
A Monitoring System Based on Nagios for Data Grid

Environments
✽

Hsiu-Lien Yeh
1
, Yan-Fu Chen

1
, Tsung-Tai Yeh

2
, Pei-Chi Huang

2
, Shin-Hao Liu

2
, Hsin-Wen Wei

2a
 and

Tsan-sheng Hsu
2

1 Institute of Information System and Applications, National Tsing Hua University, Taiwan
2 Institute of Information Science, Academia Sinica Taipei, Taiwan

✽

This research was supported in part by the National Science Council,Taiwan, R.O.C., under Grant NSC 95-3114-P-001-007-MY3 and NSC99-2631-H-

001-024.
a Corresponding author: hwwei@iis.sinica.edu.tw;

Institute of Information Science, Academia Sinica, No 128, Section 2, Academia Road, Nankang, Taipei, Taiwan, R.O.C;

Phone: 886-2-2788-3799 ext.2471; Fax: 886-2-2782-4814

Abstract - The amount of digital data in today’s society is

already enormous and it will continue to grow exponentially.

Therefore, it is necessary to devise new ways to preserve and

manage the data effectively and efficiently. SRB (Storage

Resource Broker), and its extension iRODS (the Integrated

Rule-Oriented Data System), are data grid technologies for

managing colossal amounts of data. In a distributed

environment, monitoring systems oversee the operation of

computing systems. The monitoring service is crucial because

it must ensure a high-quality computing environment and

provide reliable services. In this paper, we introduce a

monitoring system called SIAM, which is based on Nagios.

SIAM supports full monitoring services for SRB/iRODS-based

systems, including fault-tolerance and notification functions.

This study focuses on extending existing components and

notification functions to satisfy clients’ needs and improve our

system’s failover scheme. The results of experiments show that

the proposed system is feasible for cloud storage services, and

it is adaptable robust, and responsive in the face of system

failures. Overall, SIAM enhances the reliability of

SRB/iRODS based systems significantly.

Keywords: Monitoring; Distributed system; Fault- tolerance

1 Introduction

 As the digital era continues to evolve, the volume of

digital information will grow exponentially. According to the

International Data Corporation (IDC), on a global level, the

amount of digital information doubles each year [1]. As a

result, a great deal of research effort has focused on data

preservation and management issues. How to manage, store,

maintain and understand the collected data are critical issues.

In recent years, data grid systems have been used extensively

to handle huge amounts of data, and the grid concept may

provide solutions to the above-mentioned issues. According

to a number of studies [2][3][4], SRB and iRODS are two of

the most widely used data grid systems. The architecture of

iRODS is modeled on that of SRB, and combined

SRB/iRODS systems are used in many academic projects, as

well as in national and international research institutions.

Such systems facilitate improved information collaboration

and management of mass data storage [5]. Additionally, a

monitoring system is usually designed to address certain

stability and availability issues in a data system; hence, many

research institutes and companies devote considerable

resources to designing highly efficient monitoring systems

[6][7][8]. The purpose of a monitoring system is to detect

system faults immediately. In cases where the system has

failed or is about to fail due to excess information or the

computational load, e.g., disk corruption, overloading, or

communication hot spots, a monitoring system sends out a

warning signal, and thereby prevents a system failure or at

least reduces the system’s downtime. The monitoring system

also ensures that grid computing services are not interrupted;

therefore, the risk of losing data after a breakdown is

minimized, service quality is improved, and clients are

satisfied. Consequently, such systems play a major role in

helping service providers to ensure the reliability and

usability of their services. In addition, a failover handler is an

essential mechanism that ensures the operation of monitoring

systems is not interrupted.

Several monitoring systems have been designed for

various computing environments. Generally, the systems can

be classified as built-in systems or distributed systems. The

first type is an application that runs in an operating system,

such as a Unix-like system [9], which normally contains a

monitoring subsystem that analyses a computer’s current

operational status. The second type is a monitoring host that

is capable of observing various machines, such as Nagios,

Ganglia, Cacti, and Hawkeye [10][11][12][13],

simultaneously. In both cases, a monitoring system requires

an active response mechanism for different devices, so that it

can quickly identify potential failures and transmit warning

messages. Monitoring systems must deal with a variety of

dynamic resources available in a distributed environment;

thus, special mechanisms must be designed and incorporated

into the system to satisfy the specific requirements of the

environment.

