degree of the graph is large [4]. If no good initial
partition is known, the KL algorithm is repeated with dif-
ferent randomly selected initial partitions, and the one that
yields the smallest edge-cut is selected.
Suppose P is the initial partition of the vertices of Gm =

(Vm, Em). The gain gv, of a vertex v is defined as the reduc-
tion on the edge-cut if vertex v moves from one partition to
the other. This gain is given by

gv =
∑

(v,u)∈E∩P [v]̸=P [u]

w(u, v)−
∑

(v,u)∈E∩P [v]=P [u]

w(u, v)

(10)

where w(v, u) is weight of edge (v, u). If gv is positive,
then by moving v to the other partition the edge-cut de-
creases by gv, whereas if gv is negative, the edge-cut in-
creases by the same amount. If a vertex v is moved from
one partition to the other, then the gains of the vertices ad-
jacent to v may change. Thus, after moving a vertex, we
need to update the gains of its adjacent vertices.

Given this definition of gain, the KL algorithm then pro-
ceeds by repeatedly selecting from the larger part a vertex v
with the largest gain and moves it to the other part. After
moving v, v is marked so it will not be considered again in
the same iteration, and the gains of the vertices adjacent
to v are updated to reflect the change in the partition. The
original KL algorithm [9], continues moving vertices between
the partitions, until all the vertices have been moved.

3.5 Refinement
During the uncoarsening phase, the partition Pm of the

coarser graph Gm is projected back to the original graph, by
going through the graphs Gm−1, Gm−2,...., G1. Since each
vertex of Gi+1 contains a distinct subset of vertices of Gi,
obtaining Pi from Pi+1 is done by simply assigning the set
of vertices V v

i collapsed to v ∈ Gi+1 to the partition Pi+1[v].
Even though Pi+1 is a local minimum partition of Gi+1,

the projected partition Pi may not be at a local minimum
with respect to Gi. Since Gi is finer, it has more degrees
of freedom that can be used to improve Pi, and decrease
the edge-cut. Hence, it may still be possible to improve the
projected partition of Gi−1 by local refinement heuristics.
For this reason, after projecting a partition, a partition re-
finement algorithm is used. The basic purpose of a partition
refinement algorithm is to select two subsets of vertices, one
from each part such that when swapped the resulting parti-
tion has a smaller edge-cut.

The refinement algorithm consists of the following steps:

1. Use the projected partition of Gi+1 onto Gi as the
initial partition. (Note that the projected partition is
already a good partition).

2. Apply vertex swaps to decrease the edge-cut.

gv =
∑

(v,u)∈E∩P [v]̸=P [u]

w(u, v)−
∑

(v,u)∈E∩P [v]=P [u]

w(u, v)

(11)

3. Terminate the algorithm when no further decrease in
the edge-cut can be made through edge swaps.

4. SIMULATIONS
Automated software agents for bilateral negotiations can

be designed through either game-theoretic methods or sta-
tistical learning approaches. In either case, a robust design,
evaluation and testing of the agents requires the existence of
a (training) set of issue offers representing typical behaviors
of the opposing party. When a set of issue offers recorded
during an actual negotiation process is available, it can be
used to design, evaluate and test the agents. However, it is
very rare to have recordings of actual negotiations, in which
case, the issue offers need to be obtained through simula-
tions.

In [5], the buyers’ negotiation behaviors have been mod-
eled through a sequence of functions; each function imi-
tates the buyer’s offers in the issue space. The functions
are monotonic in the issue values and belong to families of
parametrized functions. The models in [5] assume a single-
issue negotiation scenario, which we discuss in section 4.1.
We then extend it to the scenario with multiple negotiated
issues in section 4.2.

