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Abstract— Cheung and Mosca [1] gave an efficient quan-
tum algorithm for decomposing finite abelian groups in a
unique-encoding group model. We present another efficient
quantum algorithm for this problem in a more general model,
the black-box group model, where each group element is not
necessarily uniquely encoded.
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1. Introduction

Any finite abelian group G can be decomposed into
the direct sum of cyclic subgroups of prime power order.
However, given a set of generators for G, no efficient
classical algorithm is known to find the decomposition of
G, i.e., find generators for the cyclic subgroups of G. This
problem is at least as hard as INTEGER FACTORIZATION –
finding nontrivial factors of a given integer N is equivalent
to finding the decomposition of the (finite abelian) group
Z∗
N , the multiplicative group of integers modulo N .

Decomposing finite abelian groups plays an important
role in quantum computation, the study of the information
processing tasks that can be accomplished using quantum
mechanical systems. We call an algorithm that is defined
over a traditional computational model a classical algorithm
and an algorithm that is defined over a quantum computa-
tional model a quantum algorithm.

In 1994 Shor [2] presented polynomial-time quantum
algorithms for two important problems INTEGER FACTOR-
IZATION and DISCRETE LOGARITHM. No efficient classical
algorithms are known for these two problems. These two
problems are widely believed to be hard on classical com-
puters; their hardness are the basic assumptions for several
cryptosystems including the widely used RSA public-key
cryptosystem. Shor’s paper is the first illustration of the
practical importance of quantum computation. A key com-
ponent in Shor’s algorithms is the efficient implementation
of the Quantum Fourier Transform (QFT), which explores
the underlying algebraic structure of the problems. From
this perspective, Shor’s quantum algorithms, together with
several other quantum algorithms, can be further generalized

to a quantum algorithm for the HIDDEN SUBGROUP problem
where the given group G is abelian. In the case when G is
non-abelian, the HIDDEN SUBGROUP problem generalizes
other well-known problems such as GRAPH ISOMORPHISM.
However, the non-abelian case is much harder to solve and
remains a major challenge in quantum computation.

Before one can efficiently implement QFT to solve the
abelian HIDDEN SUBGROUP problem, the decomposition of
the given abelian group G must be known. Cheung and
Mosca [1] first studied the problem of decomposing finite
abelian groups. They gave an efficient quantum algorithm
for this problem. However, one of their assumptions is that
each element of the input group G is uniquely represented
by a binary string. In another word, their quantum algorithm
only works for a unique-encoding group model.

In this paper we study the problem of decomposing finite
abelian groups in a more general group model — the black-
box group model. In the black-box group model elements
of the input group G are not necessarily uniquely encoded.
The black-box group model was first introduced by Babai
and Szemerédi [3] as a general framework for studying algo-
rithmic problems for finite groups. It is a widely used model
in computational group theory and quantum computation
[4], [5], [6], [7], [8], [9]. This non-unique encoding feature
enables this model to handle factor groups [3]. A factor
group (also known as quotient group) is a group obtained
by identifying together elements of a larger group using
an equivalence relation. In this paper we give an efficient
quantum algorithm for decomposing finite abelian groups in
the black-box group model.

2. Perliminaries

In this section we give a brief introduction of the fun-
damental results in group theory. We refer the readers to a
classic book on group theory [10] for more details.

A set G is called a group if there is a binary operation ·
defined on G such that:

1) for any x, y ∈ G, x · y ∈ G.
2) for any x, y, z ∈ G, (x · y) · z = x · (y · z).



3) there is an identity element e ∈ G such that for any
x ∈ G, x · e = e · x = x.

4) for any x ∈ G, there is a unique x−1 ∈ G such that
x · x−1 = x−1 · x = e.

The set of integers Z together with the “+” operation is
an example of a group. Usually if the binary operation · is
obvious from the context, we will just write xy instead of
x · y.

A group G is abelian if and only if for any x, y ∈ G,
xy = yx. Otherwise, G is nonabelian. A group G is cyclic
if there exist a ∈ G such that G = {an|n ∈ Z}. Then we
say a is a generator of G. A subgroup H of a group G is a
subset which is also a group under the same operation in G.
If H is a subgroup of a group G, then a right coset of H is a
subset S of G such that ∃x ∈ G for which S = Hx = {yx :
y ∈ H}. A left coset of H is defined similarly. The order of
a group G, denoted by |G|, is the cardinality of the set G.
The order of the element a is the smallest number n such
that an = e, denoted by ord(a). If such n ∈ Z exists, we
say a has finite order. In fact, the subset {e, a, a2, . . . , an−1}
forms a subgroup. We call this subgroup the cyclic subgroup
generated by a and denote it by 〈a〉.

