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Abstract— Given a graph G = (V, E) on n vertices,
the MAXIMUM r-REGULAR INDUCED CONNECTED SUB-
GRAPH (r-MaxRICS) problems ask for a maximum sized
subset of vertices S ⊆ V such that the induced subgraph
G[S] on S is connected and r-regular. For r = 2, it is known
that 2-MaxRICS is NP-hard and cannot be approximated
within a factor of n1−ε in polynomial time for any ε > 0
if P 6= NP . In this paper, we show that r-MaxRICS is
NP-hard for any fixed integer r ≥ 3, and furthermore r-
MaxRICS cannot be approximated within a factor of n1/6−ε

in polynomial time for any ε > 0 if P 6= NP .

Keywords: induced connected subgraph, regularity, NP-
hardness, inapproximability

1. Introduction

In this paper we only consider simple undirected
graphs with no loops and no multiple edges. Let G =
(V (G), E(G)) be a graph, where V (G) and E(G) denote
the set of vertices and the set of edges in G, respectively.
A graph GS is a subgraph of a graph G if V (GS) ⊆ V (G)
and E(GS) ⊆ E(G). For a subset of vertices S ⊆ V (G),
by G[S], we mean the subgraph of G induced on S, which
is called the induced subgraph.

The problem MAXIMUM INDUCED SUBGRAPH (MaxIS)
of finding the maximum number of vertices that induces
a subgraph satisfying some properties is one of the most
fundamental problems in the fields of graph theory and
combinatorial optimization, and thus extensively studied in
these decades. Unfortunately, however, it is well known that
the MaxIS problem is NP-hard for a large class of inter-
esting properties. For example, in [7], Lund and Yannakakis
prove that the MAXIMUM INDUCED SUBGRAPH problem
for the natural properties such as acyclicity, planarity, and
bipartiteness cannot be approximated within a factor of n1−ε

in polynomial time for any positive constant ε if P 6= NP ,
where n is the number of the vertices in the input graph.

1.1 Our Problems and Results
A graph is r-regular if the degree of every vertex is exactly

r. The regularity of graphs must be one of the most basic
properties. In this paper we consider the following variant of
the MaxIS problem, i.e., the desired properties the induced
subgraph must satisfy are regularity and connectivity:

MAXIMUM r-REGULAR INDUCED CONNECTED
SUBGRAPH (r-MaxRICS)

Input: A graph G = (V, E) and an integer r.
Goal: Find a maximum subset of vertices S ⊆ V

such that the induced subgraph G[S] on S is
connected and r-regular.

Since a clique is connected and regular, the MAXIMUM
CLIQUE problem may be regarded as a special one of r-
MaxRICS. The MAXIMUM CLIQUE is very difficult even to
approximate [5]. Clearly, however, the problem of finding a
clique of a constant degree is solvable in polynomial time.
On the other hand, r-MaxRICS is hard even if r is a small
constant as follows: The problem 2-MaxRICS is known
as LONGEST INDUCED CYCLE problem since a 2-regular
subgraph means a cycle in the input graph. In [6] Kann
shows the following inapproximability for 2-MaxRICS:

Theorem 1 ([6]): 2-MaxRICS cannot be approximated
in polynomial time within a factor of n1−ε for any constant
ε > 0 if P 6= NP , where n is the number of vertices in the
input graph.

In [3] Bonifaci, Di Iorio, and Laura consider the following
problem and show its NP-hardness:

MAXIMUM REGULAR INDUCED SUBGRAPH
(MaxRIS)

Input: A graph G = (V, E).
Goal: Find a maximum subset of vertices S ⊆ V

such that the induced subgraph G[S] on S is
regular.



Strictly speaking, MaxRIS is slightly different from r-
MaxRICS, but the same reduction introduced in [3] shows
the following intractability when r = 3:

Theorem 2 ([3]): 3-MaxRICS is NP-hard.