4.1 Single-issue buyer profiles
According to [5], negotiation tactics can be classified into

two main categories: (i) time-dependent (or resource-dependent)
tactics, and (ii) behavior-dependent tactics. Time-dependent
tactics determine how the issue offer yn,d changes as a func-
tion of time n. Resource-dependent tactics are a general-
ization of the time-dependent tactics, where resources other
than time (e.g., inventories) are considered. The behavior-
dependent tactics, on the other hand, determine how the
issue offer yn,d changes as a function of the counter offers of
the opposing party.
We focus on the time-dependent tactics. In [5], the evo-

lution of the offer yn,d through time is given as

yn,d = ymin,d + αd(n)(ymax,d − ymin,d) (12)

where [ymin,d ymax,d] is the range of values for issue d, and
αd is a time-varying function.
There are many choices for the function αd as discussed

in [5]. Each function is monotonic in the issue value, and
has five parameters: βd, tmax, ymin,d, ymax,d and κ. The
parameter βd controls the convexity of the function. When
βd < 1, the function is convex, and when βd > 1 the function
is concave. The following is one such example function:

αd(n) = κ+ (1− κ)(min(n, tmax)/tmax)
1/βd . (13)

Of the five parameters, κ is a constant (usually set to 0), βd

controls the concession behavior, and tmax is the maximum
number of negotiation rounds. The notation min(n, tmax)
implies the smaller of n and tmax. As βd is decreased, the
party makes more “boulware” offers, i.e., the party stays
closer to the ymin,d value until the time is almost exhausted,
whereupon it concedes up to ymax,d. As βd is increased, the
party makes more “conceder” offers, i.e., the party quickly
moves up to ymax,d.

4.2 Multi-issue buyer profiles
The treatment in [5] of the negotiation tactics focuses on

single-issue negotiation settings. When the negotiation in-
volves multiple issues, however, one needs to take into ac-
count the dependencies among the issues.
The model in [5] assumes that the negotiating party (e.g.,

the buyer) starts with an initial issue offer ymin,d, and in-
creases the issue value at each time step (or round) n, ac-
cording to, for instance (12) and (13). The multiple issue
negotiation literature, on the other hand, focuses on game-
theoretic approaches with utility functions. The assumption
is that a negotiating party starts with an initial issue vector
with utility equal to Uinitial and aims to reach an agreement
at a target vector with utility Utarget. By the very nature
of negotiation, Utarget is less than Uinitial. The literature
also takes the view that the party decreases the utility value
monotonically at every round.

To extend the model in [5] for simulating buyer’s behav-
ior in a multi-issue setting, we randomly select one of the
buyer’s target vectors as ymax,d. We then randomly select
another vector as ymin,d, such that each element of ymax,d is
greater than or equal to the corresponding element of ymin,d.
This condition is needed to ensure that the monotonic func-
tions (e.g., (13)) can be used to move from ymin,d to ymax,d

in a finite number of rounds. At each time n, we either keep
the βd value for each issue d (no change in the state), or
switch to a new βd value for each issue d according to some
prior transition probability as discussed in [5].

The parameter βd needs to be selected to ensure the con-
vexity (or concavity) of αd. According to the Faratin’s ap-
proach, the negotiator’s tactic can be characterized as either
“boulware” or “conceder”. In particular, for βd < 1, the tac-
tic is boulware, while for βd > 1, we observe the conceder
tactics. The function (13) is convex in n, and the degree
of convexity, determined by the value of βd, identifies the
tactic. As βd is increased, the offers get more conciliatory,
and as βd is decreased, the offers become more boulware.
Faratin provides functions alternative to that in (13) (e.g.,
an exponential function instead of a polynomial function),
yet their common characteristic is that they are convex in
n, and their degree of convexity is determined through the
parameter βd.