Some researchers, such as Zanikolas [6] and Massie [14],

have observed that designers typically need to consider

several features before implementing a monitoring system.

According to our survey, the key design features of

monitoring systems include scalability, extensibility,

portability, robustness, manageability, reasonable overhead,

and security. After conducting a thorough survey, we chose

the Nagios open source program for our implementation.

Nagios is utilized by several monitoring systems, such as

GridICE and EGEE [15][16][17], and is supported by a

strong open source community, e.g. NRPE, NDOUtils, and

PNP [17][18][19]. However, Nagios does not support the

SRB/iRODS system or the graphical visualization of the

Nagios front-end website; instead it just provides regular

notifications via E-mail. Besides, the Nagios monitoring

system causes malfunctions and stops entirely if an error

occurs in one of the monitoring hosts. This problem could be

avoided if the system contained an effective backup

mechanism, because a backup monitoring host would take

over immediately and the service would not be interrupted.

Nagios is integrated with the monitoring architecture,

which oversees the SRB/iRODS system and servers in the

distributed environment. The SIAM system, which works

independently of the computing system, tracks the activities

of servers and the computing system, and uses several real-

time notification services to inform system administrators

when faults occur. Since SIAM utilizes Nagios open source

software, it can be extended and maintained based on the

requirements of the system components and services. As well

as being extendable, it is readily available, efficient, and easy

to integrate. SIAM provides an appropriate infrastructure for

monitoring a data system environment; hence, it can easily

detect the real-time status of the servers and systems. It also

contains a fully tested fault-tolerance mechanism and only

incurs a small additional overhead. When a system

malfunctions suddenly or shuts down, SIAM prevents a total

failure by enabling the system to reboot and continue

operations immediately. In this paper, we implement a

monitoring system based on Nagios for a grid environment,

and test its ability to extend the monitoring function.

The remainder of this paper is organized as follows. In

Section 2, we review existing monitoring system architectures.

In Section 3, we describe the proposed extension of the

Sinica SRB/iRODS Monitoring System; and in Section 4, we

evaluate the system’s performance. Section 5 contains some

concluding remarks.

2 Survey of related software

 In this section, we compare four widely used monitoring

systems, and discuss their limitations. We discuss Nagios in

more detail because it provides the basis for our system.

Three known extensions of Nagios are also considered.

Monitoring systems like Ganglia, Cacti, Hawkeye, and

Nagios provide basic functionality for monitoring hosts,

services, and resources. We describe those systems below.

Monitoring

System
Advantages

Ganglia

Scalable architecture (clusters in particular)

Graphic support

Basic historical data analysis

Cacti
Excellent graphic displays

Web management interface

Hawkeye

Notification mechanism

Multiplatform

Possible custom-made sensors

Nagios

Excellent extensibility

Notification mechanism

Low overload

Monitoring

System
Disadvantages

Ganglia
No web management interface

Complicated system settings

Cacti
Poor extensibility

No notification mechanism

Hawkeye
Poor front-end

The system is under-developed

Nagios
No graphic display support

No web management interface

Monitoring

System
Key Design Features

Ganglia

Scalability

Robustness

Reasonable Overhead

Portability

Cacti

Manageability

Robustness

Overhead

Hawkeye

Scalability

Extensibility

Overhead

Nagios

Scalability

Extensibility

Robustness

Security

Overhead

Ganglia, an open source distributed monitoring system

developed by the UC Berkeley Millennium Project [11][14],

has a hierarchical architecture and relies on a multicast-based

announce protocol to monitor the states of systems. It also

uses technologies like XML for data representation, PHP for

web development, and RRDTool (Round Robin Database) for

data visualization. RRDTool is a popular application for

storing time series data in graphic form [9][20].

Cacti is a network monitoring system that presents the

system performance in graphic form [12]. It utilizes the

SNMP protocol to collect information from various

monitoring machines, RRDTool for the graphical

presentation of monitoring information on web homepages,

and a MySQL database for data storage.

