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Abstract: Specific parameters for Network on Chips (NoCs), 
such as topology, switching method, and packet sizes, have a 
huge impact on performance of NoCs. Cycle and bit accurate 
simulation and emulation are necessary to evaluate and 
validate the performance of the NoC system. The goal of this 
work is to develop an open platform, synthesizable NoC 
framework that would evaluate such performance metrics as 
area, power, latency, and congestion for various design 
explorations. The NoC framework developed is completely 
parameterizable, where the designer can evaluate various 
design space explorations like topology, PE architecture, 
switching and routing algorithms, packet size, and error 
correction, by modifying the configuration file.  The proposed 
NoC framework has been evaluated for various congestion 
scenarios, and the results are discussed.  

Keywords: NoC, Router, Implementation, Cycle and bit 
accurate, Openrisc. 

 
1 Introduction 
Networks on Chips (NoCs) have been proposed as a 
promising solution to complex on-chip communication 
problems. However, many challenging research problems 
remain unsolved at all levels of design abstraction, such as 
design exploration of NoC architecture for applications; 
scheduling and mapping algorithms; evaluation of switching, 
topology or routing algorithms for efficient execution of 
applications; and optimizing communication costs, area, 
energy, and so forth. A solution to solving the above 
problems calls for the development of a synthesizable, 
parameterizable NoC framework that would evaluate and 
implement these problems and algorithms with minimum 
ease and flexibility. 
 
The main contribution of our work is the implementation of a 
parameterizable cycle accurate NoC framework.   The 
framework helps us to: (1) explore the architectural design 
space faster (2) evaluate and choose efficient NoC 
architecture from a range of switching techniques and 
topologies, with regard to latency, area and power; and (3) 
evaluate different architecture, topologies, switching, and 
routing algorithms extensively with various regular traffic 
patterns and application-oriented traffic. Moreover, the 
design is fully synthesizable and has been implemented in a 
field-programmable gate array (FPGA). 
 
A brief summary of existing NoC simulators and emulators 
are presented here.  Orion [7] and LUNA [8], two NoC 

simulators especially developed for power simulation of on-
chip interconnection networks, do not consider 
computational cores. FAST [6] is a functionally accurate 
NoC simulator limited to IBM’s proprietary Cyclops-64 
architecture. SICOSYS [13] is a general-purpose 
interconnection network simulator that captures essential 
details of low-level simulation. RSIM simulates shared-
memory multiprocessors and uniprocessors built from 
processors that aggressively exploit instruction-level 
parallelism (ILP). RSIM, which is execution-driven, models 
state-of-the-art ILP processors, an aggressive memory 
system, and a multiprocessor coherence protocol and 
interconnect, including contention at all resources. NoC 
simulators such as NNSE [9], Noxim [10], and NIRGAM 
[11] have flexibilities in configuring parameters of on-chip 
networks and are capable of obtaining performance metrics; 
however, these simulators are based on SystemC and are not 
synthesizable. XPIPES [19] consists of parameterizable 
network building blocks that can be composed at 
instantiation time; the parameterizable factors are the 
network interface, switches, and links. 
 
The ability of a network to efficiently disseminate 
information depends largely on the topology. Mesh and 
Torus are the most commonly used topologies. The WK-
recursive networks [16] are a class of recursively scalable 
networks that offer a high degree of regularity, scalability, 
and symmetry.  
 
The NoC framework with WK-recursive topology is shown 
in Figure 1. 

 
Figure 1: NoC Framework with WK Topology  

 
In this paper, Section 2 explains briefly the implementation 
details, and Section 3 details the communication flow in the 
NoC framework. Performance analysis of switching 



networks and topologies from simulation and synthesis 
results also are presented in Section 3.  Section 4 provides 
the results and conclusions of this work.  
 
2 NoC Framework Implementation 
The proposed NoC framework consists of five main 
modules: i) the Processing Architecture, ii) the 
Communication Infrastructure, iii) a Communication 
Paradigm, iv) the Monitor, and v) the Traffic Generation 
Module.   
 
The Processing Architecture module consists of a Processing 
Element (PE) and Network Adapter (Core Network 
Interface) module. The Communication Infrastructure 
consists of network topology and a routing node. The 
Communication Paradigm describes the switching techniques 
and routing algorithms employed in the NoC Communication 
Infrastructure. The Monitor module includes two sub 
modules: a) a Node monitor, which monitors the activities in 
a routing node, and b) an NoC monitor, which monitors the 
communication within the framework. 
 
