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Abstract 
We present the i-Core (Invasive Core), an Application Spe-
cific Instruction Set Processor (ASIP) with a run-time adap-
tive instruction set. Its adaptivity is controlled by the run-
time system with respect to application properties that may 
vary during run-time. A reconfigurable fabric hosts the 
adaptive part of the instruction set whereas the rest of the 
instruction set is fixed. We show how the i-Core is inte-
grated into an embedded multi-core system and that it is 
particularly advantageous in multi-tasking scenarios, where 
it performs applications-specific as well as system-specific 
tasks. 

1. Introduction and Motivation 
Embedded processors are the key in rapidly growing appli-
cation fields ranging from automotive to personal mobile 
communication, computation, and entertainment, to name 
just a few. In the early 1990s, the term ASIP has emerged 
denoting processors with an application-specific instruction 
set (Application Specific Instruction-set Processors). They 
are more efficient in one or more design criteria like ‘per-
formance per area’ and ‘performance per power’ [1] com-
pared to mainstream processors and eventually make to-
day’s embedded devices (which are often mobile) possible. 
Nowadays, the term ASIP comprises a far larger variety of 
embedded processors allowing for customization in various 
ways including a) instruction set extensions, b) parameteri-
zation and c) inclusion/exclusion of predefined blocks tai-
lored to specific applications (like, for example, an MPEG-
4 decoder) [1]. An overview for the benefits and challenges 
of ASIPs is given in [1-3]. 

A generic design flow of an embedded processor can be 
described as follows: 
i) an application is analyzed/profiled 
ii) an instruction set extension (containing so-called Spe-

cial Instructions, SIs) is defined 
iii) the instruction set extension is synthesized together 

with the core instruction set 
iv) retargetable tools for compilation, instruction set simu-

lation, and so on, are (often automatically) created and 
application characteristics are analyzed 

v) the process might be iterated several times until design 
constraints comply 

Automatically detecting and generating SIs from the appli-
cation code (like in [4]) plays a major role for speeding-up 

an application and/or for power efficiency. Profiling and 
pattern matching methods [5, 6] are typically used along 
with libraries of reusable functions [7] to generate SIs. 

However, fixing critical design decisions during design 
time may lead to embedded processors that can hardly react 
to an often non-predictive behavior of today’s complex ap-
plications. This does not only result in reduced efficiency 
but it also leads to an unsatisfactory behavior when it 
comes to design criteria like ‘performance’ and ‘power 
consumption’. A means to address this dilemma is recon-
figurable computing [8-11] since its resources may be util-
ized in a time-multiplexed manner (i.e. reconfigured over 
time). A large body of research has been conducted in in-
terfacing reconfigurable computing fabrics with standard 
processor cores (e.g. using an embedded FPGA [12-14]). 

This paper presents the i-Core, a reconfigurable proces-
sor that provides a high degree of adaptivity at the level of 
instruction set architecture (through using reconfigurable 
SIs) and microarchitecture (e.g. reconfigurable caches and 
branch predictions). The potential performance advantages 
at both levels are exploited and combined which allows for 
a high degree of adaptivity that is especially beneficial in 
run-time varying multi-tasking scenarios. 

Paper structure: Section 2 presents state-of-the-art related 
work for reconfigurable processors. An overview of our 
i-Core processor is given in Section 3 where we explain the 
way it is integrated into a heterogeneous multi-core system 
and the kind of adaptivity it provides with respect to SIs 
and the microarchitecture. Section 4 explains how SIs are 
modeled and how the programmer can express which SIs 
are demanded by the application to trigger their reconfigu-
ration. Performance results of applications executing on the 
i-Core are given in Section 5 and conclusions are drawn in 
Section 6. 

