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Abstract - Despite significant advances in named entity 

extraction technologies, state-of-the-art extraction tools 

achieve insufficient accuracy rates for practical use in many 

operational settings. However, they are not all prone to the 

same types of error, suggesting that substantial improvements 

may be achieved via appropriate combinations of existing tools, 

provided their behavior can be accurately characterized and 

quantified. In this paper, we present an inference framework 

that leverages the joint characteristics of their error processes 

via a pattern-based representation of extracted entity data. This 

approach has been shown to produce statistically significant 

improvements in entity extraction relative to standard 

performance metrics and to mitigate the weak performance of 

entity extractors operating under suboptimal conditions. 

Moreover, this aggregation methodology provides a framework 

for quantifying uncertainty in extracted entity output, and it can 

readily adapt to sparse data conditions.   

Keywords: Knowledge discovery, text mining, named entity 

extraction, probabilistic aggregation, ensemble learning  

1 Introduction 
 Since the 1980s, the sophistication of machine learning 

and computer technologies has increased dramatically, 

enabling the development of solutions to a wide variety of 

challenges facing the Natural Language Processing (NLP) 

community. These problems range from the development of 

search engines that can interpret simple natural language 

queries to the construction of knowledge discovery systems 

predicated upon reliable information extraction from 

heterogeneous data sources. Often, the construction of such a 

knowledge base depends to a large degree upon the automatic 

recognition and extraction of complex relational information 

and, more fundamentally, related named entities (e.g., people, 

organizations) from a collection, or corpus, of text documents 

(e.g., e-mail, news articles, medical records, weblogs, 

intelligence reports). Consequently, the fidelity of knowledge 

discovery systems is particularly susceptible to errors 

introduced during the automatic extraction process. 

However, even state-of-the-art entity extraction tools are 

vulnerable to variations in (1) the source and domain of a 

corpus and its adherence to conventional lexical, syntactical, 

and grammatical rules; (2) the availability and reliability of 

manually annotated data; and (3) the complexity of entity types 

targeted for extraction. Under these conditions extractors 

produce a range of interdependent errors and often fail to 

achieve high accuracy rates in operational settings. However, 

many extraction technologies, distinguished by the nature of 

their underlying algorithms, possess complementary 

characteristics that may be combined to selectively amplify 

their most attractive attributes (e.g., low miss or false alarm 

rates) and mitigate their respective weaknesses.  

Many extractor combination methods that aim to leverage these 

characteristics have relied upon variations of a “voting” 

mechanism (e.g., majority vote [1]). In practice, such 

approaches often fall short, as they depend heavily upon the 

number and type of extractors chosen, and they do not account 

for the differing characteristics of their errors. Moreover, such 

systems tend to be limited in their ability to assess uncertainty, 

a critical capability for evaluating reliability in downstream 

analysis and decision-making. Proposed enhancements to the 

basic voting mechanism include weighting of the constituent 

(i.e., base) extractors’ output [2]; stacking of entity extractors 

[3]-[5]; establishing a vote “threshold” [6]; and bagging of 

entity data [7]. 

Even more sophisticated combination techniques, such as that 

described in [8], fail to adequately account for text within a 

local neighborhood of a word of interest. Indeed, a method 

based on the Conditional Random Field (CRF) model presented 

by [9] demonstrated that performance may be enhanced by 

incorporating the classification structure of nearby words. More 

recently, Lemmond, et al. [10] utilized a fine-grained 

hierarchical error space to characterize named entity extractors’ 

error processes and aggregate their output entity data. 

The aggregation methodology described in this paper, called 

the pattern-based meta-extractor (PME), utilizes a pattern-

based representation of named entity data to evaluate the joint 

performance characteristics of its base entity extractors. The 

resulting characterization is utilized to determine the most 

likely truth, given base extractor output. Section 2 describes the 

pattern representation, along with its use in characterizing base 

extractor performance and aggregating entity output. In Section 

3, we discuss enhancements that enable the PME to adapt to 

sparse data conditions. Finally, experimental results are 

presented in Section 4, with conclusions and future research 

given in Section 5. 

