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Abstract— In deterministic mixed integer second-order
cone programs (DMISCOPs) we minimize a linear objective
function over the intersection of an affine set and a product
of second-order (Lorentz) cones, and an additional con-
straint that requires a subset of the variables attain integers
values. We refer to them as deterministic mixed integer
second-order cone programs since data defining them are
deterministic. Stochastic programs have been studied since
1950âĂŹs as a tool to handle optimization problems that
involve uncertainty in data. In this paper, we introduce a
new modeling tool for stochastic mixed integer optimization
to handle uncertainty in data defining DMISOCPs by in-
troducing two-stage stochastic mixed integer second-order
cone programs (SMISCOPs) (with recourse). An application
of class of problems will be described.

Keywords: Stochastic programming; Mixed integer program-
ming; Recourse; Second-order cone programming

1. Introduction
In deterministic mixed integer second-order cone pro-

grams (DMISCOPs) [6], a linear objective function is mini-
mized over the intersection of an affine set and a product of
second-order (Lorentz) cones, and an additional constraint
that requires a subset of the variables attain integers values.
We refer to them as deterministic mixed integer second-order
cone programs since data defining them are deterministic.
Deterministic 0-1 second-order cone programs (0-1DSCOPs)
[6] are DMISCOPs but the variables that must take integer
values are restricted to be binary.

In some applications we cannot specify the model entirely
because it depends on information which is not available
at the time of formulation but will only be determined at
some point in the future. Stochastic programs have been
studied since 1950âĂŹs to find optimal decisions in prob-
lems with uncertainty in data. See [5], [20], [4], [10], [13]
and references contained therein. In particular, two-stage
stochastic mixed integer linear programs (SMILPs) have
been formulated to handle uncertainty in data defining mixed
integer linear programs [16]. Some algorithm have been
developed recently for solving SMILPs (see for example
[15], [14]).

In this paper, we propose a new class of optimization
problems to handle uncertainty in data defining DMISOCPs
by introducing two-stage stochastic mixed integer second-
order cone programs (SMISCOPs) (with recourse). We also
describe an application of this new class of problems in
stochastic mixed integer optimization,

1.1 Notations
We begin by introducing some notations that we use in the

sequel. The notations in this part follows that of Alizadeh
and Goldfarb [1] and Todd [18].

Let Rm×n and Rn∨n denote the vector spaces of real m×
n matrices and real symmetric n× n matrices respectively.
For U, V ∈ Rn∨n, we write U � 0 (U � 0) to mean that
U is positive semidefinite (positive definite), and U � V or
V � U to mean that U − V � 0.

We use “,” for adjoining vectors and matrices in a row,
and use “;” for adjoining them in a column. So, for example,
if x, y, and z are vectors, the following are equivalent: x

y
z

 = (xT,yT, zT)T = (x;y; z).

If A ⊆ Rk and B ⊆ Rl, then the Cartesian product of
A× B := {(x;y) : x ∈ A and y ∈ B}.

For each vector x ∈ Rk indexed from 0, we write x̄ for
the sub-vector consisting of entries 1 through k−1; therefore
x = (x0; x̄).

The second-order cone (also known as the quadratic,
Lorentz, or the ice-cream cone) of dimension n is defined as
Qn := {x = (x0; x̄) ∈ R× Rn−1 : x0 ≥ ||x̄||} where || · ||
denotes the Euclidean norm. It is well known that the cone
Q2 is convex, pointed, closed and with a nonempty interior.

We write x � 0 to mean that x ∈ Qn, and
x �〈n1,n2,··· ,nr〉 0 to mean that x ∈ Qn1

×Qn2
×· · ·×Qnr

.
For simplicity, we write x �〈n1,n2,··· ,nr〉 0 as x �r 0 when
n1, n2, · · · , nr are known from the context. We also write
x �r y or y �r x to mean that x− y �r 0.

It is immediately seen that, for every vector x ∈
Rn where n =

∑r
i=1 ni, x �r 0 if and only if x

is partitioned conformally as x = (x1;x2; · · · ;xr) and
xi � 0 for i = 1, 2, · · · , r.



2. Definitions of SMISOCP with Re-
course

An SMISOCP with recourse in primal standard form is
defined based on deterministic data A ∈ Rm1×n1 , b ∈
Rm1 and c ∈ Rn1 and random data T ∈ Rm2×n1 ,W ∈
Rm2×n2 ,h ∈ Rm2 and d ∈ Rn2 whose realizations depend
on an underlying outcome ω in an event space Ω with a
known probability function P. Given this data, a two-stage
SMISOCP with recourse in primal standard form is

min cTx+ E [Q(x, ω)]
s.t. Ax = b

x �r1 0
xk ∈ [αk, βk]

⋂
Z, k ∈ Γ

(1)

where r1 divides n1,Γ ⊂ {1, 2, · · · , n1}, the first-stage
decision variable x ∈ Rn1 has some of its components xk
(k ∈ Γ) with integer values and bounded by αk, βk ∈ R,
and Q(x, ω) is the minimum of the problem

min d(ω)Ty
s.t. T (w)x+W (ω)y = h(ω)

y �r2 0
yl ∈ [γl, δl]

⋂
Z, l ∈ Λ

(2)

where r2 divides n2,Λ ⊂ {1, 2, · · · , n2}, the second-stage
decision variable y ∈ Rn2 has some of its components yl
(l ∈ Λ) with integer values and bounded by γl, δl ∈ R, and

E[Q(x, ω)] :=

∫
Ω

Q(x, ω)P (dω).

