
Teaching GUI Design and Event Handling Using Patterns

Hans Dulimarta

and Jagadeesh Nandigam

School of Computing and Information Systems

Grand Valley State University

Allendale, Michigan 49401, USA

dulimarh@cis.gvsu.edu, nandigaj@gvsu.edu

Abstract - Graphical User Interface (GUI) has become a

common way to build and deploy desk-top software in

introductory computer science courses. Students definitely

enjoy building GUI programs as opposed to command-line

programs. Writing a GUI program requires a paradigm shift

from sequential processing to event-driven processing.

Building a GUI program involves two main activities – design

of user interface and implementing appropriate event

handling. There are several approaches (code patterns or

styles) to building GUI programs. Introductory computer

science textbooks suitable for use in CS1 and CS2 courses

tend to describe and use exclusively one approach to building

GUI programs. This exclusive use of one approach to

teaching GUI design is not effective as it can cause confusion

when students move from one course to another and expect to

see only the style of GUI program they have learned before. It

is important that students are progressively exposed to

different styles of GUI design independent of the approach

suggested and used in the textbook adopted for the course.

This paper presents various approaches to GUI design and

event handling using Java Swing framework along with pros

and cons of each approach.

Keywords: GUI design, view patterns, event handling

patterns.

1 Introduction

 Since the 1980s Graphical User Interface (GUI) has been

used as a standard means to deploy software. Certainly, some

applications are designed to be “faceless” and they run

without interacting with a human user. But, as future software

developers, students need to be equipped with the necessary

skills to build either type using proper techniques.

 Writing a GUI program requires a paradigm shift from

sequential processing to event-based processing. Callback

functions must be provided to respond to various events

generated by the GUI framework. There are several code

patterns that can be employed when building GUI programs.

Many textbooks [1, 2, 3] on Java programming used in CS1

and CS2 courses tend to describe one way of building a GUI

program and all the GUI examples shown in the book are

solved using this approach. When students move from one

course to next (say CS1 to CS2), the book used in the next

course may use a different style of GUI programming. This

change in approach to GUI design from one book to another

confuses students, especially those in the introductory

computer science courses. Even the instructors teaching these

courses must be aware of different approaches to building

GUI programs when adopting a different textbook for a

course. In these cases, the instructor must make a

conscientious attempt to use the same approach as used in the

textbook in an effort not to confuse students. It is important

that instructors discuss and demonstrate with examples

different approaches to building GUI programs and

appropriateness of each of these approaches. Depending on

the complexity of a GUI program to be developed, students

will then be able to select the right approach to use for the

problem at hand.

 This paper describes various code patterns for teaching

GUI design and event handling techniques in introductory CS

courses. The rest of this paper is organized as follows. The

Model-View-Controller (MVC) design pattern and its variants

are discussed in Section 2. Sections 3 and 4 describe various

patterns to view design and event handling. Section 5

discusses techniques for adding the model component to a

GUI application. Section 6 describes alternative GUI design

tools. Recommended approaches to teaching GUI design and

event handling in introductory CS courses are outlined in

Section 7. Section 8 ends the paper with concluding remarks.

2 Design Patterns

 In object-oriented development, a large library of design

patterns is used to assist programmers to discover inter-object

relationships and structures commonly used in object-oriented

programs. The book by the “Gang of Four” [4] is the de facto

standard reference for design patterns, but the materials

presented in the book are aimed for more experienced and

professional programmers. Nevertheless, early CS students

can benefit from understanding some fundamental design

patterns and use them in writing complex multi-object

programs [5].

 One of the fundamental design patterns encountered by

early CS students is the Model-View-Controller (MVC)

design pattern, which also has inspired the implementation of

a large number of Graphical User Interface (GUI)

frameworks. This pattern gained popularity after its major use

for building user interfaces in Smalltalk during the late 1970s

[4]. Despite its popularity and wide-spread use in many real

software projects, Hansen and Fossum claim that the pattern

receives inadequate attention and CS educators should

emphasize the design decisions that guide the development of

an application [6]. The MVC design pattern consists of three

kinds of objects:

 The model manages the data used by the application.

 The view presents the model in a form that allows the user

to interact with the data.

 The controller handles user actions on the view and

initiates proper actions for updating the data.

 There are also variants of the MVC design pattern. Two

of these variants are called model-delegate and model-view-

presenter. In most applications, the view and controller are

coupled very tightly. The resulting design pattern is known as

model-delegate. The GUI framework in Java Swing employs

this pattern.

