Simulated Docking of Oseltamivir with the 1918 Pandemic Strain Influenza A/H1N1 Neuraminidase Active Site

Jack K. Horner
P.O. Box 266
Los Alamos NM 87544 USA

Abstract

Neuraminidases are glycoproteins that facilitate the transmission of the influenza virus from cell to cell. The neuraminidase inhibitors oseltamivir and zanamivir are currently the most widely used anti-flu therapeutics. Oseltamivir was ineffective against the dominant H1N1 strains in the 2008 flu season and decreasingly effective against the dominant influenza H1N1 mutants in the US in the 2009 "Spring/Fall" pandemic. Here I provide a computational docking analysis of oseltamivir with the active site of the neuraminidase of the 1918 strain (A/Brevig Mission/1/18 H1N1). The docking uses a Lamarckian genetic algorithm. The computed inhibitor/receptor binding energy suggests that oseltamivir would not be effective against that strain.

Keywords: Influenza, H1N1, neuraminidase, oseltamivir

1.0 Introduction

Neuraminidases are glycoproteins that facilitate the transmission of the influenza virus from cell to cell. The most widely used anti-influenza therapeutic, oseltamivir (Tamiflu™, [4]), was ineffective against the dominant H1N1 mutants in the 2008 flu season and was decreasingly effective against the dominant influenza mutant (Influenza A/H1N1) in the US in the 2009 "Spring/Fall" pandemic ([7]).

In the World Health Organization serotype-based influenza taxonomy, influenza type A has nine neuraminidase-related sero-subtypes, and these subtypes correspond at least roughly to differences in the active-site structures of the flu neuraminidases. The subtypes fall into two groups ([3]): group-1 contains the subtypes N1, N4, N5 and N8; group-2 contains the subtypes N2, N3, N6, N7 and N9. Oseltamivir was designed to target the group-2 neuraminidases.

The available crystal structures of the group-1 N1, N4 and N8 neuraminidases ([1]) reveal that the active sites of these enzymes have a very different three-dimensional structure from that of group-2 enzymes. The differences lie in a loop of amino acids known as the "150-loop", which in the group-1 neuraminidases has a very different three-dimensional structure from that of group-2 enzymes. The differences lie in a loop of amino acids known as the "150-loop", which in the group-1 neuraminidases has a very different three-dimensional structure from that of group-2 enzymes. The 150-loop contains an amino acid designated Asp 151; the side chain of this amino acid has a carboxylic acid that, in group-1 enzymes, points away from the active site as a result of the 'open' conformation of the 150-loop. The side chain of another active-site amino acid, Glu 119, also has a different conformation in group-1 enzymes compared with the group-2 neuraminidases ([8]).

The Asp 151 and Glu 119 amino-acid side chains form critical interactions with neuraminidase inhibitors. For neuraminidase subtypes with the "open conformation" 150-loop, the side chains of these amino acids might not have the precise alignment required to bind inhibitors tightly ([8]). The active site
of the 1918 strain has the 150-loop configuration.

The difference in the active-site conformations of the two groups of neuraminidases may also be caused by differences in amino acids that lie outside the active site. This means that an enzyme inhibitor for one target will not necessarily have the same activity against another with the same active-site amino acids and the same overall three-dimensional structure ([17]).

2.0 Method

The general objective of this study is straightforward: to computationally assess the binding energy of the active site of crystallized 1918 pandemic strain neuraminidase with oseltamivir. Unless otherwise noted, all processing described in this section was performed on a Dell Inspiron 545 with an Intel Core2 Quad CPU Q8200 (clocked @ 2.33 GHz) and 8.00 GB RAM, running under the Windows Vista Home Premium (SP2) operating environment.

Protein Data Bank (PDB) 3BEQ is a structural description of most of the crystallized neuraminidase of Influenza A/Brevig Mission/1/18 H1N1 (the principal 1918 pandemic mutant). 3BEQ consists of two identical chains, designated Chain A and Chain B.

