
Parametrizable NoC Emulation Framework for Performance
Evaluations

Jaya Suseela and Venkatesan Muthukumar
Dept. of Electrical and Computer Engineering, University of Nevada Las Vegas, Las Vegas, NV-USA

Abstract: Specific parameters for Network on Chips (NoCs),
such as topology, switching method, and packet sizes, have a
huge impact on performance of NoCs. Cycle and bit accurate
simulation and emulation are necessary to evaluate and
validate the performance of the NoC system. The goal of this
work is to develop an open platform, synthesizable NoC
framework that would evaluate such performance metrics as
area, power, latency, and congestion for various design
explorations. The NoC framework developed is completely
parameterizable, where the designer can evaluate various
design space explorations like topology, PE architecture,
switching and routing algorithms, packet size, and error
correction, by modifying the configuration file. The proposed
NoC framework has been evaluated for various congestion
scenarios, and the results are discussed.

Keywords: NoC, Router, Implementation, Cycle and bit
accurate, Openrisc.

1 Introduction
Networks on Chips (NoCs) have been proposed as a
promising solution to complex on-chip communication
problems. However, many challenging research problems
remain unsolved at all levels of design abstraction, such as
design exploration of NoC architecture for applications;
scheduling and mapping algorithms; evaluation of switching,
topology or routing algorithms for efficient execution of
applications; and optimizing communication costs, area,
energy, and so forth. A solution to solving the above
problems calls for the development of a synthesizable,
parameterizable NoC framework that would evaluate and
implement these problems and algorithms with minimum
ease and flexibility.

The main contribution of our work is the implementation of a
parameterizable cycle accurate NoC framework. The
framework helps us to: (1) explore the architectural design
space faster (2) evaluate and choose efficient NoC
architecture from a range of switching techniques and
topologies, with regard to latency, area and power; and (3)
evaluate different architecture, topologies, switching, and
routing algorithms extensively with various regular traffic
patterns and application-oriented traffic. Moreover, the
design is fully synthesizable and has been implemented in a
field-programmable gate array (FPGA).

A brief summary of existing NoC simulators and emulators
are presented here. Orion [7] and LUNA [8], two NoC

simulators especially developed for power simulation of on-
chip interconnection networks, do not consider
computational cores. FAST [6] is a functionally accurate
NoC simulator limited to IBM’s proprietary Cyclops-64
architecture. SICOSYS [13] is a general-purpose
interconnection network simulator that captures essential
details of low-level simulation. RSIM simulates shared-
memory multiprocessors and uniprocessors built from
processors that aggressively exploit instruction-level
parallelism (ILP). RSIM, which is execution-driven, models
state-of-the-art ILP processors, an aggressive memory
system, and a multiprocessor coherence protocol and
interconnect, including contention at all resources. NoC
simulators such as NNSE [9], Noxim [10], and NIRGAM
[11] have flexibilities in configuring parameters of on-chip
networks and are capable of obtaining performance metrics;
however, these simulators are based on SystemC and are not
synthesizable. XPIPES [19] consists of parameterizable
network building blocks that can be composed at
instantiation time; the parameterizable factors are the
network interface, switches, and links.

The ability of a network to efficiently disseminate
information depends largely on the topology. Mesh and
Torus are the most commonly used topologies. The WK-
recursive networks [16] are a class of recursively scalable
networks that offer a high degree of regularity, scalability,
and symmetry.

The NoC framework with WK-recursive topology is shown
in Figure 1.

Figure 1: NoC Framework with WK Topology

In this paper, Section 2 explains briefly the implementation
details, and Section 3 details the communication flow in the
NoC framework. Performance analysis of switching

networks and topologies from simulation and synthesis
results also are presented in Section 3. Section 4 provides
the results and conclusions of this work.

2 NoC Framework Implementation
The proposed NoC framework consists of five main
modules: i) the Processing Architecture, ii) the
Communication Infrastructure, iii) a Communication
Paradigm, iv) the Monitor, and v) the Traffic Generation
Module.