2.1 Processing Architecture 
The processing element (PE) in the framework can be a 
master PE or a slave PE. Only master PEs can initiate a 
message transfer. Slave PEs respond to the requests from the 
master PE either by sending back the requested signals/data 
or by saving the received information. In our framework, 
UART, TIMER, Instruction/Data Memory and slave 
processors are considered as slave PEs, and the master PEs 
and slave processors are capable of performing 
computational operations.  
 
Each master PE or slave processor consists of one OpenRisc 
1000 (OR1K) [1] processor that communicates to an 
Instruction memory (IMEM) through a Wishbone bus. 
OR1K is a 32-bit load and stores an ARM9-based RISC 
embedded processor with 5 state pipelines; it has a maximum 
clock frequency of 250MHz. The OR1K processor shows 
better performance per clock cycle than MicroBlaze in the 
Stanford benchmark [4], and therefore is considered a more 
efficient architecture than the MicroBlaze architecture [3]. 
The architecture defines several features that are quite useful 
for networking and embedded computer environments. Most 
notable are the 32/64-bit architecture, the Programmable 
Interrupt Controller, several instruction extensions, a 2/3 
Level Cache, a configurable number of general-purpose 
registers, a configurable cache and TLB sizes, dynamic 
power management support, and space for user-provided 
instructions. IMEM is a Block Ram with an 8-bit data bus 
and a 32-bit address bus. The instructions to be executed by 
the core are loaded in IMEM. The Wishbone clock frequency 
can be equal to an OR1K or an OR1K/2 clock frequency. 

The Network Adapter (NA) interfaces the PEs with the   
network. Its main function is to generate and process packets 
to and from the PEs. The NA component on the master side 
is called the Core Interface (CI); the Network Adapter on the 
slave side is called a slave network interface (NI).  

 
Figure 2: Routing node 

 
2.2 Communication Infrastructure 
The communication infrastructure consists of a routing node 
and network topology. The routing node (shown in Figure 2) 
consists of a link controller and a router. The link controller 
(LC) provides an interface between the NA and the NoC. Its 
main function is to match the NA clock rate with that of the 
network topology. Routing nodes run at four times the 
frequency of PEs. Synchronization registers are used to 
match clock rates between the slow PE and fast routing 
nodes. First-in first-out (FIFO) buffers are also added in the 
LC to store data packets from the network before 
transmitting to adjacent PEs.  
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Figure 3: Router Architecture 
 
The Network Router is responsible for the transfer of packets 
between nodes. Each router consists of two main 
components: input buffers and an arbiter. Each router (shown 
in Figure 3) has five input and five output ports. There exist 
four inputs/outputs from/to the four cardinal directions 
(North, East, South and West), and one from/to the PE.  To 



prevent deadlocks, the input buffer implements the virtual 
channel concept.. The Virtual Channel (VC) identifier 
module determines which VC should be used based on 
occupancy of the input buffer. VC identifier polls the buffer 
count of each VC and directs the incoming packet to the least 
occupied VC. The Switch Identifier module chooses a packet 
from each VC in a round-robin manner and sends it to the 
output port based on the routing signals obtained from the 
arbiter. The arbiter implemented is FSM-based, and consists 
of the routing table with the shortest path to the destination 
PE. 
 
2.3 Communication Paradigm 
In order to forward the message/packet, the implemented 
NoC framework can choose either the Store and Forward 
(SF) switching technique or the Wormhole (WH) switching 
technique. In SF switching, the message can be sent either as 
packets or in the form of flits. Each flit is contains 25 bits. 
When the message is transmitted as flits, each routing node 
will wait until the entire message is received before 
processing the HEADER. The end of the message/packet is 
determined by the TAIL flit. In Wormhole routing, the 
message is transmitted as soon as the HEADER is available. 
The path is determined from the HEADER as it moves 
through the network. The remaining flits follow the same 
path. The path is disconnected when the TAIL flit is 
received. For the Torus and Mesh topologies, the 
implementation uses an XY routing algorithm with store and 
forward switching. For WK-recursive topology the 
framework uses the adaptive routing algorithm with 
wormhole switching.[18]. 
 