However, it would be hard to show the hardness of
approximating r-MaxRICS for r ≥ 3 by using a similar
reduction with small modification to the reduction in [3]. In
this paper, by using a different gap-preserving reduction, we
first show the following inapproximability of 3-MaxRICS.

Theorem 3: 3-MaxRICS cannot be approximated in
polynomial time within a factor of n1/6−ε for any constant
ε > 0 if P 6= NP , where n is the number of vertices in the
input graph.

Furthermore, by using additional ideas to the reduction,
we show the same inapproximability of r-MaxRICS for any
fixed integer r ≥ 4.

Corollary 1: For any fixed integer r ≥ 4, r-MaxRICS
cannot be approximated in polynomial time within a factor
of n1/6−ε for any constant ε > 0 if P 6= NP , where n is
the number of vertices in the input graph.

The proofs of Theorem 3 and Corollary 1 will be given
in Section 3.

1.2 Related Work
Recently, the problem of finding a maximum induced

subgraph having regularity is very popular. Many researchers
study the following variant, that is, the connectivity property
is not imposed on the induced subgraph.

MAXIMUM r-REGULAR INDUCED SUBGRAPH (r-
MaxRIS)

Input: A graph G = (V,E) and an integer r.
Goal: Find a maximum subset of vertices S ⊆ V

such that the induced subgraph G[S] on S is
r-regular.

If we does not require the connectivity constraint, then
the problems when r = 0 and r = 1 correspond to the well
studied MAXIMUM INDEPENDENT SET and MAXIMUM
INDUCED MATCHING problems, respectively. The former
problem is hard even to approximate [5]. The NP-hardness
of the latter problem is also shown in [1], [10]. In [9]
Orlovich, Finke, Gordon, and Zverovich prove the MAXI-
MUM INDUCED MATCHING cannot be approximated within
a factor of |V |1/2−ε in polynomial time for any ε > 0. The
parameterized complexity and exact exponential algorithms
of r-MaxRIS are studied in [8] and [4], respectively. Very
recently, in [2] Cardoso, Kamińsi, and Lozin prove that r-
MaxRIS is NP-hard for any value of r ≥ 3. Motivated by
this result, we investigate the complexity of the connected
version problem r-MaxRICS for r ≥ 3 in this paper.

2. Notation
By (u, v) we denote an edge with endpoints u and v.

For a vertex u, the set of vertices adjacent to u in G is
denoted by NG(u) or simply by N(u), and (u,NG(u))
denotes the set {(u, v) | v ∈ NG(u)} of edges. Let the
degree of a vertex u be denoted by deg(u), i.e., |N(u)| =
deg(u). A (simple) path P of length ` from a vertex v0 to
a vertex v` is represented as a sequence of vertices such
that P = 〈v0, v1, · · · , v`〉, and |P | denotes the length of
P . A cycle C of length ` is similarly denoted by C =
〈v0, v1, · · · , v`−1, v0〉, and |C| denotes the length of C. A
chord of a path (cycle) 〈v0, · · · , v`〉 (〈v0, · · · , v`−1, v0〉) is
an edge between two vertices of the path (cycle) that is not
an edge of the path (cycle). A path (cycle) is chordless if it
contains no chords, i.e., an induced cycle must be chordless.
Let G1, G2, · · · , G` be ` graphs and also let vi be some
vertex in Gi for 1 ≤ i ≤ `. Then, 〈G1, G2, · · · , G`〉 denotes
the subgraph G = (V (G1)∪V (G2)∪· · ·∪V (G`), E(G1)∪
E(G2)∪· · · ,∪E(G`)∪{(v1, v2), (v2, v3), · · · , (v`−1, v`)}).
That is, two adjacent graphs Gi−1 and Gi are connected
by only one edge and G roughly forms a path. Similarly,
〈G1, G2, · · · , G`, G1〉 roughly forms a cycle.