The Processing Architecture module consists of a Processing
Element (PE) and Network Adapter (Core Network
Interface) module. The Communication Infrastructure
consists of network topology and a routing node. The
Communication Paradigm describes the switching techniques
and routing algorithms employed in the NoC Communication
Infrastructure. The Monitor module includes two sub
modules: a) a Node monitor, which monitors the activities in
a routing node, and b) an NoC monitor, which monitors the
communication within the framework.

2.1 Processing Architecture
The processing element (PE) in the framework can be a
master PE or a slave PE. Only master PEs can initiate a
message transfer. Slave PEs respond to the requests from the
master PE either by sending back the requested signals/data
or by saving the received information. In our framework,
UART, TIMER, Instruction/Data Memory and slave
processors are considered as slave PEs, and the master PEs
and slave processors are capable of performing
computational operations.

Each master PE or slave processor consists of one OpenRisc
1000 (OR1K) [1] processor that communicates to an
Instruction memory (IMEM) through a Wishbone bus.
OR1K is a 32-bit load and stores an ARM9-based RISC
embedded processor with 5 state pipelines; it has a maximum
clock frequency of 250MHz. The OR1K processor shows
better performance per clock cycle than MicroBlaze in the
Stanford benchmark [4], and therefore is considered a more
efficient architecture than the MicroBlaze architecture [3].
The architecture defines several features that are quite useful
for networking and embedded computer environments. Most
notable are the 32/64-bit architecture, the Programmable
Interrupt Controller, several instruction extensions, a 2/3
Level Cache, a configurable number of general-purpose
registers, a configurable cache and TLB sizes, dynamic
power management support, and space for user-provided
instructions. IMEM is a Block Ram with an 8-bit data bus
and a 32-bit address bus. The instructions to be executed by
the core are loaded in IMEM. The Wishbone clock frequency
can be equal to an OR1K or an OR1K/2 clock frequency.

The Network Adapter (NA) interfaces the PEs with the
network. Its main function is to generate and process packets
to and from the PEs. The NA component on the master side
is called the Core Interface (CI); the Network Adapter on the
slave side is called a slave network interface (NI).

Figure 2: Routing node

2.2 Communication Infrastructure
The communication infrastructure consists of a routing node
and network topology. The routing node (shown in Figure 2)
consists of a link controller and a router. The link controller
(LC) provides an interface between the NA and the NoC. Its
main function is to match the NA clock rate with that of the
network topology. Routing nodes run at four times the
frequency of PEs. Synchronization registers are used to
match clock rates between the slow PE and fast routing
nodes. First-in first-out (FIFO) buffers are also added in the
LC to store data packets from the network before
transmitting to adjacent PEs.

noc_w_o

noc_w_i

noc_s_o noc_s_i

noc_e_i

noc_e_o

noc_n-­‐o

noc_n_iip_outip_in

count

count

countcount
FIFO

LC LC

FIFO LC

LC

FIFO

FIFO

Arbiter

FIFO

Figure 3: Router Architecture

The Network Router is responsible for the transfer of packets
between nodes. Each router consists of two main
components: input buffers and an arbiter. Each router (shown
in Figure 3) has five input and five output ports. There exist
four inputs/outputs from/to the four cardinal directions
(North, East, South and West), and one from/to the PE. To

prevent deadlocks, the input buffer implements the virtual
channel concept.. The Virtual Channel (VC) identifier
module determines which VC should be used based on
occupancy of the input buffer. VC identifier polls the buffer
count of each VC and directs the incoming packet to the least
occupied VC. The Switch Identifier module chooses a packet
from each VC in a round-robin manner and sends it to the
output port based on the routing signals obtained from the
arbiter. The arbiter implemented is FSM-based, and consists
of the routing table with the shortest path to the destination
PE.

