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Abstract - The most common clustering methods are based on  
metrics that allow the determination of the similarity between  
elements of a given data set. This similarity allows us to divide  
the  data  set  into  subsets  (clusters)  that  contain  "highly  
similar"  elements.  The  use  of  a  metric  imposes  two  
constraints. First, the shape of the found clusters is generally  
hyper-spherical (in the space of the metric) due to the fact that  
each element in a cluster lies within a radial distance relative  
to a given center. Second, the metric may be sensitive to the  
probability density function of the data set. Following this fact  
several  methods based on statistical approaches have become  
an  attractive  and  powerful  option.  These  involve  the  
estimation of the probability density function (pdf) of the  data  
set  which minimizes an optimality criterion. Generally this is  
a  highly  non-linear  and  usually  non-convex  optimization  
problem which disallows the use of  traditional  optimization  
techniques.  In  this  paper  we  propose  a  statistical  method  
based on Shannon's Conditional Entropy which uses a rugged  
genetic algorithm to find the optimal pdf. Each individual of  
the Genetic Algorithm is a possible solution of  a clustering  
problem.  The  fitness  of  an  individual  is  determined  by  
Shannon´s entropy encoded in its genome and an additional  
constraint  related  to  the  "quality"  of  this  solution.  The  
"quality"  is  measured  through  a  validity  index  of  the  
clustering  process.   A  novel  and  important  aspect  of  our  
method is the form of representation of the objects of the data  
set in order to reduce the computational complexity due to the  
high  dimensionality.  We  show  that  our  proposal  has  high  
effectiveness  relative to methods as k-means,  fuzzy c-means  
and Kohonen Maps with a synthetic data set.

Keywords: Clustering,  Information  Theory,  Genetic 
Algorithms, Bayesian Classifier, Data Mining.

1 Introduction
 The clustering process is an optimization problem that 
maximizes  the  similarity  between  objects  or  elements  that 
belong to same cluster and minimizes the similarity between 
elements  of  different  clusters.  The  effectiveness  of  a 
clustering  method  is  given  by  several  factors  such  as  the 
metric and the desired number of clusters. 

Particularly, the use of a metric imposes some constraints on 
the  shape  of  clusters  found.  These  shapes  generally  are 

hyperspherical (in the space of the metric) due to the fact that 
each element in a cluster lies within a radial distance relative 
to a given center. In other words the elements of a cluster tend 
to group around a single mean value (center) which sometimes 
disallows the extraction of hidden patterns in the data set.

In this paper  we propose an alternative method based on a 
statistical  approach.  Our proposal  does not  use explicitly a 
metric to determine the elements that belong to given cluster. 
Overall,  this  proposal  is  an  iterative  search  of  a  partition 
model  of the data set  in which the entropy (uncertainty) is 
minimized. In order to determine the entropy of the data set 
for   a  particular  partition  model,  the  estimation  of  its 
probability  density  function  (pdf)  is  necessary.   This 
estimation can be  achieved statistically from three  different 
methods:  parametric,  semi-parametric  and  non-parametric 
[15].  Unlike  parametric  and  semi-parametric  methods,  the 
non-parametric methods do not make any assumption about of 
the pdf of the data set.  The Parzen window [5]  is among the 
most widely-used non-parametric density estimation method. 

Different clustering methods have been proposed around these 
non-parametric methods and minimum entropy principle [9],
[15],[16]. These methods can be seen as an iterative search of 
an optimal pdf of the data set such that the entropy is minimal. 
However,  depending  on  the  dataset  the  search  may  be 
unfeasible or may yield local optimal solutions. Thus, this is a 
highly  non-linear  and  usually  non-convex  optimization 
problem which disallows the use of traditional optimization 
techniques or pdf  estimation methods. 

We propose a method which uses  a rugged genetic algorithm 
(the so-called Vasconcelos's GA [12]). Each individual of GA 
is a possible solution of a clustering problem which represents 
a pdf of the data set. The fitness of an individual is based on 
the minimum entropy principle and an additional  constraint 
related  to  the  "quality"  of  the  solution.  The  "quality"  is 
measured through an validity indices of the clustering process. 
Several validity indices have been developed and introduced 
[4],[8], [11]. A novel and important aspect of our proposal is 
the  form  of  representation  of  the  objects  of  the  data  set. 
Generally the properties of each object are represented as real 
values of vector in a Euclidean space. The dimensionality of 
this vector is given by the number of such properties. Its value 
is an important element of the computational complexity of a 
clustering algorithm. 