2.4 Monitor Module 
Every routing node in the NoC is connected to a “Node 
monitor,” which connects to a top-level monitor called the 
“NoC monitor.” The main function of the NoC monitor is to 
collect information from individual Node monitors regarding 
the traffic. The Node monitors generate control information 
based on the buffer conditions of that router node. The Node 
monitor uses a few ON/OFF signals, such as FAIL, FULL 
and ALMOST FULL, to communicate with the NoC 
monitor. 
 
2.5 Traffic Generator Module 
The Traffic Generator (TG) module is responsible for 
generating different traffic distribution in the network. The 
TG can generate mainly three different types of traffic: 1) 
uniform traffic, where packets are send at equal intervals of 
time; 2) hotspot traffic [2], where the cores either receive 
packets at a higher rate than the rate they can process or else 
generate packets at a higher rate than the destination can 
process; and 3) sporadic traffic, where each core generates a 
burst of packets. 

3 NoC Framework Communication 
Flow 

This section explains the control and data flow sequence 
followed during the transfer of packets between PEs. Each 
packet can contain a variable number of flits.  Every packet 
consists of a header and a tail flit. Data and address flits are 
optional. The framework allows packing of a variable 
number of data flits into a single packet, which further 
reduces latency during burst mode data transfers. The 
packets are classified as request packets, which have an 
optional address field; and response packets, which have a 
data field. The address field defines the local memory 
address in the destination PE. This allows the slave PE to 
have its own unique memory address space. The packet 
format is shown in Figure 4. 
 

 
Figure 4: Packet Format 

 
The header flit can consist of either only the source and 
destination address or the entire route. Two bits in each flit 
are used as a packet ID, which determines the type of packet 
(00-Header, 01-Data, 10-Address, 11-Tail). In the data and 
address flits, the first three bits next to the packet ID 
determines the order of the data/address flits. Every flit 
contains a control bit (stb_*), which determines the validity 
of packet. The we_* bit signifies if the packet has to perform 
a read or write operation. Typically, each data or address flit 
contains 16 bits of data or address information. The tail flit 
contains parity bits for every data or address flit. A parity bit 
is a bit that is added to ensure that the number of bits with 
the value of “one” in a set of bits is even or odd. Parity bits 
are used as the simplest form of error detecting code (ECC). 
The type of ECC (odd or even parity) used in tail flit is 
parameterizable. 
 
Every channel/link in the network is full duplex, i.e., two 
messages can travel simultaneously on the link in opposite 
directions. A channel/link is said to be congested if its 
associated router buffer is completely full or partially full 
(parameterizable).  A READY and SEND signal are used to 
communicate between adjacent routers. Whenever the 
channel buffer is partially full, the monitor informs every 
adjacent router about a possibility of congestion.. When the 
channel buffer of the router is full, the monitor flags the 
congestion by setting the READY signal to low.   
 
The communication flow in the proposed NoC framework, as 
shown in Figure 5, can be summarized as follows. Let us 
assume a scenario where the master PE wants to write data to 



a specific address location on a slave PE (D-MEM). The 
master PE initiates the transfer by activating the Network 
Adapter (NA), which validates the memory address and 
assembles the packet. In source routing, the NA uses a 
routing table to determine the route. Once the packet is 
ready, the Link Controller stores the packet in the input 
buffer of the router. The router arbiter, based on the route 
information and the availability of input buffers in the 
adjacent routers, determines the output port and forwards the 
packet.  

 
Figure 5: Control and Data Flow  

 
When the packet reaches the input buffer of the adjacent 
router, the router arbiter performs a “destination check” on 
the packet to determine if the packet has reached its 
destination. If the packet had reached its destination, the 
router arbiter sends the packet to the network adapter. The 
network adapter decodes the packet into the D-MEM address 
and the data, and performs the write operation. If the packet 
has not reached its destination, the router arbiter forwards the 
packet to the next router in a similar manner as the master 
router arbiter. In case of channel congestion, the router stores 
the packet in its buffer until the congestion is eliminated.   
 

4 Evaluations and Results 
The parameterizable NoC framework that was developed 
was implemented in Verilog HDL. The input to the design is 
a configuration file that determines the topology (torus, 
mesh, or WK-recursive), switching (Store and Forward or 
Wormhole), size, depth and the number of virtual channel 
buffers, size of packet, and type of ECC (odd or even parity). 
The parameters are static, which means the configurations 
cannot be modified during simulation or after synthesis. 
Also, different architectural components of the framework 
can operate at different frequencies to mimic real-world 
applications and real-time traffic. These characteristics can 
be modeled by modifying the NoC configuration file. Table 
1 summarizes the most important features that can be 
parameterized in the framework. 
 