 The MVC pattern seems to imply that the model update is

initiated by user actions on the view. In some applications, the

model may be updated by an external source and the view

must be updated accordingly. Consider a case when the user

initiates a request to download remote data into the model. To

keep the model and the view in sync with each other, the view

must be updated only after the remote data is downloaded in

full. For this use case, the view update must be initiated from

the model. A common technique to accomplish this

mechanism is to use the Observer pattern between the view

and the model. This variant is known as model-view-presenter

and was proposed by Fowler [7].

 Beyond using well-known patterns, Bishop and

Horspool [8] have identified common principles in GUI

programming and use them in developing an XML-based GUI

description language.

 Using a simplified pattern than the standard MVC,

Swing combines the view and controller roles into the UI

Delegate. Different patterns to implement the view of a GUI

application are presented in the next section. Section 4

describes several patterns to implement event handling in a

GUI application.

3 View Patterns

 In this section we will explore a number of techniques

for implementing a GUI application using the Java Swing

framework. We specifically exclude techniques used by

modern IDEs that provide a visual GUI editor and generate

the GUI code for Java developers. Instead, we will focus on

techniques that can be used when the GUI code is hand-

written by the users themselves.

 Swing provides three top-level container classes:

JFrame, JApplet, and JDialog as well as one general-purpose

container class JPanel. Out of the three top-level container

classes, we will focus our discussion on JFrame. With

BorderLayout as its default layout manager, JFrame is a

proper choice as a top-level container. The five sections of

BorderLayout allow GUI components to be organized into

coherent groups.

 In contrast to JFrame, a container created from JPanel

has the FlowLayout as its default layout. A FlowLayout does

not provide a natural mechanism to organize its contents into

coherent groups.

 There are mainly three patterns to implementing the view

in a GUI application. The table below summarizes these

patterns. Rest of this section describes each pattern further

with a sample code along with pros and cons of applying that

pattern.

Patterns to Implement View in GUI App

Pattern 1 Inheritance from JPanel

Pattern 2 Inheritance from JFrame

Pattern 3 JFrame as instance variable(s)

3.1 Pattern 1 – Inheritance from JPanel

 We inherit a class from JPanel and place an instance of

this panel into a JFrame’s content pane. A typical Java code

that uses this pattern is shown below:

public class MainView extends JPanel {

 public MainView() {

 setLayout(____);

 add(___);

 add(___);

 }

}

public class Main {

 public static void main(String[]

 args) {

 JFrame top = new JFrame();

 top.getContentPane().add(new

 MainView());

 top.pack();

 top.setVisible(true);

 }

}

The above two classes are typically written as two separate

files: MainView.java and Main.java. When more views are

needed in the GUI, additional classes like “MainView” must

be provided.

 Pros: In general, this technique works well for a GUI

program with a small number of widgets where they can be

contained in a single panel.

 Cons: When this technique is used, the event handling

logic is usually written within the same class of the

corresponding view panel. This approach may not facilitate

easy updating to components in one view panel due to user

actions in a different view panel. For instance, a text field in a

panel in the north section of a JFrame is to be

enabled/disabled based on the user action on a radio button in

a panel in the east section of the JFrame. To implement such a

feature, appropriate arguments must be passed from one view

panel to another.

3.2 Pattern 2 – Inheritance from JFrame

 For a more complex GUI design, a different technique

should be used. To avoid interdependency across view panels

as described earlier, we can move away from JPanel-based

design and pull everything into a big JFrame. A typical Java

code that uses this approach is given below:

public class GUI extends JFrame {

 public GUI() {

 add(viewOne(),BorderLayout.NORTH);

 add(viewTwo(), BorderLayout.CENTER);

 pack();

 setVisible(true);

 }

 private JPanel viewOne() {

 JPanel myView = new JPanel();

 myView.setLayout(____);

 /* setup components of this view */

 return myView;

 }

 private JPanel viewTwo() {

 JPanel myView = new JPanel();

 myView.setLayout(____);

 /* setup components of this view */

 return myView;

 }

 public static void main(String[]

 args) {

 GUI mainwin = new GUI();

 }

}

 Pros: This “all-in-one” approach may seem natural to

early CS1 students when they are not exposed to “functional

decomposition” yet. All GUI components (panels, buttons,

text fields, menu items, etc.) needed in the program are

declared as instance variables in the class so they can be

accessed from anywhere in the class. Visual updates that

require information from several components can be easily

written.

 Cons: The amount of code for designing the GUI using

this pattern can be overwhelmingly long and difficult to

debug. In order to remedy this, the code can be organized into

several private methods, each responsible for managing one

coherent group. Essentially, this is similar to the JPanel-based

technique described earlier except any cross views

dependencies can be easily handled.