In order to reduce the dimensionality, statistical techniques as 
such  as  Pearson's  correlation  analysis  [3]  and/or  principal 
components'  analysis  [17]  have  been  used.  In  many cases, 
however, these techniques are sensitive to the data distribution 
and  impair  the  effectiveness  of  the  clustering  process.  To 
avoid this fact we map the n-dimensional vector space of the 
data set to the space of all possible strings (words) that can be 
built using the symbols of an alphabet ∑. This transformation 
allows us to represent an object of data set as a word of length 
n (for  a  n-dimensional  space)  and  a  cluster  as  a  subset  of 
words  with  some "degree  of  similarity".  The  entropy  of  a 
cluster  is  determined  by  the  probability  distribution  of  all 
words that belong to that cluster.

Our work begins with an account of several concepts which 
are  needed  to  expose  our  method.  Then,  we  expound the 
fundamental process of our proposal. Finally we show several 
numerical results and the respective conclusions.

2 Theoretical Aspects
In  what  follows  we  make  a  very  brief  mention  of  the 
theoretical aspects having to do with the proper understanding 
of  our  proposal.  The  reader  may find  more  details  in  the 
references.

2.1 Minimum Entropy Principle

Shannon's entropy [20] allows us to measure the uncertainty 
associated  with  a  random  variable  X.  Mathematically, 
Shannon's entropy of X with a probability mass function p(x) 
is defined as:

H ( X )=−∑ p ( x ) log ( p ( x ) ) (1)

The possible values of a random variable X occur with certain 
probability  p(X=x) or  simply  p(x).  When  p(x) is  uniformly 
distributed we say that the uncertainty is greatest or that the 
process represented by the random variable  X has a highest 
degree of “disorder”. Figure 1 represents the entropy for two 
possible  values  of   X with probabilities  p and  1-  p;  when 
p=0.5 the entropy is maximum. 

Figure 1. Entropy in the case of two possibles values with probabilities p 
and (1-p)

In  the  context  of  the  clustering problem we assume that  a 
cluster is a subset of the data set which has minimum entropy. 
It means that a cluster is a partition of data set with minimum 
degree  of  “disorder”.  The  entropy  of  a  cluster  is  directly 

related to its elements. In terms of probability, the entropy of 
the cluster depends of the pdf of its elements. In what follows 
we expound on this fact.

Let  D be the data set with  K partitions (clusters) and  x an 
element that belong to D. Then the pdf of x is given by:

p ( x )=∑
i

K

p ( x∣i ) p (i ) (2)

where  p(i) is  the prior  probability for the  i-th partition and 
p(x|i) is the prior probability of x given the  i-th partition.  In 
Figure  2   we  show  an  intuitive  representation  of  the 
probabilities p(x|1) and p(x|3), the probability p(x|2) is zero. 

However we would like to know the dependence of pdf of the 
i-th partition with respect to  x. This dependence is given by 
Bayes Theorem [10] :

p ( i∣x )=
p ( x∣i ) p (i )

p ( x )
(3)

When p(i|x) is uniformly distributed for all i,  we can say that 
the element x belongs to any partition and thus the uncertainty 
is maximum (see Figure 3a.). On the other hand if all  p(i|x) 
but  one  are  zero  (one  having the value unity) then we are 
certain of the partition to which x belongs (see Figure 3b).

Now, let  C be a random variable whose possible values are 
1,2,..K which represent the partitions of D. Let X be a random 
variable whose possible values are all elements x that belong 
to D. Then the entropy of C given X is:

H (C∣X )=−∑
i=1

K

p ( i∣x ) log ( p (i∣x )) (4) 

Figure 2.  Probability  space  of  a  data  set  with  three partitions.  The 
element x belongs to partition 1 and 2 with a probability greater than 
zero.