2.3 Communication Paradigm
In order to forward the message/packet, the implemented
NoC framework can choose either the Store and Forward
(SF) switching technique or the Wormhole (WH) switching
technique. In SF switching, the message can be sent either as
packets or in the form of flits. Each flit is contains 25 bits.
When the message is transmitted as flits, each routing node
will wait until the entire message is received before
processing the HEADER. The end of the message/packet is
determined by the TAIL flit. In Wormhole routing, the
message is transmitted as soon as the HEADER is available.
The path is determined from the HEADER as it moves
through the network. The remaining flits follow the same
path. The path is disconnected when the TAIL flit is
received. For the Torus and Mesh topologies, the
implementation uses an XY routing algorithm with store and
forward switching. For WK-recursive topology the
framework uses the adaptive routing algorithm with
wormhole switching.[18].

2.4 Monitor Module
Every routing node in the NoC is connected to a “Node
monitor,” which connects to a top-level monitor called the
“NoC monitor.” The main function of the NoC monitor is to
collect information from individual Node monitors regarding
the traffic. The Node monitors generate control information
based on the buffer conditions of that router node. The Node
monitor uses a few ON/OFF signals, such as FAIL, FULL
and ALMOST FULL, to communicate with the NoC
monitor.

2.5 Traffic Generator Module
The Traffic Generator (TG) module is responsible for
generating different traffic distribution in the network. The
TG can generate mainly three different types of traffic: 1)
uniform traffic, where packets are send at equal intervals of
time; 2) hotspot traffic [2], where the cores either receive
packets at a higher rate than the rate they can process or else
generate packets at a higher rate than the destination can
process; and 3) sporadic traffic, where each core generates a
burst of packets.

3 NoC Framework Communication
Flow

This section explains the control and data flow sequence
followed during the transfer of packets between PEs. Each
packet can contain a variable number of flits. Every packet
consists of a header and a tail flit. Data and address flits are
optional. The framework allows packing of a variable
number of data flits into a single packet, which further
reduces latency during burst mode data transfers. The
packets are classified as request packets, which have an
optional address field; and response packets, which have a
data field. The address field defines the local memory
address in the destination PE. This allows the slave PE to
have its own unique memory address space. The packet
format is shown in Figure 4.

Figure 4: Packet Format

The header flit can consist of either only the source and
destination address or the entire route. Two bits in each flit
are used as a packet ID, which determines the type of packet
(00-Header, 01-Data, 10-Address, 11-Tail). In the data and
address flits, the first three bits next to the packet ID
determines the order of the data/address flits. Every flit
contains a control bit (stb_*), which determines the validity
of packet. The we_* bit signifies if the packet has to perform
a read or write operation. Typically, each data or address flit
contains 16 bits of data or address information. The tail flit
contains parity bits for every data or address flit. A parity bit
is a bit that is added to ensure that the number of bits with
the value of “one” in a set of bits is even or odd. Parity bits
are used as the simplest form of error detecting code (ECC).
The type of ECC (odd or even parity) used in tail flit is
parameterizable.

Every channel/link in the network is full duplex, i.e., two
messages can travel simultaneously on the link in opposite
directions. A channel/link is said to be congested if its
associated router buffer is completely full or partially full
(parameterizable). A READY and SEND signal are used to
communicate between adjacent routers. Whenever the
channel buffer is partially full, the monitor informs every
adjacent router about a possibility of congestion.. When the
channel buffer of the router is full, the monitor flags the
congestion by setting the READY signal to low.

The communication flow in the proposed NoC framework, as
shown in Figure 5, can be summarized as follows. Let us
assume a scenario where the master PE wants to write data to

a specific address location on a slave PE (D-MEM). The
master PE initiates the transfer by activating the Network
Adapter (NA), which validates the memory address and
assembles the packet. In source routing, the NA uses a
routing table to determine the route. Once the packet is
ready, the Link Controller stores the packet in the input
buffer of the router. The router arbiter, based on the route
information and the availability of input buffers in the
adjacent routers, determines the output port and forwards the
packet.

Figure 5: Control and Data Flow

When the packet reaches the input buffer of the adjacent
router, the router arbiter performs a “destination check” on
the packet to determine if the packet has reached its
destination. If the packet had reached its destination, the
router arbiter sends the packet to the network adapter. The
network adapter decodes the packet into the D-MEM address
and the data, and performs the write operation. If the packet
has not reached its destination, the router arbiter forwards the
packet to the next router in a similar manner as the master
router arbiter. In case of channel congestion, the router stores
the packet in its buffer until the congestion is eliminated.