2. Related Work 
Diverse approaches for reconfigurable processors were in-
vestigated particularly within the last decade [8-11]. The 
Molen Processor couples a reconfigurable coprocessor to a 
core processor via a dual-port register file and an arbiter for 
shared memory [15]. The application binary is extended to 
include instructions that trigger the reconfigurations and 
control the usage of the reconfigurable coprocessor. The 
OneChip project [16, 17] uses tightly-coupled Reconfigur-
able Functional Units (RFUs) to utilize reconfigurable 
computing in a processor. As their speedup is mainly ob-



tained from streaming applications, they allow their RFUs 
to access the main memory, while the core processor (i.e. 
the non-reconfigurable part of the processor) continues 
executing [18]. Both approaches target a single-tasking en-
vironment and statically predetermine which SIs shall be 
reconfigured at ‘which time’ and to ‘which location’ on the 
reconfigurable fabric. This will lead to conflicts if multiple 
tasks compete for the reconfigurable fabric (not addresses 
by these approaches). 

The Warp Processor [19] automatically detects computa-
tional kernels while the application executes. Then, custom 
logic for SIs is generated at run-time through on-chip mi-
cro-CAD tools and the binary of the executing program is 
patched to execute them. This potentially allows adapting 
to changing multi-tasking scenarios. However, the required 
online synthesis may incur a non-negligible overhead and 
therefore the authors concentrate on scenarios where one 
application is executing for a rather long time without sig-
nificant variation of the execution pattern. In these scenar-
ios, only one online synthesis is required (i.e. when the ap-
plication starts executing) and thus the initial performance 
degradation accumulates over time. Adaptation to fre-
quently changing requirements –as typically demanded in a 
multi-tasking system– is not addressed by this approach. 

The Proteus Reconfigurable Processor [20] extends a 
core processor with a tightly-coupled reconfigurable fabric. 
It concentrates on Operating System (OS) support with re-
spect to SI opcode management to allow different tasks to 
share the same SI implementations. Proteus’ reconfigurable 
fabric is divided into multiple Programmable Functional 
Units (PFUs) where each PFU may be reconfigured to con-
tain one SI (unlike ReconOS [21], where the reconfigurable 
hardware is deployed to implement entire threads). How-
ever, when multiple tasks exhibit dissimilar processing 
characteristics, a task may not obtain a sufficient number of 
PFUs to execute all SIs in hardware. Therefore, some SIs 
will execute in software, resulting in steep performance 
degradation. 

The RISPP processor [22, 23] uses the reconfigurable 
fabric in a more flexible way by introducing a new concept 
of SIs in conjunction with a run-time system to support 
them. Each SI exists in multiple implementation alterna-
tives, reaching from a pure software implementation (i.e. 
without using the reconfigurable fabric) to various hard-
ware implementations (providing different trade-offs be-
tween the amount of required hardware and the achieved 
performance). The main idea of this concept is to partition 
SIs into elementary reconfigurable data paths that are con-
nected to implement an SI. A run-time system then dy-
namically chooses one alternative out of the provided op-
tions for SI implementations, depending on run-time appli-
cation requirements. It focuses on single-tasking scenarios 
and does not aim to share the reconfigurable fabric among 
multiple tasks or among user tasks and OS tasks. 
KAHRISMA [24, 25] extends the concepts of RISPP by 
providing a fine-grained reconfigurable fabric along with a 
coarse-grained reconfigurable fabric that can then be used 

to implement SIs and to realize pipeline- or VLIW proces-
sors. Therefore, KAHRISMA supports simultaneous multi-
tasking (one task per core), but it does not consider execut-
ing multiple tasks per core or adapting the microarchitec-
ture (e.g. cache- or branch-prediction) of a core. 

Altogether, only Proteus explicitly targets multi-tasking 
systems in the scope of reconfigurable processors that use a 
fine-grained reconfigurable fabric. The concept of PFUs 
does not provide the demanded flexibility to support multi-
ple tasks efficiently though. RISPP and KAHRISMA pro-
vide a flexible SI concept but the challenge of sharing the 
reconfigurable fabric and the configuration of the microar-
chitecture among competing tasks is not addressed. The 
Warp processor provides the potentially highest flexibility, 
but it comes at the cost of online synthesis, which limits the 
scenarios in which this flexibility can be efficiently used. 
Hence, when studying state-of-the-art approaches, the fol-
lowing challenge remains: providing an adaptive recon-
figurable processor that can share the reconfigurable fabric 
efficiently among multiple user tasks while providing an 
adaptive microarchitecture that can adapt to varying task 
requirements. 