Figure 3.   a)  Uniform probability of p(i|x) . b) Probability of p(1|x) 



where p(i|x) is a posteriori pdf. Thus, our goal is to find this 
function such that  H(C|X) is minimum. For reasons already 
mentioned we use a genetic algorithm. The entropy given by 
Equation 4 is called Conditional Entropy [1].

2.2 Genetic Algorithms

Genetic Algorithms (an interesting introduction to GA's and 
other  evolutionary  algorithms  may  be  found  in  [2])  are 
optimization  algorithms  which  are  frequently  cited  as 
“partially  simulating  the  process  of  natural  evolution”. 
Although this a suggestive analogy behind which, indeed, lies 
the  original  motivation  for  their  inception,  it  is  better  to 
understand them as a kind of algorithms which take advantage 
of the implicit (indeed, unavoidable) granularity of the search 
space  which  is  induced  by  the  use  of  the  finite  binary 
representation  in  a  digital  computer.  In  such  finite  space, 
numbers originally conceived as existing in  Rn actually map 
into Bm space. Thereafter it is simple to establish that a genetic 
algorithmic  process  is  a  finite  Markov  chain  (MC)  whose 
states are the populations arising from the so called genetic 
operators: (typically) selection, crossover and mutation [19]. 
As such they display all of the properties of a MC. From this 
fact one may prove that:

1.  The  final  results  of  the  evolutionary  process  are 
independent of the initial population and

2.  A GA preserving  the  best  individual  arising  during  the 
process  will  converge  to  the  global  optimum  (albeit  the 
convergence process is not bounded in time).

Their  most outstanding feature is  that,  as  opposed  to  other 
more  traditional  optimization  techniques,  the  GA  iterates 
simultaneously over  several  possible  solutions.  Then,  other 
plausible solutions are obtained by combining (crossing over) 
the codes of these solutions to obtain hopefully better ones. 
The solution space (SS) is, therefore, traversed stochastically 
searching for increasingly better plausible solutions. In order 
to guarantee that the SS will be globally explored some bits of 
the encoded solution are randomly selected and changed (a 
process  called  mutation).  The  main  concern  of  GA-
practitioners  (given  the  fact  that  well  designed  GAs,  in 
general,  will  find  the  best  solution)  is  to  make  the 
convergence as efficient as possible. The work of Forrest et al. 
has determined the characteristics of the so-called Idealized 
GA (IGA) which is impervious to GA-hard problems [6].

2.2.1 Vasconcelos's Genetic Algorithm 

The implementation of  the IGA is  unattainable in practice. 
However, a practical approximation called the Vasconcelos’s 
GA (VGA) has been repeatedly tested and proven to be highly 
efficient  [12].  The  VGA,  therefore,  turns  out  to  be  an 
optimization  algorithm  of  broad  scope  of  application  and 
demonstrably high efficiency. A statistical analysis was done 
by minimizing a large number of functions and comparing the 
relative  performance of  six  optimization  methods  of  which 

five  are  GAs1.  The  ratio  of  every  GAs absolute  minimum 
(with probability p = 0.95) relative to the best GAs absolute 
minimum  may  be  found  in  Table  1  under  the  column 
“Relative Performance”. The number of functions which were 
minimized  to  guarantee  the  mentioned  confidence  level  is 
shown under “Number of  Optimized Functions”.  It  may be 
seen that VGA, in this study, was the best of all the analyzed 
variations. Interestingly the CGA (the classical or "canonical" 
genetic  algorithm) comes at  the bottom of the list  with the 
exception of the random mutation hill climber (RHC) which is 
not an evolutionary algorithm. According to these results, the 
minimal found with VGA are,  in the worst case,  more than 
25% better than those found with the CGA. Due to its tested 
efficiency, we now describe in more detail VGA.

As  opposed  to  the  CGA,  VGA  selects  the  candidate 
individuals deterministically picking the two extreme (ordered 
according  to  their  respective  fitness)  performers  of  the 
generation  for  crossover.  This  would  seem  to  fragrantly 
violate the survival-of-the-fittest strategy behind evolutionary 
processes  since  the  genes  of  the  more  apt  individuals  are 
mixed with those of the least apt ones. However, VGA also 
retains the best n individuals out of the 2n previous ones.

