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Abstract— A genetic algorithm is used to simulate the evo-
lution of Moore machines in the iterated Prisoner’s Dilemma
stage-game. The machines are prone to two types of errors:
(a) implementation errors and (b) perception errors. We
conduct computational experiments that incorporate differ-
ent levels of errors in an effort to assess whether and
how the distribution of machines in the population changes.
In sharp contrast to previous studies, the incorporation of
implementation and perception errors is sufficient to reduce
cooperative outcomes. In addition, the study identifies a
threshold error-level. At and above the threshold error-level,
the prevailing machines converge to the open-loop machine
Always-Defect. On the other hand, below the threshold,
the prevailing machines are closed-loop and diverse. The
diversity thus impedes our inferential projections on the
superiority of a particular machine.
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1. Introduction
Our objective is to use the genetic algorithm to simulate

an evolving, error-prone population of agent-based strategies
that plays the iterated Prisoner’s Dilemma (PD) paradigm.
According to the thought experiment, a group of agents is
to play the PD game. The Prisoner’s Dilemma payoff-matrix
is provided in Table 1. Each agent is required to submit a
strategy that is implemented by a type of finite automaton
called a Moore machine [1]. The machine specifies actions
contingent upon the opponent’s reported actions. The agents
play the PD game against each other and against their twin
in a round-robin structure. With the completion of all round-
matches, the actual scores and machines of every agent
become common knowledge. Based on this information,
agents update their machines for the next generation via the
genetic algorithm. Bounded rationality is introduced in the
form of implementation errors and perception errors.
Implementation errors are errors in the implementation of
actions. On the other hand, perception errors are errors in the
transmission of information. The computational experiments
conducted, incorporate different levels of errors in an effort
to assess whether and how the distribution of outcomes and
strategies in the population changes. In addition, behavioral

patterns that fare well in the simulated environments are
identified and discussed.

Table 1: Prisoner’s Dilemma Matrix
Cooperate Defect

Cooperate 3,3 0,5
Defect 5,0 1,1

The genetic algorithm [2] is one of many search tech-
niques developed for solving hard combinatorial optimiza-
tion problems in large search spaces. Other optimization
techniques include: Simulated Annealing [3], Tabu Search
[4], Stochastic Hill Climbing and Compset Algorithm [5].
Axelrod [6] was the first to model the evolutionary process
of the iterated PD game with a genetic algorithm. The
winning strategy in his tournament was Tit-For-Tat (TFT); a
strategy that starts off by cooperating and then imitates the
most recent action of the opponent. Nevertheless, Axelrod’s
study was restricted by his use of error-free strategies whose
actions were contingent to the action profiles of (only) the
last three periods, and by his use of a fixed environment
composed of (only) eight strategies. On the other hand,
here, we circumvent these restrictions by the use of a vari-
able environment where strategies co-evolve as the strategic
population changes. In addition, we incorporate bounded
rationality in the form of implementation and perception
errors.

Bendor, Kramer and Stout [7] have been, to our knowl-
edge, the first to conduct a computer tournament with
random shocks. In their study, the authors re-evaluate the
performance of reciprocating strategies such as TFT and
identify alternative strategies that sustain cooperation in an
environment with random shocks. The winning strategy in
their tournament is Nice-And-Forgiving (NAF) which differs
in many ways from TFT. First, NAF is nice in the sense that
it cooperates as long as the frequency of cooperation of the
opponent is above some threshold. Second, NAF is forgiving
in the sense that although NAF retaliates if the opponent’s
cooperation falls below the threshold level of cooperation,
it reverts to full cooperation before its opponent does, as
long as certain minimal levels of cooperation are met by the
opponent.



