
Effect of cache lines in array-based hashing algorithms

Ákos Dudás1, Sándor Kolumbán2, and Tamás Schrádi3
Department of Automation and Applied Informatics,
Budapest University of Technology and Economics,

1117 Budapest, Magyar Tudósok körútja 2. QB-207 Hungary
{1akos.dudas,2kolumban.sandor,3schradi.tamas}@aut.bme.hu

Abstract— Hashing algorithms and their efficiency is mod-
eled with their expected probe lengths. This value measures
the number of algorithmic steps required to find the position
of an item inside the table. This metric, however, has an
implicit assumption that all of these steps have a uniform
cost. In this paper we show that this is not true on modern
computers, and that caches and especially cache lines have
a great impact on the performance and effectiveness of
hashing algorithms that use array-based structures. Spatial
locality of memory accesses plays a major role in the
effectiveness of an algorithm. We show a novel model of
evaluating hashing schemes; this model is based on the
number of cache misses the algorithms suffer. This new
approach is shown to model the real performance of hash
tables more precisely than previous methods. For developing
this model the sketch of proof of the expected probe length
of linear probing is included.

Keywords: hash table; hashing; linear probing; cache-aware;
performance

1. Introduction
Hashing algorithms are a popular choice in a great variety

of applications for fast storage and retrieval of items. Over
the years there have been many hashing algorithms presented
in the literature. These algorithms are usually compared
based on the expected probe lengths [1], [2], [3], [4], that
is, the number of steps the algorithm has to take before an
item can be inserted into the table. (This is equivalent to
the number of steps it takes to find an item. Both will be
referred to as probe length throughout this paper.)

It has been our observation [5], and also the suggestion
of others [4], [6], that the expected probe length does
not model the true performance correctly. Measuring the
wall-clock execution times of the algorithms and using the
expected probe length-based raking of hashing schemes we
can arrive at two contradicting conclusions; in this paper we
propose a solution that unify the expected probe length-based
comparison and the physical capabilities of the hardware,
resulting in a more precise efficiency estimation.

The fact is, that the true performance of array-based
hashing schemes is effected by the physical hardware it
is executed on. The expected probe length-based efficiency

analysis has the implicit assumption that every probe in the
probe sequence has the same cost; this is not necessarily
true though. Modern CPUs have fast (but small) integrated
caches that mask the latency of the main system memory.
Accessing data in these caches is by one or two orders of
magnitude faster than reading from the main memory. These
caches speed up temporally, and which is more relevant for
us, spatially local memory reads.

Algorithms that exploit these caches are called cache
friendly [7]. What we propose in this paper is basically a
new efficiency model that rewards cache friendly algorithms.
We focus our attention to hashing schemes that use arrays;
the basic idea however it generally applicable, and not just
to hash tables but to other data intensive algorithms as well.

The rest of the paper is organized as follows. Section 2
presents the related literature of hash tables and their per-
formance and complexity. The expected probe lengths of
two hashing schemes are presented in Section 3 followed
by the comparison of the hash tables based in the expected
probe lengths and wall-clock execution times. To resolve
the contradictory results new efficiency model is presented
in Section 4. We conclude in Section 5 with the summary
of our results.

2. Related works
Hash tables [8] store and retrieve items identified with a

unique key. A hash table is basically a fixed-size table, where
the position of an item is determined by a hash function.
If the position calculated by the hash function is already
occupied, a collision occurs. This collision can be resolved
by storing the items externally (e.g. using a linked list), the
approach of bucket hash tables; or a secondary hash function
can be applied which calculates a new address for the item.
Repeating this process until a free slot is found the algorithm
traverses a probe path. The shorter this probe path is, the
faster the hash table is.

In linear probing [8] the secondary hash function calcu-
lates the next address by adding a constant (usually one)
to the previous address. This, of course, is not a true hash
function. However, this “laziness” is what makes linear
probing cache friendly [7].

There is a theoretical hashing scheme, which produces
perfectly random address generation. The idea is that there



is a uniformly chosen permutation from the space of per-
mutations over the possible addresses for each element.
The initial hash function returns the first element of the
permutation, the secondary hash function iterates through
the permutation. This is called uniform hashing [9]. It has
been shown, that uniform hashing is optimal over all open-
address hashing schemes in its expected probe length. It was
proven that double hashing, a practical realization of a hash
scheme [4], is asymptotically equivalent to uniform hashing
when the number of available addresses is large [10], [11].
It is generally thought that these sophisticated methods are
superior to linear probing.

Black et al. [6], however, has shown that linear probing
can have better performance than double hashing. Moreover,
by tuning the parameters of double hashing to make it
approximate linear probing, its performance increased as
well.