3. Hardness of Approximating
r-MaxRICS

In this section we give the proofs of Theorem 3 and
Corollary 1. The hardness of approximating r-MaxRICS
for r ≥ 3 is shown via a gap-preserving reduction from
LONGEST INDUCED CYCLE problem, i.e., 2-MaxRICS.
Consider an input graph G = (V (G), E(G)) of 2-MaxRICS
with n vertices and m edges. Then, we construct a graph
H = (V (H), E(H)) of r-MaxRICS. First we show
the O(n1/6−ε)-inapproximability of 3-MaxRICS and then
the same O(n1/6−ε)-inapproximability of the general r-
MaxRICS problem for r ≥ 4.

Let OPT1(G) (and OPT2(H), respectively) denote the
number of vertices of an optimal solution for G of
2-MaxRICS (and H of r-MaxRICS, respectively). Let
V (G) = {v1, v2, · · · , vn} of n vertices and E(G) =
{e1, e2, · · · , em} of m edges. Let g(n) be a parameter
function of the instance G. Then we provide the gap pre-
serving reduction such that (C1) if OPT1(G) ≥ g(n), then
OPT2(H) ≥ 4(n3 + 1) × g(n), and (C2) if OPT1(G) <
g(n)
n1−ε for a positive constant ε, then OPT2(H) < 4(n3 +
1) × g(n)

n1−ε . As we will explain it, the number of vertices
in the reduced graph H is O(n6). Hence the approximation
gap is n1−ε = O(|V (H)|1/6−ε) for any constant ε > 0.

3.1 Reduction for r = 3

Without loss of generality, we can assume that there
is no vertex whose degree is one in the input graph G
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Figure 1: Subgraph Hi

of 2-MaxRICS. The reason is that such a vertex does
not contribute to any feasible solution, i.e., a cycle, of 2-
MaxRICS and can be removed from G.

The constructed graph H consists of (i) n subgraphs, H1

through Hn, which are associated with n vertices, v1 through
vn, respectively, and (ii) m edge sets, E1 through Em, which
are associated with m edges, e1 through em, respectively.

(i) Here we describe the construction of the ith subgraph
Hi in detail for some i (1 ≤ i ≤ n). See Figure 1,
which illustrates Hi. Suppose that the set of vertices adjacent
to vi is N(vi) = {vi1 , vi2 , . . . , videg(vi)

}, where ij ∈
{1, 2, · · ·n} \ {i} for 1 ≤ j ≤ deg(vi). The subgraph Hi =
(V (Hi), E(Hi)) includes deg(vi) vertices, ui,i1 through
ui,ideg(vi)

that correspond to the vertices adjacent to vi,
and deg(vi)(deg(vi) − 1)/2 path gadgets, Pi1,i,i2 , Pi1,i,i3 ,
· · · , Pi1,i,ideg(vi)

, Pi2,i,i3 , · · · , Pideg(vi)−1,i,ideg(vi)
, where two

vertices ui,ij
and ui,ik

are connected via the path gadget
Pij ,i,ik

for vij , vik
∈ N(vi). As an example, in Figure 1,

the top vertex ui,i1 and the bottom ui,i4 are connected via
Pi1,i,i4 . Each path gadget Pij ,i,ik

includes n3 subgraphs,

P 1
ij ,i,ik

through Pn3

ij ,i,ik
, where, for each 1 ≤ p ≤ n3,

V (P p
ij ,i,ik

) = {wp,1
ij ,i,ik

, wp,2
ij ,i,ik

, wp,3
ij ,i,ik

, γp
ij ,i,ik

},
E(P p

ij ,i,ik
) = (γp

ij ,i,ik
, {wp,1

ij ,i,ik
, wp,2

ij ,i,ik
, wp,3

ij ,i,ik
})

∪{(wp,1
ij ,i,ik

, wp,2
ij ,i,ik

), (wp,2
ij ,i,ik

, wp,3
ij ,i,ik

)}.