On the other hand, the results of the present study point
to a very different direction from that in Axelrod [6] and
Bendor, Kramer and Stout [7]. Here, we show that the evo-
lution of cooperative machines is considerably weaker while
the change in the model is ecologically plausible: errors
are common in our strategic interactions. In addition, by
varying the error-level, the study identifies a threshold error-
level. At and above the threshold error-level, the prevailing
structures converge to the one-state, open-loop machine
Always-Defect: a relentless punisher. Yet, below the thresh-
old, the prevailing machines are cooperative, closed-loop and
diverse. These findings enable us to deduce that strategic
simplification is a necessary condition only in the error-
prone environments. In the presence of errors, behavior is
governed by mechanisms that restrict the flexibility to choose
potential actions. These mechanisms simplify behavior to
less complex patterns (rules of thumb), which are easier
for an observer to recognize and predict. In the absence
of errors, the behavior of well-informed agents responding
with flexibility to every perturbation in the environment may
not produce easily recognizable patterns. The diversity thus
impedes our inferential projections on the superiority of a
particular machine.

The contribution of this paper is two-fold. First, the study
aims to elicit an understanding of the patterns of reasoning
of agent-based behaviors that emerge in adaptive systems in
the presence of errors. To this extend, we discern behavioral
patterns that fare well in the error-prone environments.
Second, the study also contributes to a better understanding
of how small error-perturbations in the agents’ strategies
change the set of prevailing structures.

2. Moore Machines
A finite automaton is a mathematical model of a system

with discrete inputs and outputs. The system can be in any
one of a finite number of internal configurations or “states".
The state of the system summarizes the information con-
cerning past inputs that is needed to determine the behavior
of the system on subsequent inputs. The specific type of
finite automaton used here is a Moore machine [1]. Let I
denote the set of agents, Ai denote the set of i’s actions, A
denote the cartesian product of the action spaces Ai written

as A ≡
I
×

i=1
Ai, and gi : A → < denote the real-valued

utility function of i. Thus, a Moore machine for an adaptive
agent i in a repeated game of G = (I ,{Ai}i∈I , {gi}i∈I)
is a four-tuple (Qi, qi

0, f i, τ i) where Qi is a finite set of
internal states of which qi

0 is specified to be the initial state,
f i : Qi → Ai is an output function that assigns an action
to every state, and τ i : Qi × A−i → Qi is the transition
function that assigns a state to every two-tuple of state and
other agent’s action.
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Fig. 1: Grim-Trigger Machine

Qi = {qC , qD}
qi
0 = qC
f i(qC) = C and f i(qD) = D

τ i(q, a−i) = {qC (q,a−i)=(qC ,C)
qD otherwise

For example the machine (Qi, qi
0, f i, τ i) in Figure 1,

carries out the Grim-Trigger strategy in the context of the
PD game. Thus, the strategy chooses “cooperate" so long as
both agents have chosen “cooperate" in every period in the
past, and chooses “defect" otherwise.

Bounded rationality is introduced in the form of random
errors committed by the machines. More specifically, the
study considers errors in the implementation of actions
and errors in the perception of actions. Implementation
and perception errors when considered in isolation lead to
quite different results. For instance, the machine Contrite-
Tit-For-Tat in the iterated PD game is proof against errors
in implementation but not against errors in perception.
The machine acts in principle as Tit-For-Tat, but enters
a “contrite" state if it erroneously implements a defection
rather than a cooperation. Consequently, the machine accepts
the opponent’s retaliation and cooperates for the next two
periods but leaves the contrite state soon after. On the
other hand, if the machine Contrite-Tit-For-Tat mistakenly
perceives that the opponent defected, will respond with a
defection without switching to the contrite state and will
not meekly accept any subsequent retaliation. It is therefore
crucial to formally define implementation and perception
errors in the context of Moore machines.

Definition 1 The machine of agent i in the
PD game commits an implementation error with
probability ε, when for any given state q, the
machine′s output function returns the action f i(q)
with probability 1−ε and draws another action “f i(q)"
where f i(q)6=“f i(q)" otherwise.1

That is, an implementation error level of ε indicates
that with probability ε the course of action dictated by
the particular state of the machine will be altered. For
example, a cooperation dictated by the particular state will be

1A general definition would postulate that the machine of agent i
commits an implementation error with probability ε, when for
any given state q, the machine′s output function returns the
action f i(q) with probability 1− ε and draws another action ai ∈
Ai \ f i(q) randomly and uniformly otherwise. Yet, since the action
space in the PD game consists of only two actions, the former definition
suffices.



implemented erroneously as a defection with probability ε.
On the other hand, perception errors are defined as follows.

