

A Model for Office Document Processing and

Collaboration in Cloud

Jiafei Wen, Shui Lam, and Xiaolong Wu

Computer Engineering and Computer Science, California State University Long Beach,

Long Beach, California, USA

Abstract - Office software suite is one of the most widely

used and well developed applications. The suite includes

word processor, spreadsheet, presentation, and so on. With

recent developments of high-speed network and distributed

computing technologies, some office applications such as

document processing, have turned web-based (e.g.,

Microsoft Office WAC) and even cloud-based (e.g., Google

Docs). The initial and obvious benefits of moving office

applications into the cloud for small and medium sized

businesses are cost savings in the purchase, maintenance

and upgrades on both software and hardware. But the more

significant advantage of doing so is to enable users of real-

time collaborative editing on a shared cloud-based

document. We believe moving office applications into cloud

is an inevitable trend in the development of office

applications. A novel, efficient cloud-based document

processing model: DPC is proposed in this paper. Detailed

description and functionality of this model are first

introduced. We then instantiate the model using a

document based on ISO 29500 [1]. Finally, we also discuss

security, reliability and synchronization issues.

Keywords: Office document processing, cloud, collaborative

editing, logic structure, DPC.

1 Introduction

Office documents produced nowadays can be very

sophisticated. Besides text, they may contain complex

formulas, graphic illustrations, video clips, and control

information. Therefore, modern office document

processing software systems are large, complex and

powerful. They have evolved from simple text processors

to systems that deal with lots of objects and complex tasks.

The office document processor market is huge. To

compete for or maintain the market share, software

developers continue to upgrade their products with added

features and capabilities. The Microsoft Office Suite is a

prime example, which has undergone frequent upgrades in

recent years. This phenomenon is not always beneficial to

the end-users in terms of cost. The frequent upgrades with

more functions that demand more storage space and faster

CPU mean that users would have to continue to invest

money on both software and hardware for the purchase,

maintenance, and upgrade, just to support routine document

production and processing. The rise of cloud computing

technology provides an alternative approach that businesses

may adopt to address this problem.

Cloud computing is a fairly new technology developed

in distributed computing., The technology enables services

and storage facilities to be provided over the Internet,

thereby allowing users to access the services and storage

facilities anywhere in the world, any time, wherever the

internet access is available. A service provided through

cloud computing may be an application, a computing

environment, an IT infrastructure, or even a business

process. Document processing is an obvious candidate

service to be offered in the cloud, so that users can create,

maintain, and share their documents without installing a

complex software suite or needing a powerful computer to

support the tasks. As such, users can expect to save

thousands of dollars on both hardware and software.

Furthermore, a cloud provider would have the business and

economic incentives to maintain and improve efficiency of

its computing facilities through proper and timely upgrades.

Though payments for the service will partially offset the

cost savings on hardware and software upgrades, the added

benefits of using the cloud to support document processing

in a business by shifting user focus from application and

hardware upgrades to innovative use of the latest

functionalities for their document productions should not

be underestimated.

The trend that the IT industry has adopted a strategic

position of moving their document processors into cloud is

quite obvious. First was Google with its cloud-based

Google Docs [3], and more recently Microsoft that offered

its Microsoft Office 365 [4]. Both of these services claim to

emphasize the support of collaboration of document editing

among users. However, a closer look at these products led

us to believe that the collaborative editing in Google Docs

and the co-authoring in Office 365 both lack a proper

granularity. For example, Google Docs’s support of fine-

grained collaboration that allows multiple users edit one

sentence, even one word, concurrently, have been found to

have led to confusion and disorder among editing users. In

fact, many users have complained about this kind of

confusion in the Google Docs help forum [5]. Therefore,

this level of granularity may not be suitable for

collaborative document editing to some extent.

Aiming to enable users to process their office

document collaboratively by a proper granularity in the

cloud, we propose a Document Processing in Cloud (DPC)

model in this paper. This paper is divided into four parts:

background of DPC model, DPC model proposing, DPC

model instantiating and discussion.