Hawkeye, developed by the Condor group, is designed to

monitor distributed systems [8][13]. It is implemented in two

stages. First, using the Condor ClassAd Language, Hawkeye

identifies problems based on the attribute values of the

resources, namely, a ClassAd. Second, the manager can

collect user information and deal with user inquiries when a

problem occurs. Because Hawkeye uses Condor ClassAd

Table 1. The comparison of different monitoring system.

Language and ClassAd as building blocks, managers find the

system easy to operate.

Nagios is a widely used and scalable monitoring tool

developed by Ethan Galstad in 1999 [10]. It is an open source

software framework under General Public License (GPL),

and it provides many standard and specialized plugins for

grid systems.

Table 1 compares the advantages and disadvantages of the

four systems described above. Ganglia’s installation

procedure is quite complicated for users; Cacti has less

configuration extensibility; and Hawkeye is limited because it

is under-developed. In contrast, Nagios is easier implement,

more extensible and easier to maintain. Thus, we selected

Nagios as our model framework. For a more extensive

introduction to these systems, readers may refer to the

following works [8] [9] [10] [11] [12] [13] [14].

2.1 Nagios

 The Nagios architecture involves a client-server layout, so

it is easy to incorporate customized plugins, and system

developers can try to satisfy diverse requirements by

modifying or improving the system's functionality. The main

functions of the Nagios system are: monitoring the utilization

of several grid middleware services and infrastructures,

helping web interface-enabled users to view generated reports

and monitor tuning, supporting widely used notification

mechanisms (E-mail), and supporting monitoring with

automatic event handlers. Nagios Process Check Logic and

Nagios Remote Plugin serve as add-ons. Plugins are written

in C and consist of execution scripts. Based on the hardware

and software characteristics, system administrators can allow

other applications as add-ons to the basic plugins. Nagios

provides system administrators with five mechanisms for

communicating with different types of monitoring apparatus.

2.2 Extension of Nagios

NRPE (Nagios Remote Plugin Executor) is a basic secure

tool set that enables monitoring of remote hosts [17], and is

used to drive Nagios Plugin applications on remote hosts.

NDOUtils is an add-on application for the Nagios system.

It stores profile parameters and the monitoring records of the

system’s status in a database [18].

The Nagios add-on PNP application “PNP-is-not-

PerfParse” provides graphical functions to display monitored

information [19]. PNP analyzes Nagios’ monitoring services

and generates performance data. It also stores the monitoring

information automatically by using RRDtool, which helps in

collecting data and displaying various graphics. Graphical

tools can also be configured by PNP software.

2.3 Limitations of software based on Nagios

 Software based on Nagios has the following limitations:

• It is not specifically designed for SRB/iRODS systems.

• It only provides a web interface to view monitored

information. It is difficult for system administrators to use

because the interface lacks graphical support and it cannot

be modified.

• It sends a message if an error occurs, but it is difficult for

administrators to distinguish between high priority error

messages that need immediate attention and less urgent

warnings. That is, users need to be able to customize the

levels of error messages according their needs.

• It only offers one way to receive notifications, i.e.,

through e-mail.

• It lacks a built in mechanism for fault tolerance.

We integrate a monitoring system to overcome these

limitations.

3 Sinica SRB/iRODS monitoring system

 SIAM was built for the data preservation systems

developed for the Digital Archives Remote-Backup (DARB)

project [21][22] as part of TELDAP (Taiwan e-Learning and

Digital Archives Program) [23]. The design of the data

preservation system in DARB is based on SRB/iRODS

middleware. To provide monitoring services for the data

preservation system, we proposed using SIAM, and based the

design of our system on the features of SRB/iRODS. We

describe the features and components of the SIAM system in

the following subsections.

3.1 Basic features

 We use Nagios as the core system in the design of SIAM

and, based on the features of SRB/iRODS, we offer various

components as extensions of the monitoring system. Figure 1

illustrates the utilization of SIAM in a data grid environment.

We extend the Nagios monitoring service to monitor the

overall data preservation system, and improve the main

features of the monitoring system to provide the following

functions: service availability checks, system error detections,

and resource management.

Figure 1. The configuration of SIAM in a data grid

environment.