Lagrange’s Theorem states that if H is a subgroup of a
group G, then |H| divides |G|. We say [G : H] = |G|/|H| is
the index of H in G. Let G be a group, p be a prime number,
and P be a subgroup of G. If |P | = pr for some r ∈ Z, we
say P is a p-subgroup of G. If furthermore pr divides |G|
but pr+1 does not, then we say P is a Sylow p-subgroup
of G. Let G1, G2 be groups such that G1 ∩G2 = {e}. The
set {(a1, a2) | a1 ∈ G1, a2 ∈ G2}, denoted by G1 ⊕ G2,
is called the direct sum of G1 and G2. G1 ⊕G2 is a group
under the binary operation · such that (a1, b1) · (a2, b2) =
(a1a2, b1b2).

The fundamental theorem of finite abelian groups states
the following.

Theorem 2.1: Given a set {g1, . . . , gn} of generators
of the finite abelian group G, find a set of elements
h1, . . . , hk ∈ G such that G = 〈h1〉 ⊕ · · · ⊕ 〈hk〉 and 〈hi〉
is a cyclic group of prime power order for all 1 ≤ i ≤ k.

Next we introduce the black-box group model. We fix the
alphabet Σ = {0, 1}. A group family is a countable sequence
B = {Bm}m≥1 of finite groups Bm, such that there exist
polynomials p and q satisfying the following conditions. For
each m ≥ 1, elements of Bm are encoded as strings (not
necessarily unique) in Σp(m). The group operations (inverse,
product and identity testing) of Bm are performed at unit
cost by black-boxes (or group oracles). The order of Bm is
computable in time bounded by q(m), for each m. We refer

to the groups Bm of a group family and their subgroups
(presented by generator sets) as black-box groups. Common
examples of black-box groups are {Sn}n≥1 where Sn is the
permutation group on n elements, and {GLn(q)}n≥1 where
GLn(q) is the group of n × n invertible matrices over the
finite field Fq. Depending on whether the group elements are
uniquely encoded, we have the unique encoding model and
non-unique encoding model, the latter of which enables us
to deal with factor groups [3]. In the non-unique encoding
model an additional group oracle has to be provided to test
if two strings represent the same group element.

3. The Algorithm

Our algorithm uses a divide-and-conquer approach. The
algorithm first finds the Sylow p-subgroups of the given
input group and then decomposes each Sylow p-subgroup.
We start with two technical Lemmas. The first Lemma shows
how to find a p-Sylow subgroup in quantum polynomial
time.

Lemma 3.1: Let B = {Bm}m>0 be a group family. Let
G < Bm be an abelian black-box group given by generating
sets S = {g1, . . . , gs}. For any prime number p, the gener-
ating sets for the p-Sylow subgroup of G can be computed
in quantum polynomial time.

Proof: Since G is abelian, for any prime p, there
is an unique p-Sylow subgroup of G. Let n be the the
order of Bm. By our assumption for black-box model, we
can efficiently compute n. Furthermore, we can use Shor’s
algorithm to compute the prime factorization pe11 · · · perr of n.
If p is not a factor of n, then clearly the p-Sylow subgroup of
G is trivial. If p is equal to pk for some 1 ≤ k ≤ r, then we
compute the set Sk = {g′1, . . . , g′s} where g′i = g

n/p
ek
k

i . Note
that this can be done efficiently using modular exponetiation.
We claim that Sk is the generating set for the p-Sylow
subgroup. Clearly the order of g′i is power of p for all i,
so 〈Sk〉 is a p-subgroup of G. To show that 〈Sk〉 is indeed
the p-Sylow subgroup it suffices to show that any gi ∈ S
can be written as products of elements in 〈S1〉, . . . , 〈Sr〉, i.e.,
G = 〈S1〉 ⊕ · · · ⊕ 〈Sr〉. Since Σr

l=1n/p
el
l is coprime with n

and thus the order of any elements in G, for any gi ∈ G,
g
Σr

l=1n/p
el
l

i , which is a product of elements in 〈S1〉, . . . , 〈Sr〉,
generates the same cyclic subgroup that gi generates.

Any finite abelian p-group can be expressed as a direct
sum of m cyclic groups with order pe1 , . . . , pem and e1 ≤
· · · ≤ em. We say that (e1, . . . , em) is the type of the
p-group. In the second lemma we describe a method to
decompose a finite abelian p-group.