2 Background

Most office documents created nowadays are XML-

based with embedded structure that describes the document

content. The structure of an XML-based document defines

a hierarchy, with pieces of document at the root below

which are parts that make up the document. These parts are

referred to as objects and each object has its own functions.

Some objects can be further subdivided into smaller parts

are referred to as composite objects, while others that

represent smallest parts in the structure of a documents are

called basic objects. For example, a sentence in an office

document may be marked up as an object named as “run”

(a basic object), and a paragraph may also be marked up as

an object named as “P”, which is a composite object and

would be defined as the parent of a “run” object in the

XML structure.

The hierarchical structure of an XML-based office

document is the key requirement for our proposed DPC

model. For most documents, the XML hierarchy consists of

two categories of structures: geometric (layout) and logical

[6]. A typical document is no doubt made up of pages,

blocks, paragraphs, sentences, and so on that are defined as

objects. When the subdivisions are based on the specific

geometric layout of the document, such as page and block,

the result is a geometric (layout) structure. When they are

based on the human-perceptible meaning of the content,

such as paragraph and section, the result is a logical

structure. These two structures provide alternative but

complementary views of the same document [7] and a

mapping between these two structures may exist. Both

structures are hierarchical in nature and can be represented

by a tree as illustrated in Figure 1.

Figure 1. Two Structures.

Although both structures can represent a document

comprehensively, we adopt the logical structure in

developing our model for the following reasons: firstly,

XML-based office documents normally use logical objects

for markups; secondly, our proposed model is designed for

the cloud. In a cloud, a task will be “divided” into several

subtasks to be undertaken on different application servers.

Then, each application server performs its assigned tasks

using shared resources such as computing resources, data

sources and application services. Finally, the results from

all involved application servers will be collected and

combined to produce the final solution of the given task [8].

For document processing, users tend to spend more time

working on their documents based on the logical level, such

as adding paragraph, than based on the geometric level. In

light of these considerations we believe the logical structure

of a document is the better choice for designing our model

for document processing in a cloud environment.
In this paper, we use Microsoft Word to illustrate the

development of our model. An overview of a logical

structure of a Word document is shown in Figure 2.

Figure 2. Logical structure tree overview of word document.

3 DPC Model

From the logical structure shown in Figure 2, we

consider the non-leaf nodes in the tree as composite objects,

and the leaf nodes as basic objects. More details of these

two objects are discussed in the following paragraph. Our

proposed DPC model is object-oriented based on these

objects. It treats editable components in a document as

distinct objects. DPC also gives users respective access to

objects which are components of a whole document. As a

result, multiple users working on one document can do

collaborative editing at the same time. Our cloud-based

model supports the distribution of individual objects to

available processors in the cloud. Object-oriented DPC

provides a more logical granularity for document

processing collaboration. Instead of treating the content of

a document as a string stream as Google Docs does, and

which had been found to cause user confusion and disorder

during concurrent editing among collaborators, we use

objects which can easily be distributed to different servers

to be worked on by different users.

As an object-oriented model, our DPC model divides a

document into objects. Each part of the document is

assigned to a sub-task, and each subtask is a unit of work

distribution to processors in the cloud. The sum of all edit

tasks is the entire document. For example, if a user wants to

edit a paragraph in a document, this paragraph object will

be sent to a processor in the cloud and the editing subtask

will be accomplished on that processor. The user performs

the editing through remote access to the assigned processor.

While this paragraph object is being edited by this

particular user, other parts of the document are available

and accessible to other users. Consequently, DPC enables

multiple users to collaborate concurrently on the same

document, and the collaboration is accomplished at the

object level.

As discussed in Section I, collaboration in a cloud

environment requires proper level of granularity. In our

DPC model, the proper granularity lies on a proper design

of objects in a document. DPC designs objects based on

three criteria: 1) objects must reflect the logical structure;

2), the design of an object must take into consideration the

editing frequency of each part in the logical structure; 3),

the design needs to comply with the mainstream office

document standards. Based on these considerations, our

model defines thirteen objects for document processing in a

cloud environment, as shown in Figure 3.