3. i-Core Overview 
The i-Core is a reconfigurable processor that provides a 
run-time reconfigurable instruction set architecture (ISA) 
along with a run-time reconfigurable microarchitecture. 
The ISA consists of two parts, the so-called core ISA 
(cISA) and the Instruction Set Extension (ISE). The cISA is 
statically available (i.e. implemented with non-
reconfigurable hardware) and the ISE represents the task-
specific components of the ISA that are realized as recon-
figurable Special Instructions (SIs). The i-Core uses a fine-
grained reconfigurable fabric (i.e. an embedded FPGA, e.g. 
[12-14]) to provide 
i) task-specific ISEs, 
ii) OS-specific ISE, and 
iii) an adaptive microarchitecture that – among others –

allows for supporting and executing both kinds of ISEs 
efficiently by performing run-time reconfigurations 

This approach exceeds the concept of state-of-the-art 
ASIPs, as it adds flexibility and additionally enables dy-
namic run-time adaptation towards the executing applica-
tion to increase the performance. 

The reconfigurable microarchitecture characterizes the 
concrete processor-internal realization of the i-Core for a 
given ISA. It refers to the internal process of instruction 
handling and it is developed with respect to a predefined 
ISA (SPARC-V8 [26] in our case). Summarizing, the ISA 
specifies the instruction set that can be used to program the 
processor (without specifying how the instructions are im-
plemented) and the microarchitecture specifies its imple-
mentation and further ISA-independent components (e.g. 
caches and branch prediction). 

Figure 1 shows how the i-Core is embedded into a het-
erogeneous loosely-coupled multi-core system which is 



partitioned into tiles that consist of processor cores and lo-
cal shared memory. Each tile is connected to one router that 
is part of an on-chip network to connect the tiles to each 
other and to external memory. Within one tile, none, one, 
or multiple i-Core instances are located and connected to 
the tile-internal communication structure (similar to the 
other CPUs of the tile). The CPUs within the tile access the 
shared memory (an application-managed scratchpad) via 
the local bus. The i-Core uses a dedicated connection to the 
local memory, using two 128-bit ports to provide a high 
memory bandwidth to expedite the execution of SIs. When 
multiple i-Cores are situated within one tile, then the access 
to the local memory and the reconfigurable fabric is shared 
among them. 
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Figure 1: Integration of the i-Core into a heterogeneous 

multi-core system with on-chip interconnect network 

Figure 2 provides an overview of the i-Core-internal adap-
tation options of the ISE and the microarchitecture. The 
ISE provides task-specific and system-specific SIs. 
Whereas the task-specific SIs are particularly targeted to-
wards a certain application or application domain, the sys-
tem-specific SIs support basic operating system (OS) func-
tionalities that are required to execute tasks and to manage 
the multi-core system. The OS can (to some degree) be 
viewed as a set of tasks (e.g. task mapping, task scheduling, 
etc.) that can be accelerated by SIs. Typically, it is impos-
sible to fulfill all ISE requests due to the limited size of the 
reconfigurable fabric. The SIs that are not implemented on 
the reconfigurable fabric at a certain point in time can be 
executed through an ‘unimplemented instruction’ trap as 
presented in more detail in [27]. 

SIs are prepared at compile time of the tasks and the cal-
culations that are performed by an SI are fixed at run time. 
Instead, the implementation of a particular SI may change 
during run-time (details are explained in Section 4.1). 
These adaptations correspond to ISE-specific adaptations at 
the microarchitecture level. Figure 2 shows a reconfigur-
able fabric – in addition to the hardware of the processor 
pipeline – that is employed to realize an ISE. Depending on 
the executing tasks and their specific ISE requirements, the 
reconfigurable fabric is allocated or – as we call it – in-
vaded to realize a certain subset of the requested ISEs (that 
is why we call it an invasive Core, i.e. i-Core). The con-
cepts of invasive computing [28] are used to manage the 
competing requests of different tasks. In the scope of recon-
figurable processors this means that each task specifies the 
SIs that it uses (i.e. ‘its requests’; details are presented in 