Definition 2 The machine of agent i in the PD
game commits a perception error with probability δ,
when for any given opponent′s action a−i, the machine
inputs the opponent′s action a−i into the transition
function with probability 1 − δ and inputs the
opponent′s action “a−i" into the transition function
where a−i 6=“a−i" otherwise.

Thus, a perception error level of δ indicates that with
probability δ an opponent’s action is reported incorrectly,
while with probability 1− δ the opponent’s action is per-
fectly transmitted.

Furthermore, we consider machines that hold no more
than eight internal states. The choice to keep the upper
bound on the number of internal states at eight is reasonable
given complexity considerations. As Rubinstein [8] indi-
cates, agents seek to device behavioral patterns which do
not need to be constantly reassessed and which economize
on the number of states needed to operate effectively in a
given strategic environment. A more complex plan of action
is more likely to break down, is more difficult to learn, and
may require more time to be executed. In fact, a number
of studies (some with subjects in the laboratory) have been
suggestive of the effectiveness of simple strategies over more
complex ones in a wide range of environments ([9]; [10];
[11]; [12]).

3. Genetic Algorithm
The genetic algorithm is an evolutionary search algorithm

that manipulates important schemata based on the mechanics
of natural selection and natural genetics. Other descriptive
constructs, such as replicator dynamics or evolutionary stable
strategies, lack the ability to incorporate forms of innova-
tion. The present search algorithm however, removes this
restriction by allowing for innovative processess to enter
the model in a tractable manner. The genetic algorithm
was developed by Holland [2] for optimization problems
in difficult domains. Difficult domains are those with both
enormous search spaces and objective functions with many
local optima, discontinuities and high dimensionality.

The search for an appropriate way to model strategic
choices of agents has been a central topic in the study
of game theory. The genetic algorithm is an attractive
choice because it combines survival of the fittest with a
structured information exchange that emulates some of the
innovative flair of human search. The mechanics of the
genetic algorithm involve copying strings and altering states
through the operators of selection and mutation. Initially,
reproduction is a process where successful strings proliferate
while unsuccessful strings die off. Copying strings according
to their payoff or fitness values is an artificial version of
Darwinian selection of the fittest among string structures.

After reproduction, selection results to higher proportions
of similar successful strings. The mechanics of reproduction
and selection are simple, involving random number gener-
ation, string-copying and string-selection. Nonetheless, the
combined emphasis of reproduction and the structured se-
lection give the genetic algorithm much of its power. On the
other hand, mutation is an insurance policy against prema-
ture loss of important notions. Even though reproduction and
selection effectively search and recombine extant notions,
occasionally they may become overzealous and lose some
potentially useful material. In artificial systems, mutation
protects against such an irrecoverable loss. Consequently,
these operators bias the system towards certain building
blocks that are consistently associated with above-average
performance.

4. Methodology
The genetic algorithm requires the natural parameter set

of the optimization problem to be coded as a finite-length
string over some finite alphabet. Each Moore machine here,
is thus represented by a string of 25 elements. The first
element provides the starting state of the machine. Eight
three-element packets are then arrayed on the string. Each
packet represents an internal state of the machine. The first
bit, within an internal state, describes the action dictated
by the particular state (1 := cooperate, 0 := defect). The
next element, within an internal state, gives the transition
state if the opponent is observed to cooperate, and the final
element, within an internal state, gives the transition state if
the opponent is observed to defect. Given that each string
can utilize up to eight states, the scheme allows the definition
of any Moore machine of eight states or less.

For example, take the machine that implements TFT
in Figure 2. The machine only needs to remember the
opponent’s last action hence utilizes only two states; the last
six states are redundant as illustrated in the coding.