Figure 3. The proposed novel DPC model.

The thirteen objects in Figure 3 are also listed in Table

1. Nine of these objects are composite and four are basic.

The composite objects are Content, Meta Data,

Header&Footer, Style&Fonts, FootNote&EndNote,

Comments, Paragraph, Table, and Run, and the basic

objects are Hyperlink, Region, Text, and Picture. Since the

objects are the basis of work assignment for editing

subtasks, the definition of these objects determines the

level of granularity of document processing in a cloud

environment. Each object is atomic and cannot be edited

by more than one user at any one time.

Table 1. DPC Objects description.

 Object Name Object Description

Composite
Objects

Content Specifies document’s properties.

Meta Data Specifies meta data.

Header&

Footer
Specifies headers and footers.

Style&

Fonts
Specifies styles and fonts setting.

FootNote&End

Note
Specifies foot note and end note.

Comments Specifies comments.

Paragraph Specifies paragraphs’ properties.

Table Specifies tables.

Run
Specifies runs’ properties of content

in the parent field.

Basic Objects

Hyperlink Specifies hyperlinks.

Region Specifies regions.

Text
Specifies literal text of runs which

shall be displayed in the document.

Picture Specifies pictures.

Besides these thirteen objects, DPC also needs other

components for a complete utilization in the cloud

environment. We use the Z notation introduced by Spivey

in [9] to define all eight components in our DPC model as

follows:

Formula 1 defines that DPC consists of three parts:

DOC, MIDDLEWARE and PROCESSORS. Details of

DOC and PROCESSORS will be discussed in the

following paragraphs. MIDDLEWARE is the middleware

[10] in the cloud, which is the software layer that “sits”

between application servers (processors) and the resources

(document and its pieces). MIDDLEWARE provides the

link and passes data among resources and servers. In DPC,

MIDDLEWARE is primarily responsible for

reading/storing data from/to storage, generating objects

from the division of the document, providing the link

among objects processed by multiple distributed servers,

and combing the results of sub-tasks to produce the final

document.

Formula 2 specifies that DOC is the collection of all

information contained in an office document. It is

composed of two parts: ROOT and ASSIST_INFO. ROOT

will be discussed in more detail below. ASSIST_INFO is

the assistance information on the office document that is

required for its processing, such as read-only sign.

DPC = {DOC, MIDDLEWARE, PROCESSORS《bag

PROCESSOR》}

(1)

DOC = {ROOT, ASSIST_INFO} (2)

PROCESSOR = { APPS《bag APP》} (3)

ROOT = {NONLEAF《bag COMPOSITE _OBJ》, LEAF《bag

BASIC _OBJ》}

(4)

COMPOSITE_OBJ = {OBJECT, DESCENDANT《bag ROOT》} (5)

BASIC_OBJ = {OBJECT} (6)

OBJECT = {NAME, ACCESS_PATH, ON_EDITING} (7)

ON_EDITING :: = Busy | Idle (8)

Formula 3 defines the PROCESSORS component in

the cloud. It typically comprised of multiple document

processors, which are application servers available in the

given cloud. These application servers can be substantially

heterogeneous, thereby allowing servers with various

specialized capabilities to be used in processing a single

document. Since these servers are being shared among

many cloud users, the effectiveness of document processing

is improved without incurring high costs. For example,

users who may wish to use handwriting pad to draw

pictures in their Microsoft Office document cannot do so

without buying add-in software that supports such

functions. This translates to additional financial and time

burden. However, a cloud created to serve a large and

diverse population of document processing users would

likely have a variety of add-on capabilities, including hand-

drawing tools, so that a user may access them at little extra

costs. This advantage may be especially obvious for large

businesses, which normally have greater demands for

sophisticated documents that contain embedded objects or

links to external databases and require complex add-ins for

their correct and effective processing.

Formula 4 defines ROOT, which is the aggregation of

all objects in the DPC division. It has two components:

NONLEAF and LEAF objects. NONLEAF is a collection

of COMPOSITE_OBJ (composite objects). LEAF is a

collection of BASIC_OBJ (basic objects).