Section 4.2). Additionally, each task provides information 
which performance improvement (speedup) can be ex-
pected, depending on the size of the reconfigurable fabric 
that is assigned to it. A run-time system (part of the OS) 
then decides for the tasks that compete for the resources, 
which task obtains which share of the reconfigurable fabric 
(similar to the approach presented in [29] where the fabric 
of one task is partitioned among the SIs of that task). 
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Figure 2: The Instruction-Set Architecture and Mi-

croarchitecture Adaptations of our i-Core 
The highly adaptive nature of modern multi-tasking em-
bedded systems intensifies the potential advantages that 
come along with an adaptive microarchitecture and instruc-
tion set architecture. The adaptations of the instruction set 
comprise flexible task-specific SIs that support at run-time 
adaptations in terms “performance per area” (details given 
in Section 4.1) depending on the number of tasks that exe-
cute on an i-Core at a specific time (and thus the amount of 
reconfigurable fabric that is available per task). In addition 
to the ISE, the i-Core also supports adapting its microarchi-
tecture. The microarchitecture adaptations are independent 
upon the instruction set and they comprise: 
 adaptive number of pipeline stages 
 adaptive branch prediction 
 adaptive cache/scratchpad configuration 

Even though these optimizations are ISA-independent, they 
may significantly increase the performance of the executing 
task (or reduce the power consumption etc.). The number 
of pipeline stages is altered by combining neighbored 
stages and bypassing the pipeline registers between them. 
This reduces the maximal frequency of the processor but it 
may lead to power savings (reduced number of registers) 
and may be beneficial in terms of performance for applica-
tions where a complex control flow leads to many branch 
miss-predictions. Additionally, techniques like pipeline 
balancing [30] or pipeline gating [31] can be applied. De-
pending on a task’s requirements, the branch prediction 
scheme can also be changed dynamically, e.g. by providing 



different schemes and letting the task decide which one to 
use. Another example of performance-oriented adaptive de-
sign is branch history length adaptation, e.g. Juan et al. 
[32] explore dynamic history-length fitting and develop a 
method for dynamically selecting a history length that ac-
commodates the current workload. 

In addition, the cache can be changed in various ways. 
For instance, Albonesi [33] proposes to disable cache ways 
dynamically to reduce dynamic energy dissipation. Kaxiras 
et al. [34] reduce leakage power by invalidating and turning 
off the cache lines when they hold data that is not likely to 
be reused. The approaches of [35-37] use an adaptive strat-
egy to adjust the cache line size dynamically to an applica-
tion. In addition to these approaches, the microarchitecture 
of the i-Core exploits the availability of the fine-grained re-
configurable fabric to extend the size and associativity of 
the cache. For example, the size of the cache (e.g. number 
of cache lines) can be extended (using the logic cells of the 
reconfigurable fabric as fast memory), further parallel 
comparators can be realized to increase the associativity of 
the cache, or additional control bits can be assigned to each 
cache line for protocol purpose (e.g. error detec-
tion/correction schemes). Additionally, the memory of the 
cache can be reconfigured to be used as a task-managed 
scratchpad memory. 

In summary, instruction set and microarchitecture adap-
tations target task-specific optimizations, for example, a 
particular task might benefit from a certain SI (part of the 
ISA) and a certain branch prediction (part of the microar-
chitecture). Additionally, a particular task might also bene-
fit from different ISA/microarchitecture implementations at 
different phases of its execution (e.g. different computa-
tional kernels), i.e. the requirements of a sole task may 
change over time. Depending on the tasks that execute at a 
certain time and their requirements, the adaptations focus 
on: 
 some selected tasks (beneficial for those tasks at the cost 

of other tasks) 
 operating system optimization (beneficial for all tasks) 
 a trade-off between both 

Determining this trade-off depends on the user-priorities of 
the executing tasks. This large degree of flexibility is an 
advantage in comparison to state-of-the-art adaptive proc-
essors (e.g. RISPP [22, 23] or KAHRISMA [24, 25]) as 
they focus on accelerating either the tasks or the operating 
systems (but not both) by improving either the instruction 
set or the microarchitecture (and gain, not both). 