Table 1: Relative Performance of Different Breeds of Genetic 
Algorithms

Algorithm Relative 
Performance

Number  of  Optimized 
Functions

VGA 1.000 2,736

EGA 1.039 2,484

TGA 1.233 2,628

SGA 1.236 2,772

CGA 1.267 3,132

RHC 3.830 3,600

The net effect  of this dual strategy is to give variety to the 
genetic  pool  (the  lack  of  which  is  a  cause  for  slow 
convergence)  while  still  retaining a  high degree  of  elitism. 
This  sort  of  elitism,  of  course,  guarantees  that  the  best 
solutions are  not lost.  On the other  hand,  the admixture of 
apparently  counterpointed  plausible  solutions  is  aimed  at 
avoiding  the  proliferation  of  similar  genes  in  the  pool.  In 
nature as well as in GAs variety is needed in order to ensure 
the efficient exploration of the space of solutions. As stated 
before,  all  elitist  GAs will eventually converge  to  a  global 
optimum. The VGA does so in less generations. Alternatively 
we may say that VGA will outperform other GAs given the 
same number of generations. Besides, it is easier to program 
because we need not simulate a probabilistic process. Finally, 
VGA is  impervious  to  negative  fitness’s  values.  We,  thus, 
have a tool which allows us to identify the best values for a set 
of  predefined  metrics  possibly  reflecting  complementary 
goals.  For  these  reasons  we use  in  our  work  VGA as  the 
optimization method. In what follows we explain our proposal 
based in the concepts mentioned above.

1VGA:  Vasconcelos’  GA;  EGA:  Eclectic  GA;  TGA:  Elitist  GA;  SGA: 
Statistical GA; CGA: Canonical (or Simple) GA; RMH: Random Mutation 
Hill Climber.



3 Methodology
We begin our explanation by discussing the preprocessing of 
the  data  set.  It  will  allow  us   to  change  the  vector 
representation  of  the  data  in  order  to  facilitate  subsequent 
calculations.  Second,  we show the  details  of  the  genome's 
encoding in the context of the clustering problem. Finally we 
show the way to evaluate each solution or individual in order 
to find the best.

3.1 Preprocessing of the data set.

Let Σ be an alphabet and w a string that contains symbol of Σ. 
Let D be a data set. Let xi = {a1, a2,...an} be an n-dimensional 
vector such that xi є D where  ai є R and D є Rn . 

Let  ⊥ak,  a⊤ m  be  the minimal and maximal value  a∀ i є D . 
Let Δ be the difference between a⊤ m and  ⊥ak, then we assign 
to every symbol of  Σ an interval value as following:

Table 2: Assigning values to symbols of Σ
Symbol Interval Value

so  [.⊥ak ,⊥ ak+
Δ

∣Σ∣]
s1 [s0 max ,s0max+

Δ
∣Σ∣]

... ...

sm [sm−1 max , sm−1 max+
Δ

∣Σ∣]

Where si max is the maximum interval value of Si and  |Σ| is the 
cardinality of Σ (m=|Σ|). Now we assume that Σ  is conformed 
by the letters of the English alphabet and a⊤ m=1 and  ⊥ak=0. 
In  accordance  with Table  2  we can  determine  the  interval 
values of  Σ as  shown in Table 3.

 Table 3: Possible assignment of values for letters of the 
English alphabet

Symbol Symbol Value

A
 [0,0+

1
26 ]

B [ 1
26

,
1

26
+

1
26 ]

... ...

Z [25
26

,1]
Moreover,  if we assume a data set  D in  R3 such that  some 
x=[0.038,0.022,0.99]. Then x may be represented by w=AAZ. 
Thus, ∀x є D,  ∃w є  Σ*. We represent the set of all strings or 
words  w as  D'.  For  practical  reasons  we  use  the  English 
Alphabet  although the method described does not depend on 
any  particular  symbol  set.  However  this  method  will  be 
affected by the cardinality of  Σ. For example, if  |Σ| =1 we 
have that all elements of the data set are represented by the 
same word regardless of their degree of similarity. Otherwise 

when the value of     |Σ| is higher we will have more precision 
but the performance will be affected.