The genetic algorithm consists of a number of generations.
Each generation starts with a given population called the
parent population. A new population of the same size is
then constructed called the offspring population. In this
formulation, the genetic algorithm operates with a population
of machines. Each machine represents an agent’s strategy.
Initially, a population of thirty machines is chosen at random.
Then, each machine is tested against the environment (which
is composed of the other machines and its twin) in a round-
robin structure. The game-play occurs for 200 periods per
match. Each machine, thus aggregates a raw score based on
the payoffs illustrated in Table 1. The offspring population
is constructed from the parent population, by selecting the
machines that aggregated the top twenty scores. In addition,
ten new structures are created via a process of selection
and mutation. The process requires the draw of ten pairs of
machines from the parent population (with the probabilities
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Fig. 2: Tit-For-Tat Machine

0︸︷︷︸
initial state

1 0 1︸ ︷︷ ︸
state 0

0 0 1︸ ︷︷ ︸
state 1

0 0 0︸ ︷︷ ︸
state 2

0 0 0︸ ︷︷ ︸
state 3

0 0 0︸ ︷︷ ︸
state 4

0 0 0︸ ︷︷ ︸
state 5

0 0 0︸ ︷︷ ︸
state 6

0 0 0︸ ︷︷ ︸
state 7

biased by their scores) and the selection of the better
performer from each pair. Then, these ten machines undergo
a process of mutation. Mutation occurs when an element
at a random location on the selected string changes value.
Each element on the string is subjected to a 4% independent
chance of mutation, which implies an expectation of 1
element-mutation per string. The population is iterated for
500 generations. The adaptive plan is summarized below in
the pseudocode of Figure 3 and Figure 4.2

Specify error-level 
Fix max-periods = 200 
 
Create initial population: 30 agents (seed randomly) 
Initiate round-robin tournament 
 
For t = 1 to 500 do 
 
 For all agent-pairs do 
  For p = 1 to max-periods do 
   Award utils to each agent based on the PD matrix 
  End loop 
 
  Output performance score 
 End loop 
 
 Apply subroutine for the offspring-population-creation 
 Store agent results 
 
End loop 

Fig. 3: Pseudocode of the Main Program

5. Results
In order to assess whether and how the distribution of

outcomes and structures in the population changes, we
conducted four computational experiments. The computa-
tional experiments incorporate different levels of errors. In
particular, in the four computational experiments conducted,

2A variety of sensitivity analyses have been performed, and confirm that
the results reported here, are robust to reasonable changes in these choices.

Sort agents based on performance score 
 
Copy top 20 agents to offspring-population 
 
Select 10 agent-pairs via probabilities biased by performance scores 
 
For each of 10 pairs do 
 Create new agent as a copy of the winner of the pair’s match 
 Mutate new agent by switching one element at random 
 
End loop 
 
 
 Fig. 4: Subroutine of the Offspring-Population-Creation

the machines are subjected to a constant independent chance
of implementation and perception errors of 4%, 2%, 1%
and 0%, respectively. The results that follow, present the
averages over all thirty members of each generation and
thirty simulations conducted for each experiment.

5.1 Evolution Of Payoffs
Figure 5 shows the average payoff per game-generation

over all thirty members under the 4%, 2%, 1% and 0%
computational experiments. In the early generations, the
agents tend to use machines that defect continuously. The
reason is that at the start of the evolution, the machines
are generated at random. In such an environment, the best
strategy is to always defect. With the lapse of a few gen-
erations though, machines in the less error-prone conditions
achieve consistent cooperation which allows the payoffs to
move higher. The average payoff in the last generation of
the 0% treatment is 2.86 utils, whereas the average payoff
in the last generation of the 1% treatment is 2.54 utils. The
average payoff in the last generation of the 2% and 4%
treatments is 1.95 and 1.44 utils, respectively. The paired-
differences test establishes that at a 95% level of significance
the means of the conditions are statistically different. The
results indicate that the incorporation of errors is sufficient
to alter the evolution of cooperative outcomes.
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Fig. 5: Average Payoff

5.2 Prevailing Machines
The effect of errors on the structure of the machines is

an important question that has not been addressed in the
degree we see fit by evolutionary game theorists. Thus,
here we investigate behavioral patterns that fare well in the
simulated environments. This way a lot can be said about the
type of machines that survive, or even the type of machines
that do not survive in these environments. The clear winner
in the 4% and 2% treatments was the machine Always-
Defect. Always-Defect was the winner in 22 out of the 30
simulations run in the 4% treatment, and in 19 out of the 30
simulations run in the 2% treatment. The machine Always-
Defect is presented in Figure 6. Always-Defect is an open-
loop machine; in other words, the actions taken at any time-
period do not depend on the actions of the opponent.
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Fig. 6: Always-Defect