Heileman and Luo [4] also conducted similar examina-
tions and they ended up with another conclusion. According
to their results, the cache friendliness of linear probing
cannot compensate the disadvantage of the longer probe
sequences in case of realistic data sets. They also suggested
that the relation between the size of the data and the cache
size is what lies behind the seemingly contradictory results.
In Section 4 we will confirm their hypothesis.

3. Expected probe length based compar-
ison

The expected probe length is used to measure the effi-
ciency of hash tables. The formula is known for uniform
hashing; in this section we show the sketch of calculating it
for linear probing.

3.1 The expected probe length of uniform hash-
ing

The expected probe length for uniform hashing [8] in an
α-filled table is

E(Lαuni) = −
ln(1− α)

α
(1)

where E denotes the expected value, Luni is the expected
number of steps needed to find a uniformly chosen element
in a hash table built with uniform hashing and α is the load
factor of the hash table (i.e. the ratio between the number
of elements in the table and the number of all the slots).

3.2 The expected probe length of linear prob-
ing

In order to calculate the expected probe length (i.e.
number of steps in takes to insert an item), first we need
to understand how a single item is inserted into an α-
filled hash table using linear probing. The expected probe
length in a given state of the hash table is the average of
probe lengths needed to insert the elements of the tables.

We describe a table configuration using the following two
notions in this paper. A cluster is a group of adjoint occupied
slots. A closed cluster is formed from an empty slot and the
cluster that precedes it. If, for a certain empty slot there
is no preceding cluster (i.e. the empty slot is preceded by
another empty slot), then this empty slot forms a closed
cluster by itself. Figure 1 gives a graphical representation of
these notions. Closed clusters cover the whole table, while
clusters obviously do not.

Fig. 1: A cluster (L) and two closed clusters (τ1 and τ2).

During insertion the probe length depends on the length of
the closed cluster in which its initial address hits, since the
insertion has to iterate over the items in this closed cluster.
Suppose that the initial address for the new element is part
of a closed cluster with length τ . The expected number of
steps needed to insert the element is τ+1

2 , since the initial
address is considered to be uniformly distributed over the
whole table, and consequently, it is uniform restricted to the
given closed cluster as well. If we knew the probability of the
event that the initial address falls into a closed cluster with
length τ then we would be able to calculate the expected
probe length required to insert a new element.

The followings are just the sketch of how we can calculate
the expected probe length for linear probing. It is out of the
scope of this paper to show every step; this is merely the
general idea.

Suppose there are Xi elements initially hashed to the i-th
slot, i = 1, . . . , N . Suppose that a closed cluster starts at
the j-th position. In this case the number of elements in this
closed cluster is at least Xj , and the j-th slot can hold only
one. So Xj−1 elements will be held in the rest of the closed
cluster. The j+1-th slot adds Xj+1 elements to the cluster,
but it will hold one as well, so the number of elements in
the cluster after the j+1-th slot is Xj − 1+Xj+1− 1, and
so on. When this sum reaches 0, then the cluster is closed.

We can define the stochastic process S the following way:
S0 = 1, Si+1 = Si +Xj+i − 1. The stopping time τ (k) (2)
is a good approximation of the distribution of the length of
the closed clusters:

τ
(k)
0 = inf(i : Si = 0|S0 = k) (2)

The explicit formula for the distribution of the length of
closed clusters can be found as

p(k) = P(τ = k) =
(αk)k−1

k!
e−αk (3)

We also need the expected value of this distribution, which
is

E(τ) =
1

1− α
(4)



The expected number of steps to find a uniformly chosen
element in the table is the average of the steps needed
to insert them. There are M elements in the table. When
inserting the i-th element, there were i− 1 already inserted.
In other words, the i-the element was inserted into an
α′ = i−1

N -filled hash-table. The average of these step counts
gives us

E(Lαlin) = 1 +
1

2

α

1− α
(5)

where E(Lαlin) denotes the expected probe length for linear
probing in an α-filled table.

3.3 Evaluation using probe lengths and wall-
clock execution times

Figure 2 shows the expected probe length for linear
probing and uniform hashing for various load factors. It is
obvious that uniform hashing has a smaller expected probe
length. Based on this fact, one could say that linear probing
is to be neglected while choosing hashing algorithms for
practical purposes.

Fig. 2: The expected probe length of linear probing and
uniform hashing for different load factors.

Our experimental results, on the other hand, show different
results. Figure 3 plots the measured wall-clock execution
times of building a table using linear probing and double
hashing. Linear probing has shorter lookup execution than
double hashing. This is the exact opposite of the previous
result.

To resolve this contradiction a new complexity function is
required, one that approximates the true performance of hash
tables. The problem with the probe length based ranking is
that it assumes that every probe has the same cost; instead,
the characteristics of the execution environment have to be
considered and integrated into the cost function.