3.1.1 Service availability checks

 The monitoring system periodically tests the accessibility

of the data preservation server. If a login operation fails, the

monitoring application will wait for a period of time and then

try to perform the login operation again. The process is

repeated up to three times, after which the monitoring system

immediately notifies the system administrators of the failed

login attempt.

3.1.2 System error detections

 The data preservation system keeps track of error

messages and system processes and stores the information in

log files. SIAM parses the files so that the monitoring system

can identify important messages about the computing system

and related components in the preservation system. When

SIAM finds error messages, it identifies the relevant

information and notifies the system administrators. Thus, the

parser tool helps system administrators trace faults in the

system and take remedial action immediately. The parser tool

also allows users to define the rules to specify the tasks that

should be executed if an error occurs. In summary, the parser

tool is responsible for: periodically parsing the log files

created by the systems and servers on the monitoring host;

filtering out error messages or error strings in the log files;

and recording detected errors or error strings, and sending

warning messages to the system administrators.

3.1.3 Resource management

 The data preservation system provides users with a logic

space resource to store data. It uses a disk array as a storage

space, and SIAM monitors the used capacity of all disk

partitions simultaneously. The number of monitoring disks in

the SIAM system depends on the size of each disk array. If

the used disk space exceeds a pre-defined limit, the system

will display a “Warning” or “Critical” signal. Users can

customize the threshold value of each used disk space and the

displayed signals according to their needs.

3.2 Advanced features of SIAM system

3.2.1 Real-time notification services

 In general, Nagios does not support the SRB/iRODS

system, and it only provides notifications via E-mail message.

In contrast, our monitoring system utilizes various

communication protocols to provide a notification service,

e.g., e-mail, mobile phones, web pages, and other on-demand

services. SIAM can track the status of all systems and servers

in the cloud, and detect errors that occur in the data

preservation system. It then alerts system administrators via

real-time cloud notification services. SIAM enhances the

notification mechanism by supporting other real-time cloud

notification services, such as Windows Live Messenger

(MSN) and Short Message Service (SMS) on mobile phones.

As defined in the system configuration file, when SIAM

discovers an error message, the monitoring system orders the

MSN robot to transmit a message to the Microsoft MSN

server via the Microsoft Notification Protocol (MSNP), and

send a message to the specified MSN account. It can also use

Perl script to send a message to the system administrator’s

mobile phone. SIAM ranks the levels of error messages by

their importance, and sends corresponding notification

messages to the system administrators. For example, when a

system server fails or shuts down unexpectedly, SIAM

dispatches a critical message to the administrator’s mobile

phone immediately. At the same time, the system

administrator will receive an error message vial MSN or e-

mail. These real-time notification services help administrators

manage their systems effectively.

3.2.2 Fault-tolerance scheme

 The SIAM monitoring system works independently of

grid systems and provides a fault-tolerance mechanism to

improve the reliability of monitoring services. Since the

Nagios system does not support such a mechanism, SIAM

implements a failover handler as the fault-tolerance scheme,

as shown in Figure 2. The failover handler operates as

follows. First, all files are backed up from the SIAM master

host to the slave host, which is monitored by the SIAM

monitoring system, as shown in steps 1 and 2. After installing

the MySQL database between the master host and the slave

host, both hosts execute their MySQL replication applications

via the database. This ensures that the information backed up

between the two hosts is consistent (step 3). If SIAM detects

a critical fault or the master host fails, the slave host will send

notification messages to the system administrators by e-mail,

MSN, or SMS (step 4). The SIAM backup file is then

decompressed automatically, and the slave host is substituted

for the master host. Specifically, the slave host reboots and

takes over as the new master host (steps 6 and 7). In this way,

the failover handler ensures that 1) the monitoring service is

not interrupted; 2) system administrators receive warning

messages immediately so that they can take remedial action;

and 3) data is not lost in the event of a serious system failure.

The use of master and slave hosts results in a lower overhead

and enhanced scalability in the distributed system.

Figure 2. The SIAM fault-tolerance framework

3.3 SIAM system components

 SIAM is designed for an SRB/iRODS-based data

preservation system. In this subsection, we present the

components of SIAM by mapping each one to a specific

monitoring phase. The system contains five levels, and

utilizes the Nagios Core and the standard interface to display

data about various resources, services, and hosts (Figure 3).

