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    Abstract - An innovative algorithm aimed to sequence of 
numbers generation according to a programmable statistical 
distribution is presented. Main features of the technique are high 
efficiency, low requirements in terms of implementation 
resources and high generation rate. Possible applications range 
from scientific simulations to system testing setups. In particular 
as reference case study, we adopted simulation of events 
generated by radioactive decay processes that are at the forefront 
in many application and research areas in medicine as in physics. 
The algorithm has been implemented in a low cost multi-FPGA 
system. A generation rate one order of magnitude higher with 
respect to modern PC-based solution has been achieved. 
 
Keywords – Pseudorandom number generation, Deterministic 
random bit generation, Simulation, Testing. 
 
 

I.  INTRODUCTION 
 

any methods and techniques for pseudorandom number 
generation (PRNG), also known as deterministic random 

bit generation (DRBG), are well known and consolidated [1-
2]. These are algorithms for generating sequences of numbers 
that approximate the properties of random numbers. Although 
sequences that are close to truly random can be generated, 
pseudorandom numbers are fundamental in practice for 
simulations (e.g., of physical systems with the Monte Carlo 
method [3]), and are central in the practice of cryptography 
and procedural generation. 

However, an increasing number of applications shows the 
necessity to simulate sequences of numbers that approximate 
at best properties of specific statistical distributions. This is 
the case, for example, of simulation of events generated by 
non-random physical processes and initialization of system 
testing setups. Since this is now at the forefront in many 
research areas in medicine as in physics, we adopted this 
application as reference case study to describe the proposed 
technique. 

The radioactive decay is the process by which an atomic 
nucleus of an atom loses energy by emitting particles. The 
distribution of energy values of emitted particles depends on 
the source and is referred as its energy spectrum. Of course, 
radioactive decay is a stochastic (i.e. random) process on the 
level of single atoms, in that according to quantum theory it is 
impossible to predict when a given atom will decay. However, 
given a large number of identical atoms the decay rate for the 

collection is predictable, and for the most cases the emission 
instants follow a Poisson distribution. Consequently, in order 
to emulate a radioactive source, the primary task is to generate 
the emitted particle energy values, according to the source 
energy spectrum, and the occurrence times following Poisson 
distribution. 

The generation of random data which follows a statistical 
distribution should be treated so that generated values are as 
representative as possible of the physical phenomenon that 
produces them. For example, the generation of energy of 
events emitted by a 60Co isotope should correspond to about 
80% probability of 1.33 MeV with respect to 1.17 MeV 
emission. This means that the emulated spectrum should grow 
approaching progressively from the beginning the final shape 
of the spectrum. 

Of course, the requirement of properly emulated 
randomness must be combined with the need to find a method 
to generate data at high efficiency. 

It is well know that a trivial way of generating random 
numbers that follow a given distribution consists in addressing 
the corresponding histogram by means of a white distribution. 
Each time the random number addresses a bin of the 
histogram, the corresponding count is decreased by a unit and 
the bin value is outputted. If the addressed bin count is null, no 
output is produced. The method is inherently not efficient 
since the probability of finding a non-zero bin count decreases 
with increasing generated numbers. Other algorithms require 
huge amounts of memory and are therefore not suited for 
embedded or low-cost systems. 

We propose a novel technique for generating random 
numbers according to an arbitrary probability distribution with 
high efficiency, low requirements in terms of implementation 
resources and high generation rate. 
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Fig.1  The plot shows a hypothetical emission energy spectrum 
of a radioactive decay process and its correspondent discrete 
representation by means of a histogram. 
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The algorithm has been implemented in a multi-FPGA 
setup that generates up to 75 Mevents per second, with a word 
size of 16 bits and quantized at 65,536 levels. The system can 
be interfaced by means of PCI-Express bus and used as co-
processor providing test vectors to embedded hardware 
simulators or PC-based simulation software environments. 
 