2 Extractor characterization 
 In the following discussion, we assume that an entity can 

be expressed as a text string that is associated with a location in 

the source text. To enable the characterization of base extractor 

performance, we assume an annotated set of documents is 

available (distinct from those used for training) to serve as an 

“evaluation corpus” for the base extractors. The ground truth 

entity data, G, consists of the true (i.e., manually annotated) 

entities identified in the evaluation corpus. The meta-extractor 

aggregates the output of K 1 base entity extractors, where Dk  



denotes the output of extractor k relative to a corpus. When the 

locations of a ground truth entity and an extracted entity 

intersect, we say that the entities overlap.  

2.1 The pattern representation 
 Named entity extractors leverage a variety of different 

methodologies to correctly extract fragments from text that 

represent real-world entities, such as people, organizations, or 

locations. Many extractors are proprietary, and hence, direct 

analysis of the characteristic error processes of their underlying 

algorithms is often infeasible. Therefore, we choose to treat 

each extractor as a “black box”. However, when the base entity 

extractors are applied to a corpus for which the ground truth, G, 

is known, mistakes in their output, Dk , represent an observable 

transformation of the truth that is driven by their underlying 

error processes. The PME utilizes an encoding of the combined 

base extractor output, D, that encodes the joint characteristics 

of the extractors’ output and resultant errors.  

To lay a foundation for this encoding, we revisit a construct 

originally proposed in [10] called the meta-entity. This meta-

extraction methodology assumed that the combined entity 

output of the base extractors at a given location in the corpus 

encapsulates all available information regarding the ground 

truth. Hence, to facilitate discovery of the truth, mutually 

overlapping entities output by the K base extractors may be 

concatenated to form a meta-entity, which in turn can be used 

to generate a space of hypotheses over the ground truth. For 

example, in Figure 1, the extracted data within each rectangle 

can be concatenated to form two distinct meta-entities 

consisting of the following fragments of text: 

(i) “President Obama” 

(ii) “Edward M. Liddy of the American International Group” 

Let Dmk denote the entity output of base extractor k used to 

form meta-entity m, and let },...,{ 1 mKmm DDD . Note that Dm 

consists of the K-way joint entity output of the K base 

extractors and possesses a distinctive structure that can be 

characterized by the boundaries of its individual entities. 

Specifically, the locations of its entity boundaries collectively 

define a K-way pattern, dm, relative to m that can be encoded 

numerically via the following process (illustrated in Figure 2): 

(A) Meta-entity m is partitioned into s segments terminating at 

the s 1 unique entity boundaries in Dm . 

(B) For each extractor k, a string of length s (a 1-way or simple 

pattern denoted dmk) is constructed, in which “2” indicates 

the beginning of an entity, “1” represents the middle or end 

of an entity, and “0” indicates that the segment was not 

extracted by extractor k. 

(C) We represent the K-way pattern corresponding to the 

segmented meta-entity m by },...,{ 1 mKmm ddd . 

Note that this segmentation strategy is motivated by the 

assumption that, if two words in the meta-entity remain 

“unbroken” by the base extractors (e.g., “American 

International” in Figure 2), then they most likely remain 

unbroken in ground truth. Empirically, we have found that the 

performance of the PME appears to benefit from this 

assumption.  

When the ground truth, Gm , associated with a meta-entity m is 

known and the above assumption is made, an analogous simple 

pattern representation of ground truth can be derived from the 

meta-entity segmentation. For example, in Figure 2, the ground 

truth is given by Gm  = {“Edward M. Liddy”, “American 

International Group”}, and its associated pattern is given by 

gm (21021) .  

2.2 The pattern dictionary 
The pattern-based encoding described in the previous section 

relies solely on the joint structure of the entity data being 

encoded relative to a given segmented meta-entity. 