3BEQ was downloaded from PDB ([6]) on 31 January 2011. A PDB description of oseltamivir was extracted from PDB 2HU4 using Microsoft Word. The automated docking suite AutoDock Tools v 4.2 (ADT, [9]) was used to perform the docking of oseltamivir to the receptor. More specifically, in ADT, approximately following the rubric documented in [12],

-- Chain B, and the water in Chain A, of 3BEQ were deleted
-- Chain A's active-site was extracted.
(3BEQ identifies the active site of Chain A as 14 amides: ARG118, GLU119, ASP151, ARG152, ARG156, TRP178, ARG224, GLU227, SER246, GLU276, GLU277, ARG292, ARG371, and TYR406.)

-- the hydrogens, charges, and torsions in the ligand and active site were adjusted using the ADT-recommended defaults and finally, the ligand, assumed to be flexible wherever that assumption is physically possible, was auto-docked to the active site, assumed to be rigid, using the Lamarckian genetic algorithm implemented in ADT.

The ADT parameters for the docking are shown in Figure 1. Most values are, or are a consequence of, ADT defaults.
3.0 Results

The interactive problem setup, which assumes familiarity with the general neuraminidase "landscape", took about 20 minutes in ADT; the docking proper, about 25 minutes on the platform described in Section 2.0. The platform's performance monitor suggested that the calculation was more or less uniformly distributed across the four processors at ~25% of peak per processor (with occasional bursts to 40% of peak), and required a constant 2.9 GB of memory.

Figure 2 shows the oseltamivir/receptor energy and position summary produced by ADT. The estimated free energy of binding is ~ -6.8 kcal/mol; the estimated inhibition constant, ~11 microMolar at 298 K.

<table>
<thead>
<tr>
<th>MODEL</th>
<th>USER</th>
<th>USER</th>
<th>USER</th>
<th>USER</th>
<th>USER</th>
<th>USER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Run = 3</td>
<td>Cluster Rank = 1</td>
<td>Number of conformations in this cluster = 4</td>
<td>RMSD from reference structure = 127.033 A</td>
<td>Estimated Free Energy of Binding = -6.77 kcal/mol ([-(1)+(2)+(3)-(4)])</td>
<td>Estimated Inhibition Constant, Ki = 10.92 (\mu)M (micromolar) ([\text{Temperature = 298.15 K}])</td>
</tr>
<tr>
<td>USER</td>
<td>(1) Final Intermolecular Energy = -8.86 kcal/mol</td>
<td>(2) Final Total Internal Energy = -0.83 kcal/mol</td>
<td></td>
<td>vDW + Hbond + desolv Energy = -5.53 kcal/mol</td>
<td>Electrostatic Energy = -3.32 kcal/mol</td>
<td></td>
</tr>
</tbody>
</table>
USER (3) Torsional Free Energy = +2.09 kcal/mol
USER (4) Unbound System's Energy [=-(2)] = -0.83 kcal/mol
USER
USER
USER
USER DPF = 3BEQ.dpf
USER NEWDPF move 3BEQ_Ligand.pdbqt
USER NEWDPF about 0.529200 81.163696 109.114304
USER NEWDPF tran0 8.551498 16.101909 -1.664349
USER NEWDPF axisangle0 -0.077969 -0.447424 -0.890917 157.187877
USER NEWDPF quaternion0 -0.076430 -0.438587 -0.873322 0.197761
USER NEWDPF dihe0 -123.77 137.09 57.32 -80.84 72.77 -173.98 76.38