 
II.  METHODOLOGY 

 
As reference distribution, we consider the generic histogram 

depicted in Fig.1 that, for instance, represents the discretized 
energy emission spectrum H(E) of a radioactive decay 
process. Aim of the technique is to generate numbers whose 
distribution grows approaching progressively from the 
beginning the shape in Fig.1. At basis of the process is a 
random number generator. In fact, any statistic variable x that 
is described by a density probability distribution P(x), can be 
modeled by the cascade of a generator of uniformly distributed 
random numbers and the transform function P(x) [4]. In this 
way, the quality of the generated statistic values depends only 
on the uniform number generator, which can be used for every 
emulated source that is characterized only by P(x). Therefore, 
the problem is to transform a white spectrum into whatever 
kind of distribution. In order to simply explain how the 
algorithm works, let us consider that the reference histogram 
is composed by 16 bins, from E0 up to E15, with a maximum 
dynamic range equal to 16. The bin width is the spectrum 
resolution, while the dynamic range is the maximum height of 
each histogram column. The higher is the number of bins and 
the dynamic range, the better is the represented spectrum. 
However, increasing the accuracy of the spectrum is simply a 
matter of number of bits and this is not a problem using 
modern digital devices. Each column Ex of the histogram can 
be thought as composed by a number of small squares and 
represents the density probability that the event has energy 
between Ex-1 and Ex+1; if bin x is twice higher than bin y, this 
means that there is twice the probability for an event to have 
energy Ex rather than energy Ey. The product of the column 
value by the bin width returns the probability. The ratio of the 
probabilities that an event has energy in a certain interval 
rather than in another one is simply the ratio between the 
corresponding areas below the density probability curve. 
As in Fig.1, squares constituting columns are sequentially 
numbered. Consider the simplified case in which the total 
number of squares under the curve is a power of 2, e.g. 25=32. 
Using 5 bit in the random number generator, all the 32 
numbers can be obtained with the same probability, i.e. the 
random numbers map completely the area under the spectrum 
curve. Every time a random number is generated, the 
algorithm searches the number in the spectrum area and 
delivers the corresponding bin number x thus indicating the 
corresponding energy value Ex. If we consider again a generic 
x bin two times higher than a y bin, since random numbers 
map all the squares with equal probability, there is twice the 
probability that the random number picks up a square in x 
rather than in y column, which means that generated pulses 
with Ex energy are twice those with Ey energy. 

Operatively, the histogram is converted into the equivalent 
cumulative histogram (Fig.2), i.e. the cumulative energy 
spectrum Hc(Ex) is computed as integral function of the energy 
spectrum H(E). An array is loaded with the cumulative 
spectrum and only one memory cell per bin is required. Using 
the cumulative spectrum, it is still possible to identify the bin 
that contains the generated random number by means of an 
extension of the described algorithm. For instance, (see Figs. 2 
and 3), if the random number is 18, it is easy to see that it 
belongs to the memory cell E10, which contains a number that 
is higher than 18 (20), while the preceding cell contains a 
number that is lower (16); this means that bin E10 contains the 
squares that go from 16 to 19, exactly the range in which 18 
belongs. So the output energy value correspondent to the 
random number 18 is 10. 

The fundamental advantage of this approach is the lack of 
required memory. In fact, alternative solutions could be faster 
but heavier for memory resources. For instance, using a 
memory composed by a number of cells equal to the number 
of bins multiplied by the dynamic range, that is the maximum 
number of squares available to draw the spectrum, each cell 
would contain the corresponding bin number, while the 
random number would be used to address the memory. In this 
way, no search algorithm is necessary since the data bus 
directly returns the bin number when the random number 
addresses the memory and the procedure is significantly faster. 
Nevertheless, this solution has the serious drawback of the 
memory occupancy. In fact, considering a histogram 
represented by 65,536 bins (i.e. 16 bit) with dynamic range 
equal to 65,536 (i.e. 16 bit), 8 GB of memory are necessary. 