Consequently, a particular K-way pattern of extracted data may 

be repeatedly observed in a corpus regardless of the actual text 

involved in the associated meta-entities. For example, in Figure 

3, the extracted data are associated with a joint pattern identical 

to that shown in Figure 2. However, despite the similar 

encoding of the extracted data, their associated ground truths 

differ. In particular, the ground truth in Figure 3 is given by  

Gm  ={“Joe Biden”, “Delaware”}, with the associated pattern 

gm (02002) . Hence, a particular pattern of extracted data, dm, 

may be associated with many different ground truth patterns; in 

fact, the total number as of unique ground truth hypotheses that 

may be encoded for a meta-entity of length s segments is given 

by a0 1, a1 2, as 3as 1 as 2 . Clearly, only a subspace of the 

possible encodings will be observed in the training data for 

long patterns. Indeed, in practice, as pattern length increases, 

the relative size of this observed subspace shrinks rapidly. 

Some implications of this behavior will be discussed in later 

sections. 

 

Fig. 1. Meta-entities formed from extracted data: “President Obama”, “Edward M. Liddy of the American International Group”.  

 

 

Fig. 2. The pattern-based encoding associated with extracted data 
relative to a meta-entity. 

 



In an operational setting, the base entity extractors are applied 

to a corpus for which ground truth is unknown. With access to 

only the extracted entity output of its K extractors, the PME 

must determine the most likely ground truth (i.e., the set of true 

named entities, G). This process involves forming a collection 

of meta-entities from the extractor output, D , and for each 

meta-entity m, determining the ground truth hypothesis that is 

most plausible in a Bayesian sense among the as possible 

hypotheses. We will show that the optimal ground truth 

hypothesis Hm
* , given Dm , is that most frequently associated 

with the K-way pattern dm in the evaluation data set. 

Evaluation of base extractor performance relative to an 

annotated data set consists of constructing a database, or 

pattern dictionary, from the evaluation data that stores counts 

of observed ground truth patterns for each K-way pattern 

derived from the extracted data. For example, a final entry in 

the pattern dictionary might resemble that shown in Figure 4 

for the 2-way pattern presented in Figures 2 and 3. 

Consider a particular meta-entity m of size s having the K-way 

pattern dm and unknown ground truth. Let 1,..., n ( j 1) 

denote the respective probabilities of the n as  hypothesized 

ground truths, Hm1,...,Hmn. Suppose there are a total of 

N N
(K )

1 occurrences in the pattern dictionary of the pattern 

dm. Since the corresponding collection of N meta-entities may 

be regarded as a random sample from the population which 

generates the pattern dm, the resulting pattern dictionary 

counts, i.e., the observed frequencies f1,..., fn ( f j N) of the 

set of possible ground truths, may be modeled as following a 

multinomial distribution. The frequency f j  may be viewed as 

the number of “votes” for the ground truth hypothesis Hmj .  

The conjugate prior for the multinomial distribution is the 

Dirichlet distribution D( 1,..., n ). For our application, we used 

a noninformative Dirichlet prior, )\1...( 1 nD n , which, 

in effect, splits a single a priori vote evenly among the 

candidate ground truths. 

The posterior distribution of 1,..., n  then, given the observed 

frequencies f1,..., fn , is D(1/n f1 ,...,1/n fn ) . These 

frequencies have the effect of updating the number of votes for 

hypothesis Hmj  to 1/n f j . Hence, the marginal posterior 

distribution of j  is the beta distribution with parameters 

A j 1/n f j  and B j 1 N (1/n f j ). It is this distribution 

that should be used to model the credibility of the hypothesized 

ground truth Hmj . In particular, the posterior mean for j  is 

given by 

,
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which is a weighted average of the prior mean, 1/n, for j  and 

the sample proportion, ˆ 
j f j /N , of observed patterns 

associated with Hmj . 

The Bayesian optimum ground truth hypothesis Hm
*  is the Hmj  

that maximizes the posterior mean ˜ 
j . Moreover, it is apparent 

from the formulation that it is equivalent to maximize ˆ 
j . 