Formula 5 defines COMPOSITE_OBJ, which is an

object with descendants. As a result, one constituent part of

COMPOSITE_OBJ is DESCENDANT. Because of the

recursiveness attribute of the tree structure,

DESCENDANT is a collection of ROOT, defined in

Formula 4. COMPOSITE_OBJ also has another component,

OBJECT, to identify itself. OBJECT will be defined in

Formula 7.

Formula 6 defines BASIC_OBJ, for basic objects,

which are leaf nodes in the tree structure. It only has

OBJECT item to identify itself.

Formula 7 defines OBJECT, which is used to identify

all objects including COMPOSITE_OBJ and BASIC_OBJ

in DPC. It has three constituent items: NAME (name of the

object), ACCESS_PATH (accessing path to the object) and

ON_EDITING (the sign of whether it is on editing).

ACCESS_PATH is an accessing path which guides

users to reach the target object in the given cloud. Because

objects in DPC are derived from the nodes in a logical tree

through divisions, every object corresponds to a node in the

logical tree. Meanwhile, as described by XML, each node

in the logical tree has its own unique XPath [11], so we

adopted XPath to be identifiers of the nodes. By extension,

some of these XPath become the identifier of objects in

DPC because of the corresponding relationship mentioned

above. The identifier of an object is the accessing path

(ACCESS_PATH defined in Formula 7) that guides user to

get in that object. As a document is being divided, the

XPath of each node is recorded, and some of them become

the ACCESS_PATH of the objects in DPC by division.

Then the ACCESS_PATH will be sent with its

corresponding object to a target processor. Users get the

target object through its ACCESS_PATH. For example, the

ACCESS_PATH of the object of “the texts of the first run

in second paragraph in document” is:

/document/body/paragraph [2]/run [1]/text. Once a

processor is selected for the object’s processing, the

ACCESS_PATH will become the ID of that object on the

processor and will be sent to the processor along with its

corresponding object. At the other end of the processing,

ACCESS_PATH also plays a key role in combining results

from servers to produce the final document by giving each

result of a subtask its location on the final document. In the

above example, when the result of this subtask needs to be

combined with results of other subtasks, the

ACCESS_PATH will provide its location in the final

document, which is the second paragraph’s first sentence

content. Due to the different ACCESS_PATH leading to

different server, different user can access different parts of

the same document, accomplishing collaborations at the

logical object level among distributed processors in the

cloud.

Finally Formula 8 defines ON_EDITING, which is a

sign and works as a write lock. When it is busy, the object

is locked to other users. When a user gets the link to a

target object, this user will have the editing right as long as

the ON_EDITING sign of that object is IDLE. The object

will set its ON_EDITING sign as “Busy” when there is

someone editing it. As the objects in DPC are isolated with

each other, there is no inheritance relationship between any

two objects. So do the ON_EDITING signs, which means

even though object A is the ancestor of object B in DPC,

there is no inheritance relationship of ON_EDITING sign

between A and B, because A and B are sent to different

processor, editing one of them on a processor won’t affect

the other on other processor. This state of ON_EDITING is

crucial for collaboration in a cloud, because how often it is

set to “Busy”, and the duration of the “Busy” state impacts

the collaborative editing in cloud deeply. In our DPC model,

these two conditions depend on the granularity of document

processing. As mentioned above, the granularity is decided

by the design of objects in DPC. If the basic object is

designed as phrase rather than text of a run in DPC, the

collaboration will get finer granularity. A finer granularity

is not always good for users, as it will bring confusion to

when several users are editing one phrase. Besides, doing

so will cost more time to divide the document and combine

the results from individual servers.

4 Instantiate DPC

To help clarify how our DPC model works, we

instantiate it using a real world example, the instance,

which is an example office document and used to

instantiate DPC, is based on ISO 29500. The logical

structure of ISO 29500 [12] and its mapping with DPC is

shown in Table 2.

Table 2. ISO 29500 mapping with DPC.

An example document, based on the instance standard,

named as “the old man and sea” is used here to illustrate

the mechanism of DPC. The display of this example

document is shown as Figure 4.