3.2 Encoding of the genome.

The  individuals  of  the  algorithm  have  been  encoded  as 
follows.  a)  The  length  of  the  genome  is  equal  to  the 
cardinality of D'.  b) Each gene is associated with a word of 
D'. The  value  of  each  gene  corresponds  to  a  label  (for 
practical purposes we use 1,2,...K) of the cluster to which the 
word belongs.  Thus,  the  i-th  gene represent  the cluster  to 
which the i-th word belongs.  Figure 4 exemplifies a genome 
for K=3. 

Figure 4. Genome of the individual (K=3)

3.3 Fitness 

Each individual is a possible solution of a clustering problem 
which   is  evaluated  through  a  fitness  function.  In  what 
follows  we  explain  how  this  function   is  defined   in  the 
context of our method.

Suppose that D'={AAA, ACA, MOM, NPM, ADE, UVT, VXT,  
NQP, VWV}  and  K=3. Let  Ii  be the  i-th individual of the 
population whose genome are shown in Figure 5.

As discussed above we use the Minimum Entropy Principle. 
In Equation 4 X is a random variable whose set of possibles 
values belongs to D. Thus, if the data set D is transformed to 
set  D'  (conformed  by words  w)  then   Equation  4  may be 
rewritten as:

H (C∣W )=−∑
i=1

K

p ( i∣w ) log ( p (i∣w )) (5)

Where  W  is  a  random variable  whose possibles  values  are 
strings of the  Σ  alphabet. We can calculate  H(C|W) for all 
individuals  based  on  their  genomes.  This  entropy  may  be 
expressed as the sum of  entropies for each cluster as follows:

Figure 5. Possible solution given by an Individual for K=3. Here are 
shown the words associated to each gene.



H (C∣W )=∑
i=1

K

H (i∣W ) (6)

Where  H(i|W) is  the  entropy  of  cluster  i.  The  idea  is  to 
minimize  the  entropy  for  each  cluster.  However,  this  fact 
involves  a  multi-objective  optimization  problem  because 
minimizing the entropy of a cluster affects the entropy of any 
other. To resolve this problem we apply  Pareto's Efficiency 
[18]. Our objective function  may be written as:

min [ H (1∣W ) ,H ( 2∣W ) .. . H ( K∣W ) ] (7)

So,  the  GA  must  find  the  individuals  that  minimize  this 
function which is represented as a vector of K   dimensions. In 
what  follows  this  vector  is  called  Entropy  Vector.  Each 
individual has a Entropy Vector whose values are given by its 
genome.  In order  to  determine the individual  with the best 
vector,  we apply  the  principle  of  Pareto  Dominance  [18]. 
The Pareto Dominance says that a Y vector dominates to Y* if 
∀yi є Y, yi ≤ yi* and  ∃yp  such that  yp< yp* . In the context of 
VGA, a solution vector X of an Individual will dominate other 
solution vectors.  The number of vectors dominated by X are 
called  the  dominance  value.  Thus,  individuals  with  higher 
dominance  value  will  be  the  best.  The  result  of  the 
evolutionary process yields a  Pareto Front[18].  The fitness 
function for  i-th individual (Ii) may be written as:

f ( I
i ) =dom

i (8)
Where  domi  is  the  dominance  value  of  the  ith  individual. 
However  this  function  does  not  always  assure  that  an 
individual with maximal dominance value is the best solution 
to the clustering problem. We,  therefore  propose a quality 
measure.

Our  quality  measure  is  based  on  the  concept  of  Mutual 
Information (MI) [21]. It is a symetric measure that quantifies 
the mutual dependence between two random variables or the 
information that these share.  In the context of our problem, 
the MI between two cluster u and v is given by:

I (u,v )=∑
i=1

R

∑
j=1

S

p (w i
,w

j )log
p (w i ,w j )

p (w i ) p ( w
i )

(9) 

where R and S are |u| and |v| respectively and p(wi, wj) is the 
probability  that  the  words   wi   and wj   are  similar.  This 
probability is given by:

p ( w
i
,w

j )=
∣wi∩w j∣

length (w i )
(10)

where  the  intesection  between  two word  is  given  by  their 
common symbols.  Clearly,   all  words of  D'  have the same 
length. 