 
 
Fig.2 Conversion of the histogram of the reference probability 
density into the corresponding cumulative histogram. 
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Fig.3  The marked rectangle represents the range of values of the 
bin E10, which is the largest and consequently most likely to 
contain the randomly generated number. This non-uniform 
probability is the key of conversion from white to shaped 
distribution. 

That has to be compared with the proposed approach, which in 
same operative conditions requires only 256 kB of memory. 
In order to increase memory saving, we compress data storing 
in the array only bins with counts greater than a fixed 
threshold. In this case, it is important to remap each bin 
number of the cumulative spectrum with the correct energy 
value. A look-up table (LUT) is therefore necessary of size 
equal to the number of non-zero bins of the spectrum. Only if 
less than half of bins are non-zero elements, the compression 
is useful and performed. 
 

III.   IMPLEMENTATION 
 

The system implementation is partitioned between the 
generation of the vector Hd, which is calculated storing only 
the top value of each bin of the histogram Hc (Fig. 3), and the 
generation of random number. The first task is performed only 
once and consequently has no impact on generation efficiency. 
On the contrary, the generation of random numbers is a critical 
issue in terms of operation frequency and therefore it has to be 
performed by means of dedicated hardware resources. 
Considerations on operating frequency, power dissipation and 
memory access bandwidth led us to choose a FPGA instead of 
temporal computing devices such as DSP or GPU based 
solutions. As above stated, conversion from white to any 
distribution is performed by searching the position p of the 
generated random number x into the vector Hd and returning p 
as output. Therefore, two are the main tasks of the FPGA 
device: the generation of random numbers x and the search of 
their position p into the vector Hd through a modified version 
of the binary search algorithm.  

Efficient and accurate algorithms for random number 
generation are fundamental in many fields of application [5], 
from process simulation to cryptography. In the present 
application, the linear feedback shift register (LFSR) 
algorithm has been implemented that is a machine 
independent algorithm characterized by arbitrary long 
repetition periods, excellent statistic properties, high 
generation speed and limited resource expense [5]. It only 
needs an m-bit shift register and 1 to 3 XOR gates, and thus 
the resulting circuit is very small and its operation is 

extremely simple and fast. Furthermore, since the period 
grows exponentially with the size of the register, we can easily 
generate a large non-repetitive sequence (e.g. with a 64 bit 
generator running at 1 GHz, the period is more than 500 
years).  

Task of spectrum modulation is to look in which interval 
between two numbers of the vector Hd a random number is 
included. A very high performance algorithm to perform that 
in a sorted vector is the binary search [5]. Comparing the 
target to the middle item in the list, if the target does not 
match but is greater, the comparison is repeated in the upper 
half of the list. Otherwise, the lower half of the list is 
considered. The method halves the number of items to check 
each time, reaching convergence in logarithmic time with 
respect to the number of iterations.  
 
 

IV.   HARDWARE IMPLEMENTATION 
 

Before developing a customized hardware implementation, 
the generation algorithm has been validated on Xilinx FPGA 
devices Virtex-5 FX110T and Spartan 6 LX-25. Let’s consider 
the storage of distributions with dynamic range of 24 bit and 
resolution of 16 bit, i.e. 65536 bins. Each distribution needs a 
memory allocation of 1.57 Mbit to be stored. With 8 Mbit 
internal dual-port memory, the Virtex-5 device allows the 
storage of 5 distributions, namely the simultaneous operation 
of 5 independent generators. Considering that memories are 
dual-port and operating frequency can be 300 MHz, the 
minimum rate is 83 Mnumbers generated per second that 
corresponds to the maximum value of 17 clock cycles for 
every binary search. 