Since a function is (strictly) convex if and only if its sec-
ond derivative is (strictly) non-negative, and that a weighted
sum of second derivatives is equal to the second derivative of
the weighted sums, it follows that the additive utility func-
tion, U , defined as

U =
∑
d

wdUd (14)

for some weights wd > 0 and the issue utilities Ud, is guar-
anteed to be convex as long as βd < 1 for each d, and is
guaranteed to be concave as long as βd > 1 for each d.
Thus, in transitioning from one set of βd values to another
in the simulations, we make sure that, in each state, either
βd < 1 for each d or βd > 1 for each d. This ensures the
convexity (or the concavity) in the utility space as well as
in the issue space.

4.3 Results
We evaluate the performance of the seller’s agent. The

agent negotiates issues with buyers on behalf the seller, where
the buyer’s offers on the issues are generated through the
simulations described in sections 4.1 and 4.2. The agent is
available to it a rank-ordered list of the issue vectors with
the higher-ranking vectors being more advantageous to the
seller. The top 20 percent of the issue vectors in the list
are acceptable to the seller. The buyer has a different rank-
ordered list of the issue vectors, and the top 20 percent of
the issue vectors in the list are acceptable to the buyer.

In Fig. 1, we assigned a utility score (in the 0-100 range)
to each issue point with higher-ranking points (in the buyer’s
ranked-ordered list) with higher utility scores, and computed
the mean of the utility values of the agent’s counter offers.
In Fig. 1, the concession behavior of the buyer is that of
a conceder (i.e., β > 1). As the number of offers N by
the agent increases, the mean utility value for the buyer in-
creases. The gains are greatest when N is increased from 2
to 5, and the gains are small when N is further increased to
10. This might indicate that generating 5 offers per negoti-

20 30 40 50 60 70 80 90 100 110 120
50

55

60

65

70

Negotiation Rounds

M
ea

n
bu

ye
r

ut
ili

ty

Figure 1: The buyer’s utility as a function of the number of negotiation rounds. Conceder behavior. Single
offer (black dashed). Two offers (green dash dot). Five offers (blue dashed). Ten offers (red solid).

20 30 40 50 60 70 80 90 100 110 120
40

45

50

55

60

Negotiation Rounds

M
ea

n
bu

ye
r

ut
ili

ty

Figure 2: The buyer’s utility as a function of the number of negotiation rounds. Boulware behavior. Single
offer (black dashed). Two offers (green dash dot). Five offers (blue dashed). Ten offers (red solid).

ation round is a sufficiently good strategy.
Fig. 2 shows the mean of the utility values of the agent’s

counter offers for a boulware buyer model (i.e., β < 1). Sim-
ilar to the number of offers by the agent increases, the mean
utility value for the buyer increases. However, the gains
from the multiple offers in this case are higher, indicating
that the multiple offer strategy is more benefitial for boul-
ware buyers than it is for conceder buyers. Finally, Fig. 3
shows the behavior for a linear buyer model. Similar to Fig.
1 and Fig. 2, the mean utility value of the buyer increases
as the number of offers by the agent increases.

5. CONCLUSIONS
Automated negotiation agents negoatite issues of an e-

commerce transaction with human customers on behalf of e-
commerce vendors. The agents proposed by the artificial in-
telligence and game theory communities have focused on de-
signing agents that make a single offer to the customer at ev-
ery round of the negotiation. Recent studies from the psyh-
chology community, however, indicate that making multiple
counteroffers per negotiation round can be beneficial to both
the consumer and the vendor. In this work, we designed au-
tomated agents that make multiple offers to the customer
at every negotiation round. We have utilized graph-based
statistical clustering to partition the space of the offers and
generate the multiple offers. Our results, based on popular

buyer behavior models, indicate that this strategy leads to
a significant increase in the customer’s utility without de-
creasing the agent’s utility.

References
[1] A. Barron, J. Rissanen, and B. Yu. The minimum description
length principle in coding and modeling. IEEE Transactions in
Information Theory, 44(6):2743-2765, 1998.

[2] M. Beal, Z. Ghahramani, and C.E. Rasmussen. The infinite
hidden Markov model. In NIPS, 2002.