Figure 3. The components of SIAM monitoring system.

Level 1: This level stores the information gathered from

hosts, services, and external applications in the database.

Thus, it provides a pool of historical and periodical

monitoring information, which is stored in the database. Note

that the SIAM system, which can be deployed as independent

server machine in a distributed environment, records the

activities of the server, database, and data preservation system

and notifies system administrators when errors occur.

Level 2: Level 2 contains the main applications and

communication protocols that support data transfer. To

ensure that users can connect to the SRB/iRODS server via a

remote network and transfer data, the monitoring application

must connect with the SRB/iRODS system by using remote

access. Consequently, we adopt the Nagios Remote Plugin

Executor (NRPE) to communicate with remotely monitored

machines. The monitoring system also utilizes the NDOMOD

Event Broker module and the NDO2DB Daemon in

NDOUtils, which is an add-on application for the Data

Collector. The NDOMOD module extracts data from Nagios

and converts it to TCP socket format. The NDO2DB Daemon

then stores the data in a database.

Level 3: The third level of the structure is the system

kernel. The Nagios Core has five interactive components:

Performance Logic, Monitoring Logic, Notification Logic,

Statistic Logic, and External Command. Based on the Nagios

configuration file for implementing applications, the system

ensures that operations conform to the appropriate system

settings.

Level 4: This level contains an application interface that

communicates with the Nagios Core to control the monitoring

services, display monitoring information on web pages, and

send notification messages via various communication

channels. Here, the monitoring system uses the graphical

interface to present system statistics through the PNP

application. If the monitored data, such as the CPU load and

disk utilization, can be displayed and checked on the screen,

system administrators can follow changes in each system via

the monitoring service. SIAM enables clients to manage

information without installing specific software.

Level 5: The fifth level contains an application interface

that communicates with the Nagios Core to control the

monitoring services, display monitoring information on web

pages, and send notification messages via various

communication channels. The system’s web page displays

the current monitoring information of the entire system.

Furthermore, users can use the notification services via a

Web interface and receive notifications via e-mail, MSN, or

SMS.

4 Experiments

 In this section, we describe the experimental environment

and implementation of the SIAM system. We also

demonstrate the scalability of the components in the

monitoring system and evaluate the system’s performance.

4.1 Experimental environment

The experimental environment contains a master host, a

slave host, and other nodes that are monitored by the master

host in a distributed environment. Each monitoring host is

equipped with a Xeon 3.50GHz CPU and 4G memory, so its

computing power is sufficient to handle a large number of

nodes. In a monitoring environment, the hardware of each

node includes IBM System x3650, Cisco Catalyst 3750

switch, APC Smart-UPS RT 7500 UPS, and disk array

10TB~80TB. In addition, different types of software, such as

SRB, iRODS, and Oracle10g R2, are installed on each node.

4.2 SIAM monitoring system demonstration

In this section, we consider the key functions of the SIAM

monitoring system, namely, service availability checks,

resource allocation management, system error detection and

the failover handler mechanism. As shown in Figure 4, when

a provided service in the “th” node cannot be accessed, a

CRITICAL message is displayed in the seventh row of the

SIAM web page. The user can then click on the hyperlink

“th,” to obtain more detailed information, such as the service

name, error timestamp, and status description (see Figure 5).

Figure 6 shows an example of a CRITICAL error message

generated by SIAM when monitoring the grid system installed

on the “ncl” host. The message is forwarded to the e-mail and

MSN accounts of the system administrators via the real-time

notification system. Figure 7 displays information about the

resources used by the monitored nodes, e.g., the CPU load,

disk utilization, and status of the Oracle database.

The SIAM system’s user-friendly web interface provides

general host information, service information, and other data,

as shown in Figure 8(a). It enables system administrators to

configure SIAM, and provides important information for

users, including the monitoring status of each category, a list

of executed applications in the system, and a message and

notification history record. If the master host fails to monitor

distributed nodes, the slave host automatically takes over the

monitoring duties and acts as the master host. To implement

the failover handler, the slave host first detects the system’s

status through the CRITICAL error messages provided by the

service availability check function. Next, the system

administrators are sent a real-time cloud notification via e-

mail, MSN and SMS. Then, the slave host replaces the master

host and takes over the monitoring services, as shown in

Figure 8(a) and (b).