Drawbacks of this solution are the cost of the device (above 
1000 USD) and also the limit of 5 generators that can run 
simultaneously. The use of cheaper but smaller devices 
organized as an array has been investigated. The implemented 
algorithm within the FPGA consists only of a state machine 
and two comparators for each generator. The Xilinx FPGA 
Spartan-6 LX-25 is a low-cost device that has enough 
resources to implement the algorithm of random number 
generation and research but not enough memory (1 Mbit) to 
store even only one distribution. Consequently external 
asynchronous SRAM resources were attached to the FPGA 
device with the limit of pins available for connection. In 
practice, the adopted BGA FG484 package of the FPGA 
device leaves less than 260 pins available and each module of 
2 Mbit selected low-cost RAM needs 24 data, 16 address and 
2 control lines, which means 6 SRAM at most connected. At 
the operating frequency of 100 MHz, the single FPGA device 
should access memory 34 times at worst, which means a 
minimum rate of 17 Mnumbers generated per second. 

The cost of a single computing cell, i.e. FPGA device – 
SRAM modules – configuration memory, is below 100 USD 
that is more than one order of magnitude less than Virtex-5 
solution. Of course, the generation rate is sensibly slower, but 
6 generators can run simultaneously. Doing a cost/benefit 
analysis, we decided to adopt this second approach. 



The number of linked computing cells is limited by the 
adopted PCI-Express communication bus. In a Xilinx Spartan 
6-45T FPGA device with built-in PCI-Express blocks, we 
implemented a master DMA controller, whose transfer rate to 
host PC is just below 200 MB/s per lane. Since we decided to 
use just 1 lane in order to make the system compliant with 
common 1x PCI-Express slots, the maximum transfer rate of 
16 bit random numbers is 100 Mnumbers/s that corresponds to 
a maximum number of 5 connected computing cells. 
Overall, at a cost equal to ¼ with respect to the use of a single 
Virtex-5 FPGA device, the available system is much more 
versatile as it can simulate from 30 independent distributions 
at a rate of 3 Mnumbers generated per second to 1 distribution 
at a rate of 88 Mnumbers generated per second. 

Figure 4 shows a block diagram of the realized prototype. 
There are 4 Xilinx FPGA Spartan-6 LX-25 devices, which 
implement the function of generation. Besides PCI-Express 
communication task to host PC, the Xilinx FPGA Spartan-6 
LX-45 device also implements 5 generators. The connection 
architecture among computing cell LX25 and LX45T devices 
is a star configuration through serial bus lines operating at 300 
MHz. Initialization of computing cells is performed by means 
of a SPI bus. Each computing cell contains 6 asynchronous 
SRAM modules, so as not to suffer from pipeline delay and 
realize a true random access. The SRAM access time is 10 ns. 

In order to verify the convenience to use the system in place 
of available PC-based solutions, the developed algorithm was 
implemented in C language and run on a Core i7 945 PC over-
clocked at 4.5 GHz. Using 1 core, the generation rate is about 
5 Mnumbers/s. Parallelizing the algorithm, however, the rate 
does not increase significantly and settles down to 7.5 
Mnumbers generated per second, probably because of the 

bottleneck due to memory access. Consequently, the proposed 
system shows a speedup of 12 times at a cost only half the 
CPU alone and with power dissipation of 15 W compared to 
100 W of the PC based solution. In addition, there are no 
substantial benefits in the use of GPGPU since the local 
memory of each multiprocessor (both texture and constant) is 
too small to hold the cumulative vector Hd. 

 
V.   CONCLUSIONS 

 
An algorithm for getting statistic properties from a 

histogram of events has been conceived and implemented. The 
algorithm has efficiency equal to 100% and has been validated 
through simulation also with reference to the specific 
application of emulation of radiation detection setups. 

The system has been prototyped  and is being fully tested 
on a processing digital platform based on a FPGA device. 

The proposed solution based on FPGA has been shown to 
achieve a level of quality/price ratio even better than PC-based 
counterparts at the state of the art. 
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Fig.4  Block diagram of the proposed multi-FPGA architecture. The computing cell plays the role of emulators and the LX-45T 
device is also devoted to manage the communication to the host PC and to system clocking. The link between communication device 
and computing cell is performed by high-speed serial bus. The SPI bus is used to initialize the reference distribution and access to 
local register file in each computing cell. 