3.3 Pattern 3 – JFrame as instance variable(s)

 An alternative to the second technique, the GUI class can

be designed without inheritance. Instead, a JFrame instance

variable is defined in the GUI class.

public class GUI {

 private JFrame top;

 public GUI() {

 top = new JFrame();

 top.add(_____);

 top.add(_____);

 top.pack();

 top.setVisible(true);

 }

 /* private methods defined here */

 public static void main(String[]

 args) {

 GUI mainwin = new GUI();

 }

}

 Pros: This technique is appropriate for early CS1 students

when they are not yet exposed to inheritance. In fact this

technique is the most flexible technique of all, since it allows

provision of multiple top-level containers, in which case

several JFrame (or JDialog) instance variables can be defined.

4 Event Handling Patterns

 One of the central facilities in a GUI framework is

handling of events via proper callback functions. Swing

implements this facility through events and event listeners. An

event-handling object can be instantiated either from either a

Listener or an Adapter.

 The most common technique for event handling is to

attach the listener (or adapter) to the corresponding view. This

is usually accomplished by one of the following techniques or

patterns. This can be accomplished by using one of the

patterns shown in the table below. Each of these patterns are

discussed in the following sections using the

MouseMotionListener (or MouseMotionAdapter) as an

example.

Patterns to Implement Event Handling in GUI App

Pattern 1 View implements Listener

Pattern 2 Inner Classes for Listener

Pattern 3 Anonymous Classes

Pattern 4 Adapter Classes

Pattern 5 External Classes

4.1 Pattern 1 – View Implements Listener

 The view class implements one or more listeners. A

typical java code that uses this technique is shown below:

public class GUIView implements

 MouseMotionListener {

 private JPanel landscape;

 public GUIView() {

 landscape = new JPanel();

 landscape.addMouseMotionListener(

 this);

 }

 public void mouseMoved(MouseEvent

 m_event) {

 }

 public void mouseDragged(MouseEvent

 m_event) {

 }

}

 Pros: This technique works very well for a simple GUI

program with a small number of widgets.

 Cons: 1) Menus (JMenu & JMenuItem), buttons

(JButton), and input fields (JTextField) are among the most

popular components used by early CS students. In Swing,

these three groups of components trigger ActionEvents that

must be handled by ActionListeners. Using the above

technique, the corresponding actionPerformed method may be

overwhelmingly too long to write. 2) For a more complicated

GUI program, developers may prefer to organize the mouse-

handling logic into several methods. For instance, dragging

the mouse over a 2D graphics may be handled differently from

dragging the mouse over landscape of 3D objects. The above

technique forces the developer to write everything into one big

mouseDragged method.

4.2 Pattern 2 – Inner Classes for Listener

 The second technique calls for declaration of private inner

classes. Each class typically implements a specific Swing

listener.

public class GUIView {

 private JPanel landscape;

 Handler2D motionHandler;

 public GUIView() {

 landscape = new JPanel();

 motionHandler = new Handler2D();

 landscape.addMouseMotionListener(

 motionHandler);

 }

 private class Handler2D implements

 MouseMotionListener {

 public void mouseMoved(MouseEvent

 m_event) {

 }

 public void mouseDragged(MouseEvent

 m_event) {

 }

 }

}

 Pros: Event handling logic can be written into

independent cohesive classes. Organization of event handling

logic into separate (inner) classes facilitates easier

refactorization.

 Cons: This technique requires more code writing and

including inner classes in a Java class may confuse some

students who cannot clearly distinguish classes from objects.

4.3 Pattern 3 – Anonymous Classes

 Since the inner classes are usually private, their visibility

is limited to the GUIView itself, and the declaration and

instantiation of Handler2D in the above technique can be

merged into one step, by instantiating an object from an

anonymous class.

public class GUIView {

 private JPanel landscape;

 public GUIView() {

 landscape = new JPanel();

 landscape.addMouseMotionListener(

 motionHandler);

 }

 private MouseMotionListener

 motionHandler =

 new MouseMotionListener() {

 public void mouseMoved(MouseEvent

 m_event) {

 }

 public void mouseDragged(MouseEvent

 m_event) {

 }

 };

}

 Pros: Slightly more concise than the previous technique

of using private inner classes.

 Cons: The syntax for writing anonymous classes may

seem too complex to comprehend by early CS students,

especially when the IDE used does not provide auto

completion / code assist feature that supports this syntax.

4.4 Pattern 4 – Adapter Classes

 For Listeners that define more than one method, Swing

provides a corresponding adapter. Adapters avoid writing

empty callback methods.