4 Evaluations and Results
The parameterizable NoC framework that was developed
was implemented in Verilog HDL. The input to the design is
a configuration file that determines the topology (torus,
mesh, or WK-recursive), switching (Store and Forward or
Wormhole), size, depth and the number of virtual channel
buffers, size of packet, and type of ECC (odd or even parity).
The parameters are static, which means the configurations
cannot be modified during simulation or after synthesis.
Also, different architectural components of the framework
can operate at different frequencies to mimic real-world
applications and real-time traffic. These characteristics can
be modeled by modifying the NoC configuration file. Table
1 summarizes the most important features that can be
parameterized in the framework.

Table 1: Parameterizable features in the NoC framework
NETWORK
TOPOLOGIES

LINEAR, MESH,
TORUS, WK-
RECURSIVE

Channel Width/Packet
size

22-80 bits

Flow Control ON/OFF
Switching mode SF and Wormhole
Routing Algorithm XY for Mesh, Torus,

Simplex Routing
Algorithm for WK-
recursive

Buffering

Input Buffering, Single or
Multiple Virtual Channels

Network Synchronization Synchronous
Virtual Channels Depth, size and number of

virtual channels are
parameterizable

Traffic Patterns Uniform, Sporadic,
Hotspot

A packet flow/traffic can be initiated either by the Traffic
Generator (TG) or by the master PE. OR1k has a GNU tool
chain, including the GCC compiler and the GNU debugger.
The application software can be loaded in the external
instruction memory of the corresponding master PE. The
processor uses on-chip RAM to execute a bootloader, in
which the cache, stack, and MMU are enabled and
initialized. After initialization, the master PE interacts with
other PEs in framework, thereby executing the application.
The complete emulation framework is presented in Figure 6.

Figure 6: The complete NoC Emulation Framework

The NoC network clock (Router node) is operated at 1GHz.
Framework consists of several master and slave PEs. Master
PEs (OR1K+IMEM) operates at 250MHz. The slave PEs,
which includes: TIMER, UART, and normal data memory
unit operate at 125MHz, a D-MEM operates at 250MHz
(Slow Mode) or 500MHz (Fast Mode). Congestion scenarios
(hot-spot) are simulated when a faster PE sends a series of
packets to a slower PE. Regular traffic scenarios are
simulated when a faster/slower PE sends a series of packets
to a faster PE. Also traffic scenarios for single and multiple
hop transfers are modeled. Figure 7, shows the different
traffic scenarios modeled in the proposed NoC framework.

Figure 7: Congestion Traffic Models

In order to evaluate the flexibility and diversity of the
proposed NoC framework, the following design variations
are considered. First, the 3x3 Torus topology with SF
switching and XY routing algorithm is evaluated. Second,
the WK(2,4) topology with Wormhole(WH) switching and
minimum routing algorithm is evaluated. Evaluation of WK
topology includes support for burst data transfer. A master
sending multiple data to same destination can be packed into
a single packet in WH, hence further reducing latency.

Figure 8: Latency Evaluation of Torus Topology

Figure 9: Latency Evaluation of WK Topology

The performance metrics of these design variations include:
latency vs injection rate (packets/clock cycle), logic area
(number of slices) and power (in watts). The designs were
also evaluated for performance metrics under normal and
hotspot traffic conditions. Figure 8 shows the latency for
Torus and WK topologies for uniform traffic, and Figure 9
shows the latency for hotspot traffic for different hops. The
design was synthesized for Virtex4, using Xilinx ISE 11.1.
Table 2 shows the area and static power comparisons of
different NoC architecture components for the Torus and
WK topologies.