If  u ≠  v then  the  value  of  I(u,v)  will  be  called   Mutual  
Information Intercluster (MIInter) .  Otherwise this value  will 
be called  Mutual Information Intracluster (MIIntra).  A lower 
value  of  MIInter  and  higher  value  of  MIIntra means  better 
clusters. So, we propose a quality measure given by:

Q=

∑
i= 1

K

MI
Intra

( i,i )

∑
i,j≤K,i≠ j

MI
Inter

( i,j )
(11)

An individual with higher value of Q means a better solution. 
Therefore  the  fitness  function  of  the  ith  individual may be 
defined as:

f ( I
i ) =dom

i
Q

i (12)

However, we observe that  an individual with a “good” fitness 
value does not always represent  a global optimum. Thus, we 
assume that each individual must be subject to the following 
constraint  : The probability  for all  partition  (cluster)  of  D  
must be greater than zero. Mathematically p(i)>0  i=1,2,..K∀  
(see Equation 2 and Equation 3). 

This constraint ensures that the individuals consists  of  non-
empty clusters  whose  entropy  is  minimal.    Otherwise  the 
solutions will be  outside of the feasible region. To encourage 
reproduction of feasible individuals (which represents feasible 
solutions)   in  every generation  of  VGA,  we appeal  to  an 
penalty  method  [14]  whose  goal  is  to  punish   unfeasible 
individuals.  

Here the penalty for unfeasible individual Ii  is given by:

 P ( I
i )=J −∑

i=1

s
J
m

(13)

where  J  is  a large constant  [O(109 )],  m  is the number of 
constraints and  s  is  the  number of  these which have been 
satisfied.

4 Numerical Experiment
In what follows we  briefly describe how the test data set was 
generated.   Subsequently  we  show several  parameters  and 
features of the performed tests. Finally we show the results. 
We call our proposal has been called  Entropic Evolutionary  
Clustering  (EEC).



4.1 The data set

Three  data sets are analyzed in this work. We shall call them 
“A”,  “B”  and  “C”  respectively.   Every set  is  composed  of 
vectors (in a 3D space) that belong to three different spheres 
which we call sphere 1, 2 and 3 respectively. There are 10,000 
vectors in each one of the spheres. They were generated from.

x=x
0

+r sin θ cosϕ (14)

y=y
0

+r sin θsin ϕ (15)

z=z
0

+r cos θ (16)

from uniformly distributed values for  r  [0,1)∈ ,  (0 ≤  ≤ 2πϕ  
and 0 ≤ θ ≤ π). For set A the three centers of the spheres were 
chosen so that the spheres would not intersect. In set  B, the 
chosen centers yield partially overlapping data. Finally, in set 
C, the spheres shared a common center. However, in the last 
set for sphere 1  r  [0,1)∈ ;  for sphere 2 r  [0,  0.666)∈ ;  for 
sphere 3 r  [0, 0.333)∈ . In this case, then, spheres 1, 2 and 3 
share the same space where the density of 2 is larger than that 
of 1 and the density of 3 is larger than the other two. Our 
intent  is  to  choose  vectors  in  set  A,  B  and  C  whose 
distribution is not uniform but Gaussian. To achieve this, we 
determined to divide the space of probabilities of a Gaussian 
curve in 20 equally spaced intervals. The area under the curve 
for a normal distribution with μ = 0 and σ = 1 between -4 and 
+4 is very closely equal to one. Therefore, it is easy to see that 
5%, of the observations will be between −4 and −1.654; 5%, 
will be between −1.654 and −1.280, etc. The required normal 
behavior  may  be  approximated  by  selecting  50  of  the 
uniformly distributed values from the interval  [−4,−1,654); 
another 50 from the  interval  [−1.654,−1.280), etc. In all we 
will end up with 1000 vectors for every sphere. These vectors 
will now be very closely Gaussian.  When data is  normally 
distributed, a Bayesian classifier is optimal. The behavior of 
one such classifier will serve as a base point. To stress: when 
the  distribution  of  the  data  set  to  classify  is  Gaussian,  a 
Bayesian  classifier  yields  the  best  theoretical  results  (by 
minimizing  the  probability  of  classification  error 
independently  of  the  degree  of  overlap  between  the 
distributions  of  the  clusters)  [7].  Hence,  we  resorted  to 
Gaussian  distributed  data  in  order  to  establish  a  behavior 
relative  to  the  best  theoretical  one  when  measuring  the 
performance of non-traditional methods. Our claim is that, if 
the methods perform satisfactorily when faced with Gaussian 
data, they will also perform reasonably well when faced with 
other possible distributions. That is, we wish to show that the 
results  obtained  with  non-traditional  methods  are  close  to 
those obtained with a Bayesian classifier for the same data set. 
This would mean that these results correspond to an efficient 
algorithm. The data sets are illustrated in Figure  6.