In the path gadget Pij ,i,ik
, two vertices w1,1

ij ,i,ik
and

wn3,3
ij ,i,ik

are respectively identical to the vertices ui,ij

and ui,ik
prepared in the above. For 2 ≤ p ≤ n3,

contiguous two subgraphs P p−1
ij ,i,ik

and P p
ij ,i,ik

are con-
nected by one edge (wp−1,3

ij ,i,ik
, wp,1

ij ,i,ik
) except for a pair

P q−1
ij ,i,ik

and P q
ij ,i,ik

for some q: the two subgraphs P q−1
ij ,i,ik

and P q
ij ,i,ik

are connected by a path of length four
〈wq−1,3

ij ,i,ik
, β1

ij ,i,ik
, β2

ij ,i,ik
, β3

ij ,i,ik
, wq,1

ij ,i,ik
〉. This q can be ar-

bitrary since we just want to insert the path of length four
into the path gadget, and as an example, q = 3 in the path
gadget Pi1,i,i4 in Fig. 1. Finally, we prepare a special vertex
αi, and αi is connected to all {β1

ii,i,ik
, β2

ii,i,ik
, β3

ii,i,ik
}’s.

In the following, α1, α2, · · · , αn are called α-vertices.
Similarly, β-vertices and γ-vertices mean the vertices labeled
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Figure 2: Ek connecting Hi and Hj

by β and γ, respectively. Since each path gadget has 4n3+3
vertices (two of which are shared with other path gadgets),
the total number of vertices in Hi is

|V (Hi)| =
deg(vi)(deg(vi) − 1)(4n3 + 1)

2
+ n + 1,

i.e., there are O(n5) vertices in Hi.
(ii) Next we explain construction of the edge sets E1

through Em. Now suppose that ek connects vi with vj for
i 6= j. Also suppose that the sets of vertices adjacent to
vi and vj are N(vi) = {j, i2, · · · , ideg(vi)} and N(vj) =
{i, j2, · · · , jdeg(vj)}, respectively. Then, (ui,j , uj,i) ∈ Ek

where ui,j ∈ V (Hi) in the ith subgraph Hi and uj,i ∈
V (Hj) in the jth subgraph Hj . Furthermore, by the follow-
ing rules, γ-vertices in the path gadgets are connected: See
Figure 2. Every vertex in the path gadget Px,i,y for x = j
or y = j in Hi is not connected to any vertex in Hj , except
for ui,j . Similarly, every vertex in Ps,j,t for s = i or t = i
in Hj is not connected to Hi, except for uj,i. For a path
gadgets Px,i,y in Hi, where j 6∈ {x, y} we prepare a set of
edges as follows. Let D = mink∈{i,j}{deg(vk)(deg(vk) −
1)/2 − (deg(vk) − 1)}.

• In Px,i,y, there are n3 γ-vertices, γ1
x,i,y through γn3

x,i,y .
Consider D γ-vertices among those n3 γ-vertices, the
((j − 1)n2 + 1)th vertex γ

(j−1)n2+1
x,i,y through the ((j −

1)n2 + D)th vertex γ
(j−1)n2+D
x,i,y .

• Next take a look at the jth subgraph Hj and the path
gadgets Ps,j,t’s for i 6∈ {s, t}. Note that the number of
such gadgets is deg(vj)(deg(vj)−1)/2−(deg(vj)−1)
and hence at least D. Then, consider the ((i − 1)n2 +
1)th vertex γ

(i−1)n2+1
s,j,t in each Ps,j,t. Here, the term

“+1” in the superscript of γ comes from the assumption
that j1 = i; if jk = i, we consider the ((i−1)n2 +k)th
γ-vertex.

• Then, we can choose any function f which assigns each
element in {1, . . . , D} to a string s, j, t such that i 6∈
{s, t} and it holds f(b) 6= f(c) if b 6= c. Finally, we
connect γ

(j−1)n2+k
x,i,y with γ

(i−1)n2+1
f(k) for 1 ≤ k ≤ D. It

is important that the path gadget Px,i,y is connected to
Ps,j,t via only one edge.