Hence, the optimal hypothesis is simply that most frequently 

associated with the K-way pattern dm in the evaluation data 

set, easily determined via the pattern dictionary.  

3 Unprecedented patterns 
When new extractor output Dm  is encountered in the field, it 

may happen that the associated K-way pattern, dm, was not 

observed in the evaluation data set and, consequently, cannot 

be found in the pattern dictionary ( N
(K )

0). We present two 

enhancements of the PME that enable it to adapt to these 

challenging conditions. 

3.1 Stepping down 
The K-way pattern described above is a joint model over the K 

extractors and their corresponding behavior with respect to a 

given meta-entity. It is reasonable to assume that the pattern 

algorithm, if necessary, can utilize progressively weaker 

marginal models in an effort to capture some patterns that 

would not otherwise be observed. We call this process 

"stepping down". 

Stepping down involves reducing the number of extractors 

represented by the patterns in the dictionary in an effort to 

increase the likelihood that a given joint pattern will have been 

observed. This means that, in building the pattern dictionary, 

we must additionally store counts of observed ground truth 

patterns for each k-way pattern derived from the extracted data, 

1 ≤ k ≤ K - 1. During operation of the PME, when a K-way 

pattern cannot be found in the dictionary, frequencies of these 

smaller k-way patterns, k K , are used to determine plausible 

 
Fig. 4. Example pattern dictionary entry. 

 

 

Fig. 3. The joint pattern representation for a different collection of 

extracted data, identical to that in Fig. 2. 

 



ground truth. The particular value of k employed will be 

referred to as the stepping down level.  

Here, we focus chiefly upon two approaches to implementing 

this stepping down procedure, simple k-way and LBM. 

3.1.1 Simple k-way decision 
A straightforward implementation of stepping down involves 

querying the dictionary for all possible k-way patterns, for 

successively smaller k, k K , until one or more patterns is 

found. A K-way pattern dm induces T
K

k
 k-way patterns 

dmt, t = 1, …, T, according to the combination of extractors 

represented. As shown in Figure 5, each k-way pattern dmt and 

its associated ground truth patterns are reconfigured, if 

necessary, to comply with the segmentation induced by the s-

segment K-way pattern dm. Again, let 1,..., n  denote the 

respective probabilities of the n as  possible ground truths, 

Hm1,...,Hmn. Suppose there are a total of Nt ≥ 0 occurrences in 

the pattern dictionary of the pattern dmt, with 

N N
(k)

N t 1. Since we regard the corresponding 

collection of N meta-entities as a random sample from the 

population which generates patterns from dmttU , the resulting 

pattern dictionary counts, i.e. the observed frequencies f1, …, fn 

( f j N ) of the set of possible ground truths, may again be 

modeled as following a multinomial distribution. Here the 

frequencies are pooled over the T k-way pattern dictionaries. 

Bayesian inferences proceed as in the full K-way case, with the 

same expressions for ˜ 
j  and ˆ 

j . Analogous Bayesian intervals 

may be constructed.  

While this approach has been shown to be reasonably effective, 

it does not explore and compare probability estimates for all 

extractor combinations at all values of k. To this end, we have 

developed an alternative approach that does so. 

3.1.2 Lower Bound Maximization (LBM) 
The essence of the LBM method consists of stepping down to 

the “best” combination of extractors, subject to a constraint on 

the reliability of the estimated probability of the top-ranking 

hypothesis associated with each combination. The LBM 

method uses the lower Bayesian bound as a metric to compare 

hypotheses’ probability estimates. Specifically, for each 

combination of base extractors i, the lower bound on the 

estimated probability of hypothesis Hmj, denoted by 

)()(

mj

i Hlx , is the solution to 

),( )()( i

j

i

jx BAI , 

where Ix denotes the incomplete beta function, and the 

parameters of the corresponding beta distribution are computed 

in a fashion similar to that described in the preceding section. 