Figure 4. Display of example document.

We take the composite object “document” in this

example as an example object, which is described in XML

as:

<w:document

xmlns:w="http://schemas.openxmlformats.org/wordprocess

ingml/2006/main">

<w:body>

<w:p>

 <w:pPr>

 <w:pStyle w:val="a5"/>

 </w:pPr>

<w:r>

<w:t>The old man and the Sea</w:t>

 </w:r>

</w:p>

<w:p>

 <w:pPr>

 <w:spacing w:beforeLines="100"/>

 <w:rPr>

 <w:rFonts w:hint="east Asia"/>

 </w:rPr>

 </w:pPr>

 <w:r>

 <w:t> The old man was thin and gaunt with

deep wrinkles in the back of his neck. The brown blotches

of the benevolent skin cancer the sun brings from its

reflection on the tropic sea were on his cheeks.

</w:t>

 </w:r>

</w:p>

</w:body>

</w:document>

The composite object “document” contains five

composite objects: content, two paragraphs and two runs,

and two basic objects, which are two texts. Each composite

object has the “w:pPr” attribute to represent the paragraph

properties. Basic objects “w:r” represent the text of the

paragraph. These five objects will be sent to five servers in

a cloud with their own XPath as their accessing path shown

in Table 3.

Table 3. XPath of object in instant.

Object XPath

document ../w:document

First paragraph ../w:document/w:body/w:p[1]

First paragraph’s properties ../w:document/w:body/w:p[1]/ w:pPr

First paragraph’s text ../w:document/w:body/w:p[1]/w:r/w:t

Second paragraph ../w:document/w:body/w:p[2]

Second paragraph’s
properties

../w:document/w:body/w:p[2] / w:pPr

Second paragraph’s text ../w:document/w:body/w:p[2] /w:r/w:t

In DPC, a paragraph is a composite object, and text is

a basic object, and each of them has an ON_EDITING sign.

As there is no inheritance relationship between paragraph

and text, so their ON_EDITING signs do not have the

inheritance relationship either. In this case, if a user edits

the property of the first paragraph, the text of this

paragraph is still available to other users, while the

ON_EDITING sign of the first paragraph is BUSY. An

overview of this example document processed in cloud

based on DPC is shown as Figure 5.

Figure 5. Overview of example document in cloud based on DPC.

Accessing path is used to lead user to get the sub-part

of the office document, which is the key concept of

collaboration editing in cloud. Through accessing path,

multiple users can get access to the part they want to edit

separately. For example, if user wants to edit the text of the

first paragraph, the middleware in cloud will lead user to

the processor which marked this object’s accessing path as

“../w:document/w:body/w:p[1]/w:r/w:t”, and then user will

accomplish their editing on that processor.

5 Discussion

The first problem of moving office document

processing into the cloud environment using DPC is the

security problem. As DPC divides a document into smaller

pieces and sends them to servers that may be

geographically disperse, how to ensure the security of the

document would be a legitimate question. The best solution

so far is to send pieces of the document to authorized

servers with secure channels. The limitation of this method

is that it will narrow the range of application servers in a

cloud for document processing.

As different parts of a document are being processed

in different processors separately, a second problem of

concern is reliability. If one of the servers crashes while

processing, the final document cannot be integrated and

produced, because the crashed processor will not return the

result of its part. A solution for this problem is to back up

the document before it is divided in storage. If server crash

does occur, the backup copy of those pieces on crashed

server will be used to constitute the final document.

Synchronization is a common problem encountered in all

distributed computing, including cloud computing. For

DPC, the user who opens a document first in a cloud is

regarded as the owner of the document; other users

collaborate on this document in two steps: (a), obtain the

permission from the owner; (b), save their work before the

owner closes the document, otherwise their work will not

be saved. Meanwhile, for DPC, synchronization is on the

logical object level which is a proper granularity for

document processing.