3.1. Partitioning the Reconfigurable Fabric among 
Special Instructions and Microarchitecture 

The core ISA (cISA) is executed by means of a specific 
hardware at the microarchitecture level. Depending on the 
requirements of the executing task, the microarchitecture 
implementation of the cISA can be changed during run-
time. For instance, a 5-stage pipeline implementation can 

be replaced by a faster 7-stage pipeline implementation as 
explained in Section 3. 

Figure 3 illustrates an example for the different levels of 
adaptivity, using a task execution scenario in a sequence 
from a) to d). It shows how the execution pipeline, the 
cache, and the reconfigurable fabric may be invaded by dif-
ferent tasks (i.e. the resources are reconfigured towards the 
requirements of the task as explained in Section 3). Part a) 
of Figure 3 illustrates that the reconfigurable fabric can be 
used to accelerate OS functionality. This is especially bene-
ficial, as the workload of the OS heavily depends on the 
behavior of the tasks, that is, ‘when’ and ‘how many’ sys-
tem calls etc. will be executed. Therefore, providing static 
accelerators for the OS is not necessarily beneficial. In-
stead, the hardware may be reconfigured to accelerate other 
tasks in case the OS does not benefit from it at a certain 
time, as shown in part b) of the figure. 

7-stage
Pipeline

Cache

5-stage
Pipeline

Cache

5-stage
Pipeline

Scratchpad

5-stage
Pipeline

Scratchpad

OS
Accelerator

Guaranteed
Appl.-spe-

cific Accele-
rator 1

Cache
Exten-
sion

Guaranteed
Appl.-spe-

cific Accele-
rator 1

Tempo-
rary

Accele-
rator 2

Guaranteed
Appl.-spe-

cific Accele-
rator 1

Guarant.
Acc. for
second

i-let

a)

b)

c)

d)

Legend:
ISA-independent
Microarchitecture

Adaptation

ISA-dependent
OS-specific
Adaptation

ISA-dependent
Appl.-specific

Adaptation

Before a task starts executing, the
Operating System needs to decide
on which core it shall execute
(task mapping and scheduling
problem). Dedicated accelerators
are loaded to support the
corresponding algorithms

The task starts execution and an
application-specific accelerator is
established. Additionally, parts of
the reconfigurable fabric are
invaded to extend the capacity/
strategy of the cache. As the main
computational load is now covered
by the accelerator, the pipeline
can be reconfigured to a 5-stage
pipeline. This slows down its
maximal frequency, but it reduces
the penalty of wrong branch
predictions.

In addition to the guaranteed acce-
lerator (reserved during invasion)
a second accelerator is esta-
blished temporary and replaces
the cache extension. Due to the
reduced cache size, a user-
managed scratchpad is more
beneficial than a transparent
cache, thus the cache logic is
reconfigured correspondingly.

A second task starts execution
and demands different
accelerators. Therefore, the
temporary established second
accelerator for the first task is
replaced to realize a new
accelerator for the second
task, i.e. it invades the available
part of the reconfigurable fabric.  

Figure 3: An example to demonstrate the adaptivity of 
the i-Cores, comprising ISA-independent adaptations as 

well as task-specific and OS-specific adaptations 

Microarchitectural components like the cache and the proc-
essor pipeline can be adapted to different task require-
ments. Depending on the demanded time for performing 
these reconfigurations, the changes may be performed spe-
cific to the currently executing task or they may be per-
formed for the set of tasks that execute on the i-Core. For 
instance, reconfiguring a 7-stage pipeline into a 5-stage 
pipeline only demands a few cycles and thus it can be per-
formed as part of the task switch (in a preemptive multi-
tasking system) when changing from one task to another. 
Instead, the reconfiguration time of the reconfigurable fab-
ric is typically larger and changing the configuration as part 
of the task switch would increase the task switching time 



significantly. Therefore, to share the reconfigurable fabric 
among multiple tasks, it needs to be partitioned dynami-
cally as indicated in parts c) to d) of Figure 3. Therefore, at 
different points in time, the temporary allocation ‘which 
part’ of the reconfigurable fabric accelerates ‘which task’ 
changes dynamically. Parts c) and d) show that a task can 
obtain a guaranteed share of the reconfigurable fabric, but it 
may use a larger share of it temporarily. 