USER

ATOM 1 C2 G39 A 800 11.180 16.277 -1.152 0.19 +0.07 +0.091 127.033
ATOM 2 C3 G39 A 800 10.774 17.200 -2.439 0.19 +0.01 +0.050 127.033
ATOM 3 C4 G39 A 800 9.409 16.835 -3.177 0.19 +0.03 -0.03 +0.209 127.033
ATOM 4 C5 G39 A 800 8.339 16.597 -2.111 0.26 +0.26 +0.143 127.033
ATOM 5 C6 G39 A 800 8.792 15.389 -1.175 0.14 +0.05 +0.147 127.033
ATOM 6 C7 G39 A 800 10.177 15.431 -0.587 0.16 +0.03 +0.049 127.033
ATOM 7 O7 G39 A 800 7.734 15.216 -0.127 0.28 +0.37 +0.379 127.033
ATOM 8 C8 G39 A 800 7.830 14.301 1.041 0.14 +0.12 +0.121 127.033
ATOM 9 C9 G39 A 800 7.539 14.896 2.446 0.27 +0.01 +0.027 127.033
ATOM 10 C91 G39 A 800 8.557 15.914 2.989 0.34 +0.00 +0.007 127.033
ATOM 11 C81 G39 A 800 6.902 13.148 0.710 0.14 +0.02 +0.027 127.033
ATOM 12 C82 G39 A 800 6.273 12.570 1.937 0.22 +0.01 +0.007 127.033
ATOM 13 N5 G39 A 800 7.073 16.258 -2.668 0.10 +0.07 -0.352 127.033
ATOM 14 H5 G39 A 800 6.243 16.838 -2.746 0.31 -0.10 +0.163 127.033
ATOM 15 C10 G39 A 800 7.029 15.199 -3.701 0.27 +0.15 +0.214 127.033
ATOM 16 C11 G39 A 800 5.741 14.944 -4.393 0.41 +0.15 +0.117 127.033
ATOM 17 O10 G39 A 800 8.001 14.420 -3.927 0.75 -0.34 -0.274 127.033
ATOM 18 N4 G39 A 800 9.048 17.944 -4.058 0.03 +0.09 -0.073 127.033
ATOM 19 H42 G39 A 800 9.432 18.836 -3.744 0.06 -0.66 +0.274 127.033
ATOM 20 H41 G39 A 800 9.334 17.707 -5.009 0.15 -0.14 +0.274 127.033
ATOM 21 H43 G39 A 800 8.059 18.187 -3.996 0.35 -0.76 +0.274 127.033
ATOM 22 C1 G39 A 800 12.507 16.289 -0.582 0.27 +0.22 +0.177 127.033
ATOM 23 O1B G39 A 800 13.039 17.366 -0.157 0.02 -0.91 -0.648 127.033
ATOM 24 O1A G39 A 800 13.140 15.196 -0.518 0.24 -1.23 -0.648 127.033

Figure 2. ADT's oseltamivir energy and position predictions.

Figure 3 is a rendering of the active-site/inhibitor configuration computed in this study.
Figure 3. Rendering of oseltamivir computationally docked with the active site of PDB 3BEQ. The inhibitor is shown in stick form. Only the interior, inhibitor-containing region of the molecular surface of the active site can be compared to in situ data: the surface distal to the interior is a computational artifact, generated by the assumption that active site is detached from the rest of the receptor.

4.0 Discussion

The method described in Section 2.0 and the results of Section 3.0 motivate several observations:

1. The inhibition constant computed in this study (~11 microMolar at ~298 K) is comparable to the inhibition constant of oseltamivir/neuraminidase interactions that are not clinically effective ([11], [13]). This suggests that oseltamivir would not be effective against the principal 1918 pandemic mutant, A/Brevig Mission/1/18 H1N1.

2. The docking study reported here assumes that the receptor is rigid, and as a result, calculation does not reflect any energy contributions of receptor "flexing" to the interaction of the ligand with native unliganded receptor. Future work will analyze the docking with a flexible receptor.

3. The analysis described in Sections 2.0 and 3.0 assumes the neuraminidase is in a crystallized form (isolated at ~278 K). In situ, at physiologically normal temperatures (~310 K), the receptor is not in crystallized form. The ligand/receptor conformation in situ, therefore, may not be identical to their conformation in the crystallized form.

4. Minimum-energy search algorithms other than the Lamarckian genetic algorithm used in this work could be applied to this docking problem. Future work will use Monte Carlo/simulated annealing algorithms.

5. A variety of torsion and charge models could be applied to this problem, and future work will do so.
5.0 Acknowledgements

This work benefited from discussions with Tony Pawlicki. For any problems that remain, I am solely responsible.

6.0 References

[13] Cheng Y and Prusoff WH. Relationship between the inhibition constant (K_i) and the concentration of inhibitor which causes 50 per cent inhibition (I_50) of an enzymatic reaction. Biochemical Pharmacology 22 (December 1973), 3099–3108. doi:10.1016/0006-2952(73)90196-2.