Just to make the above construction clear, see Figure 3.
For example, if an input instance G is the left graph,
then the reduced graph H is illustrated in the right graph,
where some details on the path gadgets are omitted due to
the space. For example, since two vertices v1 and v2 are
connected via the edge e1 in G, u1,2 in H1 is connected
to u2,1 in H2. Similarly to e2 through e6, there are five
edges, (u1,3, u3,1), (u3,4, u4,3), (u2,4, u4,2), (u2,5, u5,2), and
(u4,5, u5,4) in H . Furthermore, two path gadgets P1,2,5 and
P3,4,5 are connected by one edge (γ1, γ2).

Each subgraph Hi has O(n5) vertices and thus the total
number of vertices |V (H)| = O(n6). Clearly, this reduction
can be done in polynomial time. In the next two subsections,
we show that both conditions (C1) and (C2) are satisfied by
the above reduction.

3.2 Proof of Condition (C1)
Without loss of generality, suppose that a longest induced

cycle in G is C∗ = 〈v1, v2, · · · , v`, v1〉 of length `, and
thus OPT1(G) = |C∗| = ` ≥ g(n). Then we select the
following subset S of 4(n3 +1)×` vertices and the induced
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Figure 3: Input graph G (left) and reduced graph H (right)

subgraph G[S]:

S = V (P`,1,2) ∪ {α1} ∪ V (P1,2,3) ∪ {α2}
∪ · · · ∪ V (P`−1,`,1) ∪ {α`}.

For example, take a look at the graph G illustrated in
Figure 3 again. One can see that the longest induced cycle
in G is 〈v1, v3, v4, v2, v1〉. Then, we select the connected
subgraph induced on the following set of vertices:

V (P2,1,3) ∪ {α1} ∪ V (P1,3,4) ∪ {α3}
∪V (P2,4,3) ∪ {α4} ∪ V (P1,2,4) ∪ {α2}

It is easy to see that the induced subgraph is 3-regular and
connected. Hence, the reduction satisfies the condition (C1).

3.3 Proof of Condition (C2)
We show that the reduction satisfies the condition (C2)

by showing its contraposition. Suppose that OPT2(H) ≥
4(n3 + 1) · g(n)

n1−ε holds for a positive constant ε, and S∗

is an optimal set of vertices such that the subgraph H[S∗]
induced on S∗ is connected and 3-regular. In the following,
one of the crucial observations is that we can select at most
one path gadget from each subgraph Hi into the optimal set
S∗ of vertices, and if a portion of the path gadget is only
selected, then the induced subgraph cannot be 3-regular.

(I) See Figure 1 again. Suppose for example that two
path gadgets Pi1,i,i4 and Pi2,i,i3 are selected, and put their
vertices into S∗. In order to make the degree of β-vertices
three, we need to also select αi. However, the degree of α1

becomes six. This implies that we can select at most three
β-vertices from each subgraph Hi.

(II) From the above observation (I), we consider the case
that at most two of β1

j,i,k, β2
j,i,k, and β3

j,i,k are selected for
some i, j, k. Let us assume that we select β1

j,i,k and β2
j,i,k

(β1
j,i,k and β3

j,i,k, resp.) are put into S∗, but β3
j,i,k (β2

j,i,k,
resp.) is not selected. Then, the degree of β2

j,i,k (β1
j,i,k and

β3
j,i,k, resp.) is at most 2 even if we select αi, i.e., the

induced subgraph cannot be 3-regular. By a similar reason,
we can not select only one of the β-vertices. Hence, if
we select β-vertices, all of the three β-vertices in one path
gadget must be selected.