4. Modeling and Using Reconfigurable Special 
Instructions 

4.1. Special Instruction Model 
As motivated in Section 3, the reconfigurable fabric is 
shared among several tasks and thus, the ISE of a particular 
task has to cope with an at compile-time unknown size of 
the reconfigurable fabric. The approach of so-called modu-
lar SIs allows for providing different trade-offs between the 
amount of required hardware and the achieved performance 
by breaking SIs into elementary reconfigurable data paths 
(DPs) that are connected to implement an SI. It was origi-
nally developed in the scope of the RISPP project [22] and 
is meanwhile integrated and extended in other projects as 
well (e.g. KAHRIMSA [24]). The basic idea of modular 
SIs is illustrated in Figure 4 (description and an example 
follows) and is based on a hierarchical approach that –
among others– allows to represent that 
a) an SI may be realized by multiple SI implementations, 

typically differing in their hardware requirements and 
their performance (and/or other metrics), and 

b) a DP is not dedicated to a specific SI, but it can be used 
as a part of different SIs instead. 
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Figure 4: Hierarchical composition of SIs: multiple im-
plementation alternatives exist per SI and demand data 

paths for realization; Figure based on [22] 
Modular SIs are composed of DPs, where typically multi-
ple DPs are combined to implement an SI. Figure 5 shows 
the Transform DP and the SAV (Sum of Absolute Values) 
DP to indicate their typical complexity. DPs are created and 
synthesized during compile time and they are reconfigured 
at run time. Technically, DPs are the smallest components 
that are reconfigured in modular SIs. An SI is composed of 
multiple DPs, as indicated in Figure 4 and illustrated with 
an example in Figure 5 and an SI implementation incorpo-
rates them in different quantities. 

Figure 4 shows the hierarchy of SIs, SI Implementations, 
and DPs. At each point in time, a particular SI is imple-
mented by one specific SI Implementation. It is noticeable 

that DPs can be used by different implementations of the 
same SIs and even by different SIs. This means that a DP 
can be shared among different SIs. 

Each SI has one special Implementation that does not 
demand any DPs. This means that this SI implementation is 
not accelerated by hardware. If the SI shall execute but an 
insufficient amount of DPs needed to implement any of the 
other Implementations is available (i.e. reconfigured to the 
reconfigurable fabric), then the processor raises an ‘unim-
plemented instruction’ trap and the corresponding trap han-
dler is used to implement the SI’s functionality [27]. The 
trap handler uses the core Instruction Set Architecture 
(cISA) of the processor. Therefore, this cISA implementa-
tion allows bridging the reconfiguration time (in the range 
of 1 to 10 ms), i.e. the time until the required DPs are re-
configured. 
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Figure 5: Example for the modular Special Instruction 

SATD (Sum of Absolute (Hadamard-) Transformed 
Differences); Figure based on [22, 27] 

Figure 5 shows an example for a modular SI that is com-
posed of four different types of DPs and that implements 
the Sum of Absolute Hadamard-Transformed Differences 
(SATD) functionality, as it is used in the Motion Estima-
tion process of an H.264 video encoder. The data-flow 
graph shown in Figure 5 describes the general SI structure 
and each implementation of this SI has to specify how 
many DP instances of the four utilized DP types (i.e. QSub, 
Repack, Transform, and SAV) shall be used for implemen-
tation. Depending on the provided amount of DPs, the SI 
can execute in a more or less parallel way. When more DPs 
are available, then a faster execution is possible (that corre-
sponds to a different implementation of same SI). Dynami-
cally changing between these different performance-levels 
of an SI implementation allows reacting on changing appli-
cation requirements or changing availability of the recon-
figurable fabric. 

4.2. Programming Interface for using the recon-
figurable fabric 

A task uses DPs on the reconfigurable fabric without the 
knowledge of low-level details such as partitioning the fab-



ric for different SIs, determining the sequence of ‘which’ 
DPs are loaded ‘where’ on the fabric, etc. These steps are 
handled by the run-time system of the i-Core. Nevertheless, 
the programmer needs to trigger these steps by issuing sys-
tem calls (presented in this section). The code fragment in 
Figure 6 (a high-level excerpt from the main loop of a 
H.264 video encoder) illustrates the programming model of 
the i-Core. 