Table 1: Parameterizable features in the NoC framework 
NETWORK 
TOPOLOGIES 

LINEAR, MESH, 
TORUS, WK-
RECURSIVE 

Channel Width/Packet 
size 

22-80 bits 

Flow Control ON/OFF 
Switching mode SF and Wormhole 
Routing Algorithm XY for Mesh, Torus, 

Simplex Routing 
Algorithm for WK-
recursive 

Buffering 
 

Input Buffering, Single or 
Multiple Virtual Channels 

Network Synchronization Synchronous 
Virtual Channels Depth, size and number of 

virtual channels are 
parameterizable 

Traffic Patterns Uniform, Sporadic, 
Hotspot 

 
 
A packet flow/traffic can be initiated either by the Traffic 
Generator (TG) or by the master PE. OR1k has a GNU tool 
chain, including the GCC compiler and the GNU debugger. 
The application software can be loaded in the external 
instruction memory of the corresponding master PE. The 
processor uses on-chip RAM to execute a bootloader, in 
which the cache, stack, and MMU are enabled and 
initialized. After initialization, the master PE interacts with 
other PEs in framework, thereby executing the application. 
The complete emulation framework is presented in Figure 6. 
 



 
Figure 6:  The complete NoC Emulation Framework 

 
The NoC network clock (Router node) is operated at 1GHz. 
Framework consists of several master and slave PEs. Master 
PEs (OR1K+IMEM) operates at 250MHz. The slave PEs, 
which includes: TIMER, UART, and normal data memory 
unit operate at 125MHz, a D-MEM operates at 250MHz 
(Slow Mode) or 500MHz (Fast Mode). Congestion scenarios 
(hot-spot) are simulated when a faster PE sends a series of 
packets to a slower PE. Regular traffic scenarios are 
simulated when a faster/slower PE sends a series of packets 
to a faster PE. Also traffic scenarios for single and multiple 
hop transfers are modeled. Figure 7, shows the different 
traffic scenarios modeled in the proposed NoC framework. 

 
Figure 7: Congestion Traffic Models 

 
In order to evaluate the flexibility and diversity of the 
proposed NoC framework, the following design variations 
are considered. First, the 3x3 Torus topology with SF 
switching and XY routing algorithm is evaluated. Second, 
the WK(2,4) topology with Wormhole(WH) switching and 
minimum routing algorithm is evaluated. Evaluation of WK 
topology includes support for burst data transfer. A master 
sending multiple data to same destination can be packed into 
a single packet in WH, hence further reducing latency.  

 
Figure 8: Latency Evaluation of Torus Topology 

 
 

 
Figure 9: Latency Evaluation of WK Topology 

 
The performance metrics of these design variations include: 
latency vs injection rate (packets/clock cycle), logic area 
(number of slices) and power (in watts). The designs were 
also evaluated for performance metrics under normal and 
hotspot traffic conditions. Figure 8 shows the latency for 
Torus and WK topologies for uniform traffic, and Figure 9 
shows the latency for hotspot traffic for different hops.  The 
design was synthesized for Virtex4, using Xilinx ISE 11.1.  
Table 2 shows the area and static power comparisons of 
different NoC architecture components for the Torus and 
WK topologies. 

 
Table 2: Area and Power of Torus and WK 

 Area (Slices) Power (W) 

Block/Module WH SF WH SF 

PE-OR1K 5992 5992 0.38216 0.38216 

Router 1670 1778 0.17106 0.19048 

Core Interface 65 543 0.17948 0.16633 

Network Interface 37 69 0.16183 0.16893 

 
 



5 Conclusion 
A synthesizable NoC framework was developed using 
Verilog HDL. The framework is parameterizable, and has 
been used as a tool for design space exploration of various 
topology (Torus and WK), switching techniques (SF and 
WH), and network traffic (uniform and hot-spot). The 
performance metrics of the design space exploration include 
latency, area, and power. By using the proposed framework, 
researchers will be able to evaluate and compare various 
novel NoC architectures and algorithms with accurate 
performance, power, and area parameters, and hence 
facilitate the determination of system-level performance. 
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