The parameter  < 0.5 is pre-specified such that 1–  

indicates the desired degree of confidence in a bound. Since 

higher bounds suggest greater plausibility, by comparing the 

bounds over all levels and hypotheses, we effectively are able 

to 

rank the ground truth probabilities. The LBM optimum ground 

truth hypothesis, Hm
* , achieves the largest bound, i.e. 

Hm
*

argmax
Hmj

max
i
l
( i)
(Hmj ) . 

Empirically, we have found the LBM method to be fairly 

insensitive to the choice of .  

In a similar fashion as stepping down, LBM simultaneously 

addresses both the quality and uncertainty of estimates by 

assigning heavier weights to hypotheses associated with more 

observations N
(i)

. Moreover, by introducing a confidence 

metric, it provides an avenue for directly comparing the 

estimates arising from the totality of possible extractor 

combinations.   

3.2 A Sequential Meta-Entity Model 
Although the marginal models utilized in Section 3.1 enhance 

the PME’s ability to make decisions under sparse data 

conditions, there certainly remain cases in which even these 

techniques are unsuccessful.  

Recall from our previous discussion that the K-way pattern 

encodes joint information among the errors as well as among 

the base extractors. In many cases, the rarest of meta-entities 

consist of lengthy patterns, which represent a complex 

sequence of errors and disagreement among the extractors. 

Moreover, the underlying dependencies among extractors is 

unknown. Thus, it is reasonable to incrementally break down a 

K-way pattern across errors, rather than across extractors, so 

that the patterns arising from a single meta-entity are 

represented by progressively fewer segments. We can address 

this approach via a sequential modeling technique that is often 

used in other language-based applications. For example, let us 

consider a 3-way pattern dm, together with a hypothesis Hmj, as 

a sequence of columns as shown in Table 1. 

We can decompose the joint probability of the pattern (dm, Hmj) 

in Table 1 as follows: 

4

2

111 ),...,|()(),(
t

ttmjm cccPcPHP d  

 

 

 

 
 

Fig. 5. The 2-way pattern representation formed by Extractors 1 
and 2 (B), as well as that of its associated ground truth, maintains 

the sementation of the original 3-way pattern (A), despite the 

lack of disagreement between the two extractors. 

 



Table 1: Columnwise representation of a pattern and 

corresponding hypothesis. 
 

 c1 c2 c3 c4 

dm1 2 1 2 1 

dm2 2 1 0 2 

dm3 2 0 0 2 

Hmj 2 1 0 2 
 

where each column pattern is dependent upon those that 

precede it. Hence, when a complex pattern is encountered that 

cannot be handled by the previously described methods, we 

make the assumption that each column pattern is dependent 

only upon the preceding n columns, with n s 1, giving 

P(dm ,Hmj ) P(c1 ) P(ct | ct 1,...,ct n )
t 2

s

. 

Under this framework, we select the hypothesis Hm
*  that 

satisfies 

Hm
*

argmax
Hmj

P(dm ,Hmj ) . 

Note that taking n 1 in this sequential modeling approach 

yields a standard Markov model. We have generally found this 

small window size to be fairly effective, requiring the least 

amount of data to obtain reliable probability estimates.  

4 Empirical studies 
In this section, we present results from three aggregation 

experiments using the output of (1) GATE, a rule-based 

extraction tool [11]; (2) LingPipe, an extraction tool based on 

Hidden Markov Models (HMMs) [12]; (3) Stanford Named 

Entity Recognizer (SNER), based on CRFs [13]; and (4) 

BALIE, an extraction tool that utilizes unsupervised learning 

[14]. These experiments were carried out using two publicly 

available annotated data sets, MUC6 (Wall Street Journal) and 

MUC7 (New York Times), as well as a small operational data 

set called TAI consisting of 40 annotated documents 

(containing approximately 700 ground truth entities). 