Microarchitectural features are adapted using the 
set_i_Core_parameter system call. It ensures that any pre-
conditions for an i-Core adaptation are met (e.g. emptying 
the pipeline before changing pipeline length, invalidating 
cache-lines before modifying cache-management parame-
ters, etc.) and it then performs the adaptations. For exam-
ple, in Line 3 of Figure 6, the i-Core pipeline length is set 
to 5 stages and branch prediction is switched to a (2, 2) cor-
relating branch predictor. 

To request a share of the reconfigurable fabric, the task 
issues the invade system call (Line 5). Invade selects a 
share of a resource and grants it to the task. There, the re-
source is the entire reconfigurable fabric of the i-Core, a 
part of which is assigned to the task. The size of the as-
signed fabric depends on the speedup that the application is 
expected to exhibit. Generally, the more fabric is available 
to the task, the higher the speedup, but the expected 
speedup for a given amount of fabric is task-specific. This 
‘speedup per size of assigned fabric’ relationship is ex-
plored during offline profiling and passed as the 
trade_off_curve parameter to the invade system call. Dur-
ing execution of invade, the run-time system will use the 
trade-off curve to decide which share of the fabric will be 
granted to the task. In the worst case, the application will 
receive no fabric at all (due to e.g. all fabric being occupied 
by higher priority tasks), then all SIs need their core ISA 
implementation (see Section 4.1) for execution The share 
of the fabric assigned to an application corresponds to the 
my_fabric return value in Line 5. Requesting a share of the 
fabric is typically done before the actual computational 
kernels start. 

Next, the implementations of the SIs that will be used 
during the next kernel execution (the ‘while’ loop in the 
code example, lines 6-15) must be determined. The applica-
tion programmer does not need to know which SI imple-
mentations are available at run time, as long as it is guaran-
teed that the SI functionality is performed (the SI imple-
mentation determines the performance of the SI, but not its 
functionality). The application informs the run-time system 
which SIs it will use during the next kernel execution and 
the run-time system selects implementations for these SIs. 
This is accomplished by means of the invade system call 
again (Line 7). Here, the invaded resource is the applica-
tion’s own share of the reconfigurable fabric acquired ear-
lier, which needs to be partitioned such that SI implementa-
tions for the requested SIs (SATD and SAD in the code ex-
ample) fit onto it [29]. The programmer may also explicitly 
request specific DPs that shall be loaded into the fabric and 
the run-time system will consider these requests when se-

lecting SI implementations for the task. This manual inter-
vention may be used if the SI requirements of a kernel are 
rather static, i.e. the run-time system does not need to pro-
vide adaptivity for its implementation. Additionally, it can 
be used to limit the search for SI implementations and thus 
reduce the overhead of the run-time system. 

 

1. H264_encoder() { 
2.  // Set i-Core microarchitecture parameters 
3.  set_i_Core_parameter(pipeline_length=5, 

         branch_prediction=2_2_correlation_predictor); 
4.  // Invade a share of the reconfigurable fabric 
5.  my_fabric=invade(resource=reconf_fabric, 

                    performance=trade_off_curve); 
6.  while (frame=videoInput.getNextFrame()) { 
7.   SI_implementations=invade(resource=my_fabric, 

       SI={SAD, trade_off_curve[SAD], 
               execution_prediction[SAD_ME]}, 
       SI={SATD, trade-off_curve[SATD], 
               execution_prediction[SATD_ME]} ); 

8.   infect(resource=my_fabric, SI_implementations); 
9.   motion_estimation(frame, ...); 
10.   ... 
11.   SI_implementations=invade(resource=my_fabric, ...); 
12.   infect(resource=my_fabric, SI_implementations); 
13.   encoding_engine(frame, ...); 
14.   ... 
15.  } 
16. } 

Figure 6: Pseudo code example for invading the recon-
figurable fabric and the microarchitecture 