5 Results
The values of the parameters of VGA are given in Table 4. 
These values were determined experimentally. As mentioned 
above we use the English Alphabet to transform the original 
data set. The VGA was run 20 times (with different seeds of 
the pseudo random number generator) per data set. The same 
data sets was tested with K-Means [22],  Kohonen Maps [23] 
and  Fuzzy  C-Means [4].  Since  it  may  be  proven   that  a 
Bayesian Classifier  is optimal when the data's pdf is Gaussian 
[7],  we  include   a  comparison  with  such  a   Bayesian 
Classifier.   The  results  obtained  with  disjoint  clusters  are 
shown in Table 5. This allows us to see that the results of EEC 
are similar to those given by some alternative algorithms. The 
high effectiveness in all cases is due to the spatial distribution 
of data set. The results obtained with overlapping clusters are 
shown in Table  6  where  we can  see  that  the  effectiveness 
decreases significantly in general.

Table 4: Parameters Test
Parameter Name Values

N (Number of Individuals) 50

G (Generations) 4000

pm (Mutation probability) 0.00

pc (Crossover Probability) 0.99 0.99

 
However EEC showed better results than traditional methods 
and close results to Bayesian Classifier. The results obtained 
in the two last cases (overlapping and concentric clusters) are 
due to the fact that it is not possible to find a simple separable 
boundary. Therefore, the boundary decision is unclear and the 
vast majority of the clustering methods yield poor solutions. 
The  closeness  of  the  results  obtained  so  far   relative  to  a 
Bayesian  Classifier,  tells  us  that  our  approach  is  quite 
efficient.  In  future  works  we  will  report  on  experiments 
encompassing a wider range of data sets. 

Table 5: Results obtained with disjoint clusters data set
Algorithm Average Effectiveness

EEC 0.99

K-Means 0.98

Kohonen Maps 0.99

Fuzzy C-Means 0.98

Bayesian Classifier Effectiveness 0.99

Figure  6. Types of data set



Table 6: Results obtained with overlapping clusters data set
Algorithm Average Effectiveness

EEC 0.87

K-Means 0.45

Kohonen Maps 0.72

Fuzzy C-Means 0.15

Bayesian Classifier Effectiveness 0.89

Table 7: Results obtained with concentric clusters data set
Algorithm Average Effectiveness

EEC 0.71

K-Means 0.36

Kohonen Maps 0.38

Fuzzy C-Means 0.15

Bayesian Classifier Effectiveness 0.72

6 Conclusion
Following  the  minimum entropy  principle  we  employed  a 
genetic algorithm so that we were able  to explore the solution 
space  of  the  clustering  problem.  This  approach  resulted  a 
better  effectiveness  with different  data  sets  respect  to   K-
Means,  Kohonen Maps and  Fuzzy C-Means.  If we consider 
that Bayesian Classifier represents a theoretical limit then the 
most  interesting  result  is  the  nearness  of  EEC respect  this 
classifier.  Our method promises to be a feasible alternative to 
find non-spherical clusters due to the results obtained with the 
concentric clusters of the  data set C.  However, we require 
testing  several data sets that allow us to statistically ascertain 
that  our  method  is  good.  We  will  report  on  these  issues 
shortly.  Additionally, data preprocessing proved to be a good 
alternative to reduce the computational complexity when the 
dimensionality of the data set is fairly high.
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