4. Cache-line aware algorithm complex-
ity

This section presents a simple model of memory hierarchy
which is then incorporated into the cost function of the steps
of the probe sequence.

Fig. 3: The measured wall-clock execution times of linear
probing and uniform hashing for different load factors.

4.1 Caches
Open hash tables span over a large block of allocated

memory. This block is split into slots, which are identified
by a number (memory address; i.e. indexes of the array).
The address of neighboring slots are sequential, therefore in
linear probing, after slot i is visited, whose address is j, the
next slot, i+1, will have the address j+1. This is not true
for uniform hashing; the addresses of the probe sequence
will be scattered across the table. Let us explain why this is
important.

In current computer systems CPUs have caches, which
are fast access, but limit space storages integrated into the
CPU or onto the same die. The cache stores a small fraction
of the data that is stored in the system memory, therefore
a small portion of the hash table also resides in the cache.
Whenever the CPU requests data, it is first checked in the
cache. If found, the main system memory is not queried as
the cache returns the data. However, if the data is not in the
cache (this event is called a cache miss), the data is loaded
from the main system memory; this operation is by one or
two orders of magnitude slower than reading from the cache.

An other important factor is cache lines. The memory is
partitioned into small blocks, called cache lines. Whenever
data is loaded into the cache, an entire cache line is loaded;
the one the requested data is inside. This means, that with
a single memory access it is not just the requested data that
is loaded, but some neighboring addresses are read as well
- at no additional cost. If the next read is in this very same
cache line, it will be served by the low latency cache.

If accesses to the memory is temporarily or spatially
local, the cache speeds up the algorithm by not requiring
the system to read data from the system memory. When an
algorithm exploits these effects, it is called cache friendly. It
allows the algorithm to have lots of data requests at fraction
of the cost.

4.2 Cache-line based memory model
The cost difference between accessing data from the

main memory and from the cache is often neglected in



performance models. Let physical memory requests have a
cost of one. Altering the usual memory model, where every
access has a uniform cost, we propose a new model. In our
model the blocks of the memory are grouped into lines of
equal lengths. These lines correspond to the cache lines of
the real system. The characteristics of these lines is that they
are read as one.

In this memory model, the true performance of an ap-
plication is determined not by the total number of memory
accesses, but by expected number of read lines. In case of
hashing algorithms this is equal to the number of probed
lines, which the probe sequence accesses. In other words,
the number of produced cache misses is the determining
factor.

Suppose that the parameters of the memory architecture
and the hash table are such that an integer number of hash
table slots fit in a cache line. This parameter will be denoted
with B. Figure 4 shows a scenario where three hash table
slots fit into a single cache line (B = 3). Items with the
same color are hashed to the same position by the primary
hash function.

Fig. 4: The segmentation of the memory into cache lines
of length B = 3. Items with the same color have the same
initial address.

As an example, the second item from the left can be found
with cost of one if linear probing is used, since the first
checked slot and the final position are both in the same cache
line, and the probe sequence examines no slots outside of
this line.

4.3 Cache-aware cost function for uniform
hashing and linear probing

Given a relatively large hash tables that does not fit into
the cache (usual size of caches is 2-4-8 MB) but instead
is stored in the main system memory, the CPU cache has
considerable impact. A typical hash table entry consists of
a unique integer id and a data pointer. This means that the
number of hash slots that fit in a cache line (B) is about 2-8
entries (assuming a cache line is 64 bytes) and the number
of lines that can be stored in the cache memory is negligible
compared to the number of lines that are covered by the hash
table.

For uniform hashing the probe sequence is a random
permutation of the positions in the table. Thus, it is a
fair approximation that all probes fall into one of the not
cached lines. This means that every probe has a cost of one
when uniform hashing is used. In other words every probe
produces a cache miss. This can be formalized as

E(Cαuni) = E(Lαuni) = −
ln(1− α)

α
(6)

where Cαuni is the cost of a probe sequence that finds
a random element in an α-filled table built with uniform
hashing. The value is independent of B.

To verify this formula, Figure 5 shows the calculated
values against our measured values.

Fig. 5: The theoretical and experimental number of cache
misses for double hashing (uniform hashing).

In case of linear probing the first address of a probe
sequence will not be among the list of cached addresses.
This means that the first probe will request a new line to
be read from the memory. But the following probes have a
high probability of being served from the cache, since the
neighboring slots of the first probed one were cached when
the first probe was performed. If the initial address is given
then each step will produce a cache miss with probability of
zero or one, depending on whether it is in the same cache
line, or in the next one, respectively. Since the initial address
of a probe sequence is uniform over the slots of the line it
falls into, each of the remaining Lαlin − 1 steps produce a
cache miss with probability 1

B . Thus, we can say that

E(Cαlin) = 1 +
1

B
(E(Lαlin)− 1) = 1 +

1

B

1

2

α

1− α
(7)

where Cαlin is the cost of the probe sequence that finds a
uniformly chosen element in an α-filled table built with
linear probing.