As for w-vertices, a similar discussion can be done: For
example, if we select wp,1

j,i,k and wp,3
j,i,k for some i, j, k, p,

but wp,2
j,i,k (γp

j,i,k, resp.) is not selected, then the degree of
γp

j,i,k (wp,2
j,i,k, resp.) is only 2. Thus, we need to select all the

vertices of the part P p
k,i,j if we select some vertices from it.

Combining two observations above, one can see that the
edges connecting P p−1

k,i,j and P p
k,i,j , or w-vertices and β-

vertices are necessary to make the degrees of the vertices
three. As a result, we can conclude that if only a part of one
path gadget is chosen, then the induced subgraph obtained
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Figure 4: Modified path gadget in the proof of Corollary 1

cannot be 3-regular.
(III) From (I) and (II), we can assume that if some

vertices of a path gadget are selected into S∗, it means
that the whole vertices of the path gadget is selected.
For example, suppose that Pi1,i,i4 is selected. Since the
degree of the endpoint ui,i1 (ui,i4 ) of Pi1,i,i4 is only
2, we have to put at least one vertex into S∗ from
another subgraph adjacent to Hi, say, a vertex uj,i in
Hj . This implies that the induced subgraph H[S∗] forms
a cycle-like structure 〈Hi1 ,Hi2 , · · · , Hij ,Hi1〉 connecting
Hi1 ,Hi2 , · · · ,Hij ,Hi1 in order, where {i1, i2, · · · , ij} ⊆
{1, 2, · · · , n}.

We mention that such an induced subgraph H[S∗] is 3-
regular if and only if the corresponding subgraph in the
original graph G is an induced cycle. The if-part is clear
by the discussion of the previous section. Let us look at the
induced subgraph H[V (P2,1,3) ∪ V (P1,3,4) ∪ V (P3,4,5) ∪
V (P2,5,4) ∪ V (P1,2,5)] in the right graph H shown in
Figure 3. Then, the induced subgraph includes the chord
edge (γ1, γ2) and thus the degree of γ1 and γ4 is 4. The
reason why the induced subgraph cannot be 3-regular comes
from the fact that the cycle 〈v1, v3, v4, v5, v2, v1〉 includes
the chord edge (v1, v4) in the original graph G. The edges
between γ-vertices are placed because there is an edge
between their corresponding vertices in G. As a result,
the assumption that H[S∗] is an optimal solution, i.e., 3-
regular, implies that the corresponding induced subgraph in
the original graph G forms a cycle 〈vi1 , vi2 , · · · , vij , vi1〉.

Since the number of vertices in each path gadget is
4(n3 + 1), OPT1(G) ≥ g(n)

n1−ε holds by the assumption
OPT2(H) ≥ 4(n3 +1) · g(n)

n1−ε . Therefore, the condition (C2)
is also satisfied.

3.4 Reduction for r ≥ 4

In this section, we give a brief sketch of the ideas to
prove Corollary 1, i.e., the O(n1/6−ε) inapproximability for
r-MaxRICS for any fixed integer r ≥ 4.

The proof is very similar to that of Theorem 3. The
main difference between those proofs is the structure of
each path gadget. See Figure 4, which shows the modified

path gadget. (i) We replace each of γ-vertices in Figure 1
with the complete graph Kr−2 of r − 2 vertices, and then
connect one γ-vertex in Hi and one γ-vertex in Hj for i 6= j
by a similar manner to the reduction for the case r = 3.
(ii) As for β-vertices, we prepare Kr−2 of r − 2 vertices,
say, β1, · · · , βr−2, and two vertices, say, β0 and βr−1, such
that each of the two vertices β0 and βr−2 is adjacent to
all the vertices in Kr−2. Then, all of the β-vertices are
connected to the α-vertex similar to the reduction for r = 3.
Since the reduction requires n3 γ-vertices to connect all the
pairs of Hi’s, which is independent of the value of r, the
path gadget consists of d n3

r−2e subgraphs, say, P 1
j,i,k through

P
dn3/(r−2)e
j,i,k . Further details are omitted here.
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