Figure 4. Services availability checks.

Figure 5. SMS, MSN and E-mail notification dialogue.

Figure 6. Real-time notification message dialogue.

Figure 7. Resource management.

Figure 8. (a) The web page provided by the master host.

(b) The web page provided by the slave host after failover.

4.3 Performance evaluation

Several important factors must be considered when

evaluating the performance of SIAM, including resource

utilization, error notification time, and system robustness.

Resource utilization means the amount of the monitoring

host’s operating space that SIAM occupies while executing

tasks. The notification time, which is set by the SIAM system,

is the time required to dispatch notification messages when a

system server fails. Robustness refers to a slave host’s ability

to take over from a master host in the event of a failure.

The first experiment considers the resource utilization of

SIAM. In the event that the master host generates an

unexpectedly large number of CRITICAL messages (such as

50,100, 200, or 300, as shown in Table 2), the operation

consumes less than 1.0% of the CPU resources and 0.1% of

the memory. In Figure 9, we plot the percentage average CPU

usage and memory usage against the number of messages.

The graph shows that, although the volume of messages

increases significantly, the average resource consumption is

relatively small. Furthermore, since monitored nodes use the

Nagios NRPE command, SIAM occupies less system space,

which in turn reduces the system overhead.

Table 2. The simulation results of resource utilization.

Monitoring

Host

Resource Utilization

50

Critical

Messages

100

Critical

Messages

200

Critical

Messages

300

Critical

Messages

CPU

Utilization
0.3% 0.3% 0.5% 0.7%

Memory

Utilization
0.1% 0.1% 0.1% 0.1%

Figure 9. SIAM resource utilization.

The second experiment considers the notification time.

One advantage of SIAM is that it can be customized to send

out messages at different rates. In this experiment, the

monitoring time interval is set at 60 minutes; that is, the

system only checks for errors every 60 minutes. When the

SIAM host detects a system failure in a monitored host,

depending on the severity of the error, SIAM should notify

the system administrators as user’s required after the failure is

detected. For example, if SIAM is configured to notify system

administrators within 3 minutes of detecting a failure and the

monitoring time interval is 60 minutes, then, in the worst case,

SIAM will dispatch an alert message 62 minutes and 59

seconds (3779 seconds) after an error occurs. In the best case,

where an error occurs exactly at the beginning of an interval,

SIAM will respond within three minutes (180 seconds). When

SIAM dispatches an alert, system administrators are notified

immediately (in less than one minute) via real-time cloud

services, such as MSN, SMS and e-mail. Generally, these

three methods are equally fast. SMS is particularly convenient

since mobile devices are portable, so administrators can

receive notifications anytime, anywhere. Table 3 summarizes

the notification times and notified service transfer times in the

experiment.

The third experiment examines the robustness of the

failover scheme in terms of the failover time (Table 3). Here,

we assume that the monitoring time interval is ten minutes,

and the degree of urgency of the error message is set at level

A. In SIAM, system damage is classified into three levels (A,

B, and C) with A being the most critical level. If the SIAM

slave host detects the failure of the SIAM master host, it will

notify the system administrators within three minutes.

Meanwhile, the slave host will take over the monitoring

services of the master host and reorganize the monitoring

system. In our experiment, the entire process took

approximately twelve seconds (system failover time). Overall,

the results of the three experiments show that the SIAM

monitoring system is robust and it can provide real-time

notifications with a low overhead.

Table 3. Simulation of the SIAM system under various

execution scenarios.

Experiment Execution Scenarios
Time

(seconds)

Notification Time Worst condition 3779

Notification Time Best condition 180

Transfer Time of

Notified Services

MSN, E-mail, SMS

(average)
7

Failover Time Level A of error message 12

5 Conclusions and future work

 In this paper, we discuss how SIAM enhances the

monitoring mechanisms of the SRB/iRODs system by

incorporating several open source components of Nagios. We

find that SIAM provides clients with more flexibility and

greater control over their monitored networks because it

offers both real-time notification services and a fault-

tolerance mechanism. SIAM utilizes multiple communication

modes when alerting administrators of system errors, all of

which are customizable according to their severity. SIAM

adds functionality without adding unnecessary infrastructure.