Lemma 3.2: Let G be a finite abelian p-group of type



(m1,m2, . . . ,ms). Let g1, . . . , gi be elements of G of or-
ders pm1 , . . . , pmi and for any j 6= k and 1 ≤ j, k ≤
i the cyclic groups 〈gj〉, 〈gk〉 have trivial intersection.
Given a〈g1, . . . , gi〉 as an element in the factor group
G/〈g1, . . . , gi〉 of order pmi+1 with ap

mi+1
= gx1

1 · · · gxi
i ,

we can efficiently find another element gi+1 of order pmi+1

where 〈gi+1〉 and is 〈g1, . . . , gi〉 have trivial intersection.

Proof: First we show that xj is a multiple of pmi+1

for all 1 ≤ j ≤ i.

ap
mi

= (ap
mi+1

)p
mi−mi+1

= (gx1
1 · · · gxi

i )p
mi−mi+1

= gx1p
mi−mi+1

1 · · · gxip
mi−mi+1

i .

But ap
mi is clearly in 〈g1, . . . , gi−1〉, so gxip

mi−mi+1

i is
also in 〈g1, . . . , gi−1〉, therefore xi is a multiple of pmi+1 .
Similarly we have

ap
mi−1

= (ap
mi+1

)p
mi−1−mi+1

= gx1p
mi−1−mi+1

1 · · · gxip
mi−1−mi+1

i

= gx1p
mi−1−mi+1

1 · · · gxi−1p
mi−1−mi+1

i−1 .

By the same reasoning xi−1 is also a multiple of pmi+1 .
Clearly this inductive procedure can go down to i = 1. Thus
xj is a multiple of pmi+1 for all 1 ≤ j ≤ i. Let yj =
xj/p

mi+1 for 1 ≤ j ≤ i and gi+1 = ag−y1

1 · · · g−yi

i . Then

gp
mi+1

i+1 = (ag−y1

1 · · · g−yi

i )p
mi+1

= ag−x1
1 · · · g−xi

i

= e

It is also easy to verify that 〈gi+1〉 and 〈g1, . . . , gi〉 have
trivial intersection.

Now we describe the whole algorithm. Given a generating
set {g1, . . . , gs} of a finite abelian group G ⊆ Bm, we
want to output a set of elements {d1, . . . , dl} such that
G = 〈d1〉 ⊕ · · · ⊕ 〈dl〉. The algorithm uses a divide-and-
conquer approach. It first computes the generating set of each
p-Sylow subgroup, and then convert each generating set into
an “indepedent generating set”. We say a generating set S
of a group is indepedent if for any two element si, sj ∈ S,
〈si〉 and 〈sj〉 has trivial intersection. Note that in a p-group
an independent generating set is exactly the decomposition
of the p-group.

We first compute |Bm|. Recall that in the black-box
model, |Bm| is computable in time bounded by q(m), for
each m. In some cases, we will also obtain the prime
factorization of |Bm|. If not, we can always use Shor’s
quantum algorithm for INTEGER FACTORIZATION to get the
prime factorization pe11 · · · perr . For 1 ≤ i ≤ s, compute
the order of gi. This can be done using Watrous’s quantum

procedure for computing order of an group element in any
solvable group [4]. Then, by Lemma 3.1 we can compute
the generating set of each pi-Sylow subgroup, 1 ≤ i ≤ r.

Let Xi be the generating set for the pi-Sylow subgroup.
For each 1 ≤ i ≤ r, we use Lemma 3.2 to compute an
independent generating set Si of the pi-Sylow subgroup.
We will construct Si in steps. Initially Si is empty. We
add one element to Si at each step. Suppose after the
(j − 1)’th step, Si = {s1, . . . , sj−1}. At the j’th step,
first compute an element h ∈ Xi such that h〈Si〉 has the
maximum possible order in the factor group 〈Xi〉/〈Si〉. This
can be done by the constructive group membership test
described in [11], i.e., we will get x1, . . . , xj−1 such that
hord(h〈Si〉) = Πj−1

k=1s
xk

k . By Lemma 3.2, we will add the
element sj = hΠj−1

k=1s
−xk/ord(h〈Si〉)
k to the set Si. We then

test if Xi is a subset of 〈Si〉. If yes, we can stop and return
Si as the independent generating set. Otherwise, we will go
to the j + 1’th step.

Once we compute the independent generating set Si for
each pi-Sylow subgroup, the decomposition of G is obtained
as ∪r

i=1Si.

4. Discussion

In this paper we present an efficient quantum algorithm
to decompose finite-abelian groups in a more general group
model — black-box group model. Comparing to Cheung
and Mosca’s algorithm [1], our algorithm is conceptually
simpler and only uses elementary results in group theory.
Components of our algorithm may be used to construct
quantum algorithms for HIDDEN SUBGROUP problem over
certain non-abelian finite groups.
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