6 Conclusion

As people realize that cloud computing will reshape

the IT industry, some even predict that one day it will

become the 5
th

 utility after water, electricity, gas and

telephone [13]. Moving document processing into the cloud

is a logical and strategically wise choice. This movement is

not only based on cost-saving considerations, but also on

the merits that include easier and more effective

collaboration in document processing. Aiming to

accomplish this goal completely, we have proposed a DPC

model to enable users process their office document

collaboratively in a cloud environment at a proper level of

granularity so that concurrent editing tasks are more

effectively isolated, thereby eliminate any confusion that

may occur as a result of collaboration at a finer granularity.

7 References

[1] ISO/IEC 29500, Information technology – Office Open XML file

formats. ICS: 35.240.30; 35.060.

[2] Cloud Computing Definition by National Institute of Standards and
Technology (NIST): http://csrc.nist.gov/groups/SNS/cloud-

computing/.

[3] Create document, spreadsheet and presentations on line.

http://www.google.com/google-d-s/intl/en/tour1.html

[4] About Office 365. http://office365.microsoft.com/en-US/online-

services.aspx.
[5] Sharing.http://www.google.tm/support/forum/p/Google+Docs/label

?lid=7d298e0b22c2d291&hl=en

[6] ISO 8613: Information Processing-Text and Office Systems-Office
Document Architecture (ODA) and Interchange Format,

International Organization for Standardization, 1989. ICS:

35.240.20.
[7] Yuan Yan Tang, Chang De Yan, and Suen, C.Y. Document

Processing for Automatic Knowledge Acquisition. IEEE

Transactions on Knowledge and Data Engineering, Vol. 6, February
1994. Pages 3-21.

[8] I. Foster and C. Kesselman (editors).The Grid Blueprint for a

Future Computing Infrastructure. Morgan Kaufmann Publishers,
USA, 1999. Pages 220-221.

[9] J. Michael Spivey (1992). The Z Notation: A reference manual (2nd

edition). Prentice Hall International Series in Computer Science.
[10] Middleware.

http://en.wikipedia.org/wiki/Middleware#Use_of_middleware.

[11] XML Path Language (XPath) 2.0. W3C Recommendation 23
January 2007, http://www.w3.org/TR/xpath20/, February 2009.

[12] Qian Wu, Ning Li, and Chunyan Fang. Comparison and conversion
between word processing format UOF and OOXML. Application

Research of Computers, Vol. 26, February 2009.

[13] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I.Brabdic.
Cloud Computing and Emerging IT Platforms: Vision, Hype, and

Readily for Delivering Computing as the 5th Utility. Future

Generation Computer Systems, Vol. 25, Issue 6, June 2009, Pages
599-616.

http://www.iso.org/iso/products/standards/catalogue_ics_browse.htm?ICS1=35&ICS2=240&ICS3=30&
http://www.iso.org/iso/products/standards/catalogue_ics_browse.htm?ICS1=35&ICS2=060&
http://www.iso.org/iso/products/standards/catalogue_ics_browse.htm?ICS1=35&ICS2=240&ICS3=20&
http://ieeexplore.ieee.org.mcc1.library.csulb.edu/search/searchresult.jsp?searchWithin=Authors:.QT.Yuan%20Yan%20Tang.QT.&newsearch=partialPref
http://ieeexplore.ieee.org.mcc1.library.csulb.edu/search/searchresult.jsp?searchWithin=Authors:.QT.%20Chang%20De%20Yan.QT.&newsearch=partialPref
http://ieeexplore.ieee.org.mcc1.library.csulb.edu/search/searchresult.jsp?searchWithin=Authors:.QT.%20Suen,%20C.Y..QT.&newsearch=partialPref
http://computer.org/tkde/
http://computer.org/tkde/
http://computer.org/tkde/
http://en.wikipedia.org/wiki/John_Michael_Spivey
http://spivey.oriel.ox.ac.uk/mike/zrm/
http://www.sciencedirect.com/science/journal/0167739X
http://www.sciencedirect.com/science/journal/0167739X
http://www.sciencedirect.com/science/journal/0167739X
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235638%232009%23999749993%231036156%23FLA%23&_cdi=5638&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=44f60ec9548c5d37512666db614b1c2e