Furthermore, the SIAM system’s fault-tolerance

mechanism helps prevent data loss in the event of a serious

system failure. The use of master and slave hosts results in

lower overheads and enhanced scalability of the distributed

system. Combined, these features ensure not only this

minimized overhead and lower costs, but also increased

robustness and alert administrators. In the future, we will

explore more advanced applications of the SIAM system,

including security auditing and resource performance tuning.

We also plan to extend the functionality of SIAM to fit with

other data transfer systems or protocols and incorporate

additional cloud computing services.

6 References

[1] J. Gantz, C. Chute, Al. Mafrediz, S. Minton, D. Reinsel,

W. Schlichting, A. Toncheva, “The Diverse and

Exploding Digital Universe: An Updated Forecast of

Worldwide Information Growth through 2011,” white

paper, International Data Cooperation, Framingham,

MA, 2008.

[2] SRB: http://www.sdsc.edu/srb/index.php

[3] iRODS: http://www.irods.org

[4] C. Baru, R. Moore, A. Rajasekar, M. Wan, “The SDSC

Storage Resource Broker,” CASCON’98 Conference,

Nov.30-Dec.3, 1998, Toronto, Canada.

[5] R.W. Moore, “Managing Large Distributed Data Sets

Using the Storage Resource Broker,” ITEA Journal of

Test and Evaluation, 2007.

[6] S. Zanikolas, R. Sakellarios, “A taxonomy of grid

monitoring systems,” Future Generation Computer

Systems, vol. 21, 2005, pp. 163-188.

[7] A. Cooke, A. Gray, W. Nut, A. Cooke, A. Gray, W.

Nutt, R. Cordenonsi, R. Byrom, L. Cornwall, A. Djaoui,

L. Field, S. Fisher, S. Hicks, J. Leakey, R. Middleton, A.

Wilson, X. Zhu, N. Podhorszki, B. Coghlan, S. Kenny,

D. O’Callaghan and J. Ryan, “The relational grid

monitoring architecture: mediating information about the

grid,” Jounal of Grid Computing, vol. 2, Dec. 2004,

pp.323-339.

[8] X. Zhang, J. Freschl, and J. Schopf, “A Performance

Study of Monitoring and Information Services for

Distributed Systems,” In Proceedings of the 12th IEEE

International Symposium on High-Performance

Distributed Computing (HPDC-12), June 2003.

[9] S. Zdenko, R. Branimir, “Monitoring systems: Concepts

and tools,” 2004.

[10] Nagios:http://www.nagios.org

[11] Ganglia: http://ganglia.sourceforge.net.

[12] Group, T. C. CACTI:

http://www.cacti.net/what_is_cacti.php

[13] Hawkeye :http://www.cs.wisc.edu/condor/hawkeye

[14] M.L. Massie, B. N. Chun, D. E. Culler, “The ganglia

distributed monitoring system: design, implementation,

and experience,” Parallel Computing, vol. 30, 2004, pp.

817-840.

[15] S. Andreozzi, N.De Bortoli, S.Fantinel, A.Ghiselli,

G.Tortone, C.Vistoli, “GridICE: a monitoring service for

the Grid,” Future Generation Computer Systems Journal,

2005, pp. 559-571.

[16] E. Imamagic, D. Dobrenic, “Grid infrastructure

monitoring system based on Nagios,” High Performance

Distributed Computing Proceedings of the 2007

workshop on Grid monitoring table of contents, 2007, pp.

23-28.

[17] E. Galstad, NRPE Documentation

[18] Galstad, E., NDOUTILS Documentation Version 1.4

[19] PNP4Nagios.,Retrieved from

http://docs.pnp4nagios.org/pnp-0.4/start

[20] RRDtool: http://oss.oetiker.ch/rrdtool

[21] DARB : http://rempte-backup.teldap.tw

[22] Tsung-Tai Yeh, Hsin-Wen Wei, Shin-Hao Liu, Pei-Chi

Huang, Tsan-sheng Hsu, Yen-Chiu Chen, “The

Development of Digital Archives Management Tools for

iRODS,” Proceedings of iRODS User Group Meeting

2010.

[23] TELDAP: http://www.teldap.tw/en/