On the other hand, the structures that prevailed in the
1% and 0% treatments were diverse. This result halts any
possible attempt to discern a particular behavioral pattern
that fares well in these specific treatments. Yet, it is notewor-
thy that unlike the open-loop machine Always-Defect, the
diverse array of machines that prevailed in the 1% and 0%
treatments were all closed-loop (history-dependent). Thus,

the effect of different error-levels on the structure of the
machines points towards the existence of a threshold error-
level at 2%.

6. Discussion
TFT was the winner in the tournaments with error-free

strategies of Axelrod [9]. The performance of TFT lead
Axelrod to identify some basic attributes that were necessary
for the emergence and survival of cooperation. These were:
(i) an avoidance of unnecessary conflict by cooperating as
long as the other agent does, (ii) provocation in the face
of an uncalled for defection by the other, (iii) forgiveness
after responding to a provocation, and (iv) clarity of behavior
so that the other agent can adapt to your pattern of action
[9]. On the other hand, Bendor, Kramer and Stout [7]
incorporated in their computer tournament random shocks.
The winning strategy in that tournament was NAF. Yet, the
success of NAF is not a robust result but is limited to the
particular ecology. As Bendor, Kramer and Stout note, the
generosity of NAF creates a risk: other strategies may exploit
NAF’s willingness to give more than it receives. In other
words, NAF can be suckered by a nasty strategy that is
disinterested in joint gains.

On the other hand, the results of the present study point
to a very different direction from that in Axelrod [9] and
Bendor, Kramer and Stout [7]. By varying the error-level,
the study identifies a threshold error-level. At and above the
threshold error-level, the prevailing structures converge to
the open-loop machine Always-Defect. On the other hand,
below the threshold, the prevailing machines are closed-loop



and diverse, which impedes our deductive power on the
superiority of a particular structure. With sufficient effort
though, one might be able to design the optimal strategy for
these specific environments. Designing an optimal strategy
is a hard problem because its effectiveness depends mostly
on the strategies of the other agents involved. One possible
approach for dealing with this problem is to endow the agent
with the capability of adapting to other agents in the system
[13]. The usage of learning techniques for adapting to other
agents has received wide attention in the multi-agent system
research community (for a survey, see [14]). The research
in this field focuses on two central approaches: model-based
learning (also known as Opponent Modelling), where an
explicit model of the opponent’s strategy is generated and
exploited ([15]; [16]; [17]; [18]), and model-free learning,
where the agent’s strategy is directly adapted based on the
observed behavior of the opponents [19]. This distinction is
also applicable to the more general reinforcement learning
problem [20] where both model-based [21] and model-free
approaches [22] exist.

Recently, Markovitch and Reger [23] suggested a model-
based approach where agents can greatly benefit from adapt-
ing to a particular adversary. If however, the learned model
is not accurate, then using it to predict the opponent’s ac-
tions may potentially harm the agent’s strategy. In addition,
acquiring an accurate model of a complex opponent strategy
may be computationally infeasible. To contend with the com-
plexity of learning a full opponent model, the agent learns
instead only a certain aspect of the opponent’s strategy: the
opponent’s weakness. More specifically, the agent attempts
to characterize the set of states in which the opponent’s
performance is relatively inferior given that the opponent is
a boundedly rational agent, whose quality of decision is not
uniform over all domain states. In order to reduce the risk of
using a faulty model, the agent uses the model only to bias
his actions in a minimally-risky way. Thus, even if the model
is not accurate with respect to the opponent’s behavior, its
use cannot harm the agent’s performance significantly. In
addition, the agent considers states in which the opponent
suffers, but the agent’s own strategy is expected to fare well.
In other words, the model takes advantage of points at which
the agent exhibits a relative advantage over the opponent.
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