Table 2: Area and Power of Torus and WK

 Area (Slices) Power (W)

Block/Module WH SF WH SF

PE-OR1K 5992 5992 0.38216 0.38216

Router 1670 1778 0.17106 0.19048

Core Interface 65 543 0.17948 0.16633

Network Interface 37 69 0.16183 0.16893

5 Conclusion
A synthesizable NoC framework was developed using
Verilog HDL. The framework is parameterizable, and has
been used as a tool for design space exploration of various
topology (Torus and WK), switching techniques (SF and
WH), and network traffic (uniform and hot-spot). The
performance metrics of the design space exploration include
latency, area, and power. By using the proposed framework,
researchers will be able to evaluate and compare various
novel NoC architectures and algorithms with accurate
performance, power, and area parameters, and hence
facilitate the determination of system-level performance.

6 References
[1] OpenRisc 1000 architecture Manual from
<opencores.com>

[2] A. Kumar et al; “Toward Ideal On-Chip Communication
Using Express Virtual Channels”. IEEE Micro Vol 28, Issue
1, January- February 2008, pp 191-202.

[3] D.Mattsson and M. Christensson , “Evaluation of
Synthesizable CPU Cores” master’s thesis 2004.

[4] https://benchmark.stanford.edu

[5] Krishnan Srinivasan, Karam S. Chatha, and Goran
Konjevod “Linear-Programming-Based Techniques for
Synthesis of Network-on-Chip Architectures”. In
Proceedings of the IEEE International Conference on
Computer Design (ICCD '04). IEEE Computer Society,
Washington, DC, USA, 422-429.

[6] Juan del Cuvillo et al.: FAST: A Functionally Accurate
Simulation Toolset for the Cyclops64 Cellular Architecture.
MoBS’05 Workshop in conjunction with ISCA’05, 2005.

[7] Hangsheng Wang et al.: Orion: A Power-Performance
Simulator for Interconnection Networks. In Proceedings of
MICRO 35, 2002.

[8] Zhonghai Lu, Rikard Thid, et al.: NNSE: Nostrum
network-on-chip simulation environment. Design,
Automation and Test in Europe Conference, 2005.

[9] Noxim. http://sourceforge.net/projects/noxim, 2008.

[10] Lavina Jain et al.: NIRGAM: A Simulator for NoC
Interconnect Routing and Application Modeling. Design,
Automation and Test in Europe Conference, 2007.

[11] CellSim. http://pcsostres.ac.upc.edu/cellsim, 2007.

[12] V. S. Pai et al., “RSIM: Rice Simulator for ILP
Multiprocessors,” SIGARCH Comput. Archit. News, vol.
25, no. 5, p. 1, 1997.

[13] V. Puente et al., “Sicosys: An integrated framework for
studying interconnection network performance in
multiprocessor systems,” Parallel, Distributed, and Network-
Based Processing, Euromicro Conference on, vol. 0, p. 0015,
2002.

[14] Y. Hu, H.Chen, Y.Zhu, A. A. Chien and C. Cheng,
"Physical Synthesis of Energy-Efficient Network-on-Chip
Through Topology Exploration and Wire Style
Optimizations," Design (ICCD), pp.111-118, 2005.

[15] K. Srinivasan and K.S. Chatha, “A technique for low
energy mapping and routing in network on chip
architectures”. In Proceedings of the 2005 international
symposium on Low power electronics and design (ISLPED
'05). ACM, New York, NY, USA, 387-392.

[16] G. D. Vecchia and C. Sanges, “A recursively scalable
network VLSI implementation,” Future Generation
Computer Systems, 4(3) 235-243, 1988.

[17] D.Rahmati, A.Kiasari, S.Hessabi, H.Sarbazi-Azad, "A
Performance and Power Analysis of WK-Recursive and
Mesh Networks for Network-on-Chips", IEEE International
Conference on Computer Design (ICCD 2006), San Jose,
CA, USA, Oct. 2006.

[18] Della Vecchia, G., Sanges, C.: A Recursively Scalable
Network VLSI Implementation. Future Generation
Computer Systems 4(3), 235–243 (1988).

[19] M. Dallosso et al., “Pipes: A Latency Insensitive
Parameterized Network-on-chip Architecture for Multi-
Processor SoCs,” pp. 536-539, Proc. Int’l Conf. Computer
Design, 2003.