To verify this formula as well, Figure 6 plots the measured
and the calculated values for various Bs.

4.4 Cache-aware cost model and true perfor-
mance

Finally, let us compare the true performance of the hash
tables, measured in terms of wall-clock execution time, with
the proposed cost model.

Figure 7 shows how the expected number of produced
cache misses look like (left), and the what are the corre-
sponding measured execution times (right). The number of
slots that fit in a cache line is B = 2, B = 4 and B = 8.

It is clear that for any given value of B there is a load
factor αB under which linear probing has lower cost and
over which uniform hashing algorithms are better. From



Fig. 6: The theoretical and experimental number of cache misses for linear probing.

Fig. 7: The expected number of cache misses for linear probing and uniform hashing for different load factors for B = 2, 4, 8.

equations (6) and (7) this load factor can be obtained. In
the typical operation region of α ∈ [0.3 0.8], linear probing
has lower expected cache miss count even when B = 2.
This is confirmed by the execution times as well.

In general, when choosing a hashing algorithm, one
should consider the parameters of the hash table and memory
architecture, namely parameter B should be determined and
the operational load factor should be decided.

Generally, our conclusion is that the simple algorith-
mic step count based raking of algorithms, especially for
algorithms that intensively use memory, is not sufficient.
The physical capabilities of the machine that executed the
algorithms should be taken into consideration, and with
integrating the memory model into the cost function, a better
efficiency comparison can be derived.

5. Conclusion
Hashing algorithms are usually ranked by their expected

probe lengths. It has been our observation, and also pub-
lished in the literature, that this is not always true. Based
on previous works we know that in case of open-address
hashing the performance of the algorithm is greatly effected
by its memory characteristics.

We have shown that the expected probe path based ef-
ficiency comparison is not fair for linear probing, which
is generally though of as an inferior choice of hashing

scheme. Under real-life circumstances, however, it is able to
outperform more sophisticated hash tables, such as double
hashing.

Incorporating the effect of cache lines into the cost func-
tion of hashing algorithms we have presented a novel model
of evaluation. This approach models the true performance of
these hash tables more precisely.

Acknowledgment
This project is supported by the New Hungary Devel-

opment Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-
0002) and by the fund of the Hungarian Academy of Sci-
ences for control research, the Hungarian National Research
Fund (grant number T68370).

The authors express their thanks to Sándor Juhász for his
help as scientific advisor.

References
[1] G. H. Gonnet, “Expected Length of the Longest Probe Sequence in

Hash Code Searching,” Journal of the ACM, vol. 28, no. 2, pp. 289–
304, Apr. 1981.

[2] M. V. Ramakrishna, “Hashing practice: analysis of hashing and
universal hashing,” ACM SIGMOD Record, vol. 17, no. 3, pp. 191–
199, Jun. 1988.

[3] A. Pagh, R. Pagh, and M. Ruzic, “Linear probing with constant in-
dependence,” Proceedings of the thirty-ninth annual ACM symposium
on Theory of computing - STOC ’07, p. 318, 2007.



[4] G. L. Heileman and W. Luo, “How Caching Affects Hashing,” in
Proc. 7th ALENEX, 2005, pp. 141–154.

[5] S. Juhász and A. Dudás, “Adapting Hash Table Design to Real-life
Datasets,” in Proc. of the IADIS European Conference on Informatics
2009, part of the IADIS Multiconference of Computer Science and
Information systems 2009, Algarve, Portugal, 2009, pp. 3–10.

[6] J. R. Black, C. U. Martel, and H. Qi, “Graph and Hashing Algorithms
for Modern Architectures: Design and Performance,” pp. 37–48, 1998.

[7] A. Binstock, “Hashing Rehashed,” Dr. Dobb’s Journal, vol. 4, no. 2,
1996.

[8] D. E. Knuth, The art of computer programming, Vol 3. Addison-
Wesley, Nov. 1973.

[9] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,”
J. Comput. System Sci., vol. 18, no. 2, pp. 143–154, May 1979.

[10] L. J. Guibas, “The Analysis of Hashing Techniques That Exhibit k-ary
Clustering,” Journal of the ACM, vol. 25, no. 4, pp. 544–555, Oct.
1978.

[11] M. L. Fredman, J. Komlós, and E. Szemerédi, “Storing a Sparse Table
with 0(1) Worst Case Access Time,” Journal of the ACM, vol. 31,
no. 3, pp. 538–544, Jun. 1984.