 Cons: A minor misspelling in writing the method names

will result in the program failure to override the intended

callback method. Most students may easily overlook this

mistake, especially when they are under crunch time. This can

be avoided by encouraging students to first use Listeners and

later refactor the design to use Adapter in place of Listeners.

4.5 Pattern 5 – External Classes

 Technically it is possible to write the event handling class

as an external class. Using the four techniques described

earlier, the event-handling classes (and methods) have direct

visibility of all the instance variables declared by the View

class. On the contrary, an external class does not have direct

visibility, and hence any variables needed by the event-handler

must be passed from the View class.

5 Adding the “Model” Component

 So far, we excluded discussions on including the model

into the picture. There seem to be only two options: to

separate or not to separate. Some instructors may decide not

to enforce model separation in the first few assignments. As

students learn more about “functional decomposition,” it

makes sense to enforce model separation for later

assignments. When model separation is enforced, the

interaction between the model and the view components fits

into one of the following two techniques:

5.1 Pull by View

 Using this technique the View invokes two methods in

the Model. The first method invocation triggers the model to

update its internal state and the second method invocation to

pull the new state and used for updating the view. This

technique may seem easier to beginners and suitable when the

updated state can be determined immediately. When updating

the model’s internal state takes too long to complete, the View

may stay “frozen” and unresponsive for a noticeable duration.

5.2 Push by Model

 Using this technique, the View makes only one

invocation to trigger the model to update its internal state. The

model will then push the new state to the view. Implemented

improperly, this technique may entice students to write

unnecessarily complex interaction between the two

components. A better approach of properly pushing the model

internal states to the View is to use the Observer and

Observable pair.

6 Alternative GUI Design Tools

 Many modern IDEs provide a feature for designing the

user interface of a program using a drag-n-drop technique.

This feature certainly saves developer time to create the GUI,

but most of the time “hand-written” GUI code is much leaner

than those generated by these IDEs. Using these tools, the

event-handling code snippets can be injected into various

sections of the program.

 Some standalone GUI editors/designer tools may

support multiple GUI platforms, and these tools usually allow

the GUI design to be saved into a file (such as an XML file)

for later retrieval. The source code for specific GUI platforms

can be generated and compiled together with the rest of the

program. A number of GUI frameworks like Gtk or the

Android View system include facilities to “inflate” or

“render” the visuals from an XML description.

7 Recommendations

 The two sets of choices described above allow

instructors to choose the best option, out of sixteen (or

twenty) different combinations, that works well for a

particular audience. However, since learning revolves as a

progression, the baseline for selecting the “best” option keeps

shifting as students learn more towards the end of the

semester.

 The available options as described above seem to share a

common theme: choosing between inheritance and

composition. We claim that there is no particular one option

that fits best for all situations. After completion of a typical

CS1 and CS2 sequence, it is important that students gain good

understanding of the various patterns described here. More

importantly, they are equipped with necessary knowledge to

wisely choose the right pattern to apply in a project.

 In our discussion above, we mentioned a number of pros

and cons for each pattern or option. The drawbacks of one

option can be carefully posed to be an opportunity for

students to grow in their learning experience.

8 Conclusions

 Building GUI programs require a paradigm shift from

sequential processing to event-based processing. Two main

activities in building a GUI program are design of user

interface and implementation of event handling. This paper

presented several approaches (as code patterns) to user

interface design and event handling. It is important that

students be exposed to different approaches to GUI design

and event handling along with pros and cons of these

approaches in CS1 and CS2 courses.

9 References

[1] David Barnes, Michael Kolling. Objects First with Java.

4th. Prentice Hall, 2009.

[2] Julie Anderson and Herve Franceschi, Java Illuminated.

3rd edition. Jones-Bartlett Learning, 2011.

[3] J Lewis and W Loftus, Java Software Solutions, 6th

edition. Addison-Wesley, 2008.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides. Design Patterns, Addison-Wesley, 1995.

[5] Prasun Dewan, “Teaching Inter-Object Design Patterns to

Freshmen”, SIGCSE ‘05, St. Louis, Missouri, 2005.

[6] Stuart Hansen and Timothy Fossum, “Refactoring Model-

View-Controller”, CCSC Midwest, Decatur, Illinois,

2005.

[7] Martin Fowler, GUI Architectures,

http://www.martinfowler.com/eaaDev/uiArchs.html

(accessed Mar 7, 2011).

[8] Judith Bishop and Nigel Horspool, “Developing

Principles of GUI Programming Using Views”, SIGCSE

’04, Norfolk, Virginia, 2004.

http://www.martinfowler.com/eaaDev/uiArchs.html