The following studies compare the performance of the PME 

where stepping down is implemented up to n levels, n 0,...,3 

(i.e., “PAn”), together with the LBM method (“LBM”). In all 

cases, when a pattern could not be found in the pattern 

dictionary after stepping down or LBM was employed, we 

utilized the Sequential Modeling algorithm to determine a 

winning hypothesis.  

We focused on two relevant real-world scenarios. The first 

involved a test in which the base extractors and the PME used 

identical training data. The PME, which requires annotated data 

for evaluation, necessarily used base extractors trained on less 

data, thus pitting these weak learners against their stronger, 

standalone versions. To this end, MUC6 and MUC7 were used 

in a 10-fold cross-validation procedure where, for each fold, 

10% of the corpus was set aside for testing, and the remaining 

90% was used to train and evaluate the base extractors (via 9-

fold cross-validation). The resulting ten performance estimates 

were bootstrapped (2000 samples) and presented in box plots 

(Figures 6 and 7). 

The second scenario involved more challenging conditions in 

which the base extractors were not trained using representative 

data. We simulated these conditions by training the base 

extractors on MUC6 and then evaluating their performance and 

aggregating their output on TAI. As in the first scenario, we 

performed 10-fold cross-validation, and the resulting estimates 

were bootstrapped and plotted (Figure 8). 

4.1 Results 
In the following figures, we have presented our results in terms 

of F Measure, where the Precision, P, and Recall, R, given by  

P
c 0.5* pE

E
, R

c 0.5* pG

G
, 

where G and E are the number of ground truth and extracted 

entities, respectively; pG  and pE  are partial matches of the 

ground truth and extracted entities, respectively, and c is the 

number of correct extractions (i.e., true positives). This 

formulation for Precision and Recall is motivated by an interest 

in quantifying the usability of extracted data, under the 

assumption that a partially correct extraction is more valuable 

than a miss, but less valuable than a correctly extracted entity. 

In addition to F Measure, we have presented our results in 

terms of Exact Match (EM) rates, and the combined Miss and 

False Alarm rates for each base extractor and the PME variants. 

These error types are often traded off to address operational 

requirements, but here we focus on their combined impact.  

We also assessed statistical significance relative to F Measure 

via a nonparametric pairwise test performed on the results from 

the original ten folds.  

Figures 6 and 7 present the results generated for the first 

experimental scenario. For both MUC6 and MUC7, the base 

extractors founded upon statistical methodologies, LingPipe 

and SNER, produced F measures that significantly exceeded 

those of GATE and BALIE (p = 0.001). In general, we 

expected this behavior, since statistical methodologies often 

excel when they are trained on representative data. However, 

the performance of GATE greatly exceeded that of BALIE. 

BALIE was trained on a set of prepackaged untagged websites, 

negatively impacting its performance in our experiments.  

Note that, although the EM rate of the LBM method was 

roughly equivalent to the EM rate of LingPipe for the MUC6 

experiment, LBM produced a lower error rate than SNER and, 

consequently a significantly higher F measure (for MUC6, p = 

0.001; for MUC7, p = 0.005).  

Note that for both the MUC6 and MUC7 experiments, stepping 

down with respect to the number of base extractors results in a 

significantly improved F measure (with a p-value ≤ 0.002 in 



each case). These results suggest that the PME benefits from 

stepping down as far as possible before reverting to the 

Sequential Modeling method (i.e., when a pattern cannot be 

found at the lowest level). However, we have observed that it is 

sometimes advantageous to interrupt the stepping down process 

and defer the decision to the sequential method, particularly 

when the data are sparse. 

In the second experimental scenario, we examine results from 

the TAI data set. The TAI data set was roughly one-tenth the 

size of MUC6 (which is roughly half the size of MUC7), and 

was annotated according to MUC6 guidelines. As it turns out, 

this annotation was poorly performed with many underlying 

true entities unidentified. Hence, this situation mimics those of 

the second condition described above (i.e., annotations used to 

train the base extractors are flawed). Specifically, we may 

regard the incomplete TAI annotations as a relevance-based 

annotation, in which only entities of interest have been 

identified relative to some operational need. In such a case, 

MUC6 turns out to be nonrepresentative, and base extractors 

trained on MUC6 are poorly equipped to perform effectively 

when applied to TAI. 