[3] R.M. Coehoorn and N. Jennings. Learning an opponent’s
preferences to make effective multi-issue negotiation trade-offs.
In ICEC, 2004.

[4] T. Cover and J. Thomas. Elements of Information Theory,
New York, Wiley, 1991.

[5] P. Faratin, C. Sierra, and N. R. Jennings. Negotiation decision
functions for autonomous agents. Int. Journal of Robotics and

Au- tonomous Systems, 24(3-4):159Ű182, 1998.

[6] S. Fatima, M. Wooldridge, and N. R. Jennings. Multi-issue
negotiation under time constraints. In AAMAS, 2002.

[7] S. Fatima, M. Wooldridge, and N. R. Jennings. An agenda
based framework for multi-issues negotiation. Artificial Intelli-

gence Journal, 152(1):1Ű45, 2004.

[8] E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky. An
HDP-HMM for systems with state persistence. In ICML, 2008.

[9] T. Ito, H. Hattori, and M. Klein. Multi-issue negotiation pro-
tocol for agents: Exploring nonlinear utility spaces. In IJCAI,

20 30 40 50 60 70 80 90 100 110 120
45

50

55

60

Negotiation Rounds

M
ea

n
bu

ye
r

ut
ili

ty

Figure 3: The buyer’s utility as a function of the number of negotiation rounds. Linear behavior. Single offer
(black dashed). Two offers (green dash dot). Five offers (blue dashed). Ten offers (red solid).

2007.

[10] G. Karypis and V. Kumar. A coarse-grain parallel formula-
tion of multilevel k-way graph partitioning algorithm. Siam Con-
ference on Parallel Processing for Scientific Computing, 2004.

[11] A. N. Kolmogorov. Three approaches to the quantitative
definition of information. Probl. Inform. Transm. vol. 1. pp.
4-7, 1965

[12] V. Pavlovic, J. M. Rehg, T. J. Cham, and K. P. Murphy,
A dynamic bayesian network approach to figure tracking using
learned dynamic models. In Intl. Conf. Computer Vision, 1999.

[13] V. Pavlovic, J. Rehg, and J. MacCormick. Learning switching
linear models of human motion. In NIPS, 2001.

[14] C. E. Shannon and W. Weaver. The mathematical theory of
communication. University of Illinois Press, Urbana, IL, 1949.

[15] R. J. Solomonoff. A formal theory of inductive inference I,II,
Inform. and Control, vol. 7 pp. 1-22, 224-254, 1964.

[16] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hier-
archical Dirichlet processes. Journal of American Statistics As-
sociation, 101(476):1566-1581, 2006.

[17] G. A. Van Kleef, C. K. W. De Dreu, and A. S. R. Manstead.
The interpersonal effects of anger and happiness in negotiations.

Journal of Personality and Social Psychology, 86, pp. 57Ű76,
2004.

[18] G. A. Van Kleef, C. K. W. De Dreu, and A. S. R. Manstead.
The interpersonal effects of emotions in negotiations: A moti-
vated information processing approach. Journal of Personality
and Social Psychology, 87, pp. 510-528, 2004.

[19] R. Vetschera. Preference structures and negotiator behavior
in electronic negotiations. Decision Support Systems, vol. 44, pp.
135-146, 2007.

[20] C. Wallace and D. L. Dowe. Minimum mesaage length and
Kolmogorov complexity. The Computer Journal, vol. 42, no. 4,
pp. 270-283, 1999.

[21] Y. Yang and S. Singhal.Designing an intelligent agent that
negotiates tactfully with human counterparts: A conceptual anal-
ysis and modeling framework. Proceedings of HICSS, 2009.

[22] G. A. Yukl. Effects of situational variables and opponent

concessions on a bargainerŠs perception, aspirations, and conces-
sions. Journal of Personality and Social Psychology, vol. 29, pp.
227-236, 1974.