After the run-time system has decided which SI implemen-
tations to use, the application can start loading the required 
DPs by issuing the infect system call (Line 8). DPs are 
loaded in parallel to the task execution, allowing the appli-
cation to continue processing without waiting for the DPs 
to finish loading (which is a non-negligible amount of time; 
it is in the order of milliseconds). This implies that the mo-
tion_estimation function in the code example (Line 9) will 
start executing before the DPs have finished loading. Re-
configuring DPs in parallel to task execution provides a 
speedup for the following reason: if an SI is executed, but 
not all DPs for the desired implementation are available, 
the i-Core will use a slower implementation for the same SI 
that requires only the already loaded DPs (see Section 4.1). 
When additional DPs are loaded then faster SI implementa-
tions become available and they are used automatically. 

After completing execution of a particular kernel (e.g. 
motion_estimation in Line 9), an entirely different set of 
SIs may be executed on the same share of the fabric at-
tained by the task during its initial invade call. The fabric 
must, however, be prepared for execution of the new SIs 
(invade and infect, lines 11-13). 

5. Results 
In this section, a first evaluation of the i-Core is given, fo-
cusing on the application-specific ISE extensions for dif-



ferent tasks. The SIs for speeding up the tasks were devel-
oped manually to demonstrate the feasibility and the per-
formance benefits of the i-Core. Figure 7 shows the 
speedup of four different tasks when accelerated by DPs on 
the reconfigurable fabric in comparison to executing the 
tasks without SIs. The obtained speedup depends on the 
size of the reconfigurable fabric that is expressed by the 
number of so-called Data Path Containers (DPCs), i.e. re-
gions of the reconfigurable fabric into which a DPs can be 
reconfigured. For the results in Figure 7, each task uses the 
available number of DPCs on its own, i.e. the reconfigur-
able fabric is not shared among multiple tasks. Tasks like 
the CRC calculation require only few DPs for acceleration. 
With just one available DPC, a speedup of 2.51x is ob-
tained for CRC. Further DPCs do not lead to further per-
formance benefits for this task. The JPEG decoder ap-
proaches its peak performance after 5 DPCs. For more than 
5 DPCs (3.49x speedup) only minor additional performance 
improvements are achieved (up to 3.81x). The image-
processing library SUSAN and the H.264 video encoder 
achieve noticeable performance improvements of more 
than 18x each. Both tasks consist of multiple kernels that 
execute repeatedly after each other, i.e. the DPCs are con-
sistently reconfigured to fulfill the task’s requirements. 
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Figure 7: Speedup of different tasks (in comparison to 
execution without SIs) when executing on the i-Core in 

single-tasking mode (i.e. the entire reconfigurable fabric 
is available for the task) 

Figure 8 shows the speedup of the same tasks as used in 
Figure 7, but here all tasks are executed at the same time, 
i.e. they need to share the available reconfigurable fabric 
(shown as the horizontal axis). Consequently, the perform-
ance improvement for a given number of DPCs is lower 
than the one shown in Figure 7, as not all available DPCs 
are assigned to one task. Altogether, five tasks execute, as 
two instances of the H.264 video encoder are executed at 
the same time. The figure shows that the characteristics of 
performance improvement is similar to the case where all 
tasks execute on their own, i.e. when they can utilize the 
entire reconfigurable fabric rather than sharing it. This 
demonstrates that it is possible and beneficial to share the 
reconfigurable fabric among the tasks. 
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Figure 8: Speedup of different tasks (in comparison to 
execution without SIs) when executing on the i-Core in 

multi-tasking mode (i.e. the reconfigurable fabric is 
shared among all tasks) 

6. Conclusion 
This paper presented the i-Core concept, a reconfigurable 
processor that provides a very high adaptivity by utilizing a 
reconfigurable fabric (to implement Special Instruction) 
and a reconfigurable microarchitecture. The combination of 
an adaptive instruction set architecture and microarchitec-
ture allows optimizing performance-wise relevant charac-
teristics of the i-Core to task-specific requirements, which 
makes the i-Core especially beneficial in multi-tasking sce-
narios, where different tasks compete for the available re-
sources. We evaluated the i-Core and demonstrated its con-
ceptual advantages when several of these tasks execute to-
gether in a multi-tasking environment. 
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