The results for TAI are presented in Figure 8. It is clear from 

the plot that, as in other experiments, the PME successfully 

mitigated the decreased performance of the base extractors. 

      

Fig. 6. Left to Right: Exact match rates, Miss + FA rates, F measure on MUC6 for the first experimental scenario. “PAn” represents the pattern 

algorithm, using the simple k-way decision stepping down process to step down up to n levels. “LBM” presents results from the LBM method, 

alpha = 0.3. Patterns not found are processed using the Sequential Modeling method. 

      

Fig. 7. Left to Right: Exact match rates, Miss + FA rates, F measure on MUC7 for the first experimental scenario. BALIE and GATE performed 
poorly relative to LP and SNER, much like MUC6. The LBM again uses alpha = 0.3. 

      

Fig. 8. Left to Right: Exact match rates, Miss + FA rates, F measure on TAI for the second experimental scenario. The performances of BALIE 

and GATE were more robust relative to LP and SNER. The LBM again uses alpha = 0.3. 



Note that GATE’s performance remained relatively robust, as it 

does not require training and, hence, is not susceptible to the 

flaws in the training data set. SNER’s performance degraded 

significantly, but at least produced results comparable to 

GATE. The performance of LingPipe dropped precipitously, 

largely because its error rate increased by nearly an order of 

magnitude. Indeed, it produced roughly one false alarm per 

ground truth entity. We have observed that our version of 

LingPipe tends, in general, to produce more false alarms than 

other methods.  

With respect to the PME and LBM in Figure 8, their respective 

performance was not found to be statistically different  

(p = 0.55), but the results again indicate that the LBM is 

competitive with the PME. 

5 Conclusions and future work 
In this paper, we have presented a pattern-based aggregation 

methodology – the PME – that implicitly incorporates the joint 

behaviors of extractors and their error processes. Through the 

integration of marginal models and corresponding 

representations of extracted data, the PME has proven to be 

highly effective. Specifically, it has been shown to achieve 

statistically significant improvements in the summary metric, F 

Measure, over its base entity extractors in multiple 

experimental scenarios and on multiple data sets. Even under 

sparse data conditions, where marginal models become more 

critical, the PME remains highly effective.  

Strategies for integrating across multiple marginal models 

under these conditions were also presented and their relative 

performance compared. The simple k-way decision, though 

generally effective, makes the decision to step down based only 

upon the absence of a pattern in the pattern dictionary, without 

regard to uncertainty or accuracy across levels. As a 

consequence, decisions may sometimes be made by few or 

highly variable data. 

An alternative approach to the k-way decision, the LBM 

method, is able to account for the uncertainty across the various 

extractor combinations. Specifically, this method selects an 

optimum hypothesis according to a Bayesian lower bound 

metric appropriate and applicable across all of the 

combinations. As a result, it is competitive with the best-

performing PAn algorithm in each of these empirical studies 

relative to F Measure.  

Both of the methods require that a parameter be specified for 

optimal performance. Specifically, the k-way decision requires 

the selection of the minimum level k, while the LBM method 

requires that the parameter α be specified. However, our studies 

have shown that the LBM method is fairly insensitive to the 

choice of α, and for the k-way decision, the choice of k = 1 as 

the minimum level is often the most effective.  

In text applications, a wide variety of meta-entities is observed. 

These meta-entities can be distinguished by structural features 

derived from their underlying patterns of base extractor text. 

Other research we have performed has demonstrated that the 

effectiveness of different aggregation algorithms can be linked 

directly to these characteristic features. Consequently, our 

future efforts will investigate systems that can assign meta-

entities to the most favorable given specific operational 

conditions and meta-entity features. 
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