This class of optimization problems may be termed
as stochastic mixed integer second-order cone programs
(SMISOCPs) with recourse. If the integrality constraints in
(1) and (2) are restricted to be binary, then we get the
problem

min cTx+ E [Q(x, ω)]
s.t. Ax = b

x �r1 0
xk ∈ {0, 1}, k ∈ Γ

(3)

where r1 divides n1,Γ ⊂ {1, 2, · · · , n1}, the first-stage
decision variable x ∈ Rn1 has some of its components xk
(k ∈ Γ) with integer values and bounded by αk, βk ∈ R,
and Q(x, ω) is the minimum of the problem

min d(ω)Ty
s.t. T (w)x+W (ω)y = h(ω)

y �r2 0
yl ∈ {0, 1}, l ∈ Λ

(4)

where r2 divides n2,Λ ⊂ {1, 2, · · · , n2}, the first-stage
decision variable y ∈ Rn2 has some of its components yl
(l ∈ Λ) with integer values and bounded by γl, δl ∈ R, and

E[Q(x, ω)] :=

∫
Ω

Q(x, ω)P (dω).

This class of optimization problems may be termed as
stochastic 0-1 second-order cone programs (0-1SSOCPs)
with recourse.

3. Two general classes of problems can
be cast as SMISOCPs

In this section we describe two general classes of prob-
lems that can be cast as MISSOCPs.

3.1 Stochastic mixed integer linear programs
If r1 = n1, then xi ∈ Q1

2 = {t ∈ R : t ≥ 0} for each
i = 1, 2, · · · , n1. Thus the constraint x �n1 0 means the
same as x ≥ 0, i.e., x lies in the nonnegative orthant of Rn1 .
Similarly, if n2 = r2 in (2), then y lies in the nonnegative
orthant of Rn2 . Thus, when both n1 = r1 in (1) and n2 = r2

in (2), then the SMISOCP problem (1, 2) reduces to the
problem

min cTx+ E [Q(x, ω)]
s.t. Ax = b

xk ∈ [αk, βk]
⋂

Z, k ∈ Γ
x ≥ 0

where Γ ⊂ {1, 2, · · · , n1}, the first-stage decision variable
x ∈ Rn1 has some of its components xk (k ∈ Γ) with
integer values and bounded by αk, βk ∈ R, and Q(x, ω) is
the minimum of the problem

min d(ω)Ty
s.t. T (w)x+W (ω)y = h(ω)

yl ∈ [γl, δl]
⋂

Z, l ∈ Λ
y ≥ 0

where Λ ⊂ {1, 2, · · · , n2}, the second-stage decision vari-
able y ∈ Rn2 has some of its components yl (l ∈ Λ) with
integer values and bounded by γl, δl ∈ R, and

E[Q(x, ω)] :=

∫
Ω

Q(x, ω)P (dω).

Thus, SMILP problems can be cast as SMISOCP prob-
lems.

3.2 Stochastic mixed integer quadratic pro-
grams

Stochastic quadratic programs (SMIQPs) can also be cast
as SMISOCPs. To demonstrate this, recall that a two-stage
SMIQP (with recourse) is defined based on deterministic
data C ∈ Rn1∨ n1 , C � 0, c ∈ Rn1 , A ∈ Rm1×n1 and b ∈
Rm1 ; and random data H ∈ Rn2∨ n2 , H � 0,d ∈ Rn2 , T ∈
Rm2×n1 ,W ∈ Rm2×n2 , and h ∈ Rm2 whose realizations
depend on an underlying outcome in an event space Ω with



a known probability function P. Given this data, an SMIQP
with recourse is

min q1(x, ω) = xTCx+ cTx+ E[Q(x, ω)]
s.t. Ax = b

xk ∈ {0, 1}, k ∈ Γ
x ≥ 0

(5)

where Γ ⊂ {1, 2, · · · , n1}, the first-stage decision variable
x ∈ Rn1 has some of its components xk (k ∈ Γ) with
integer values and bounded by αk, βk ∈ R, and Q(x, ω) is
the minimum of the problem

min q2(y, ω) = yTH(ω)y + d(ω)Ty
s.t. T (ω)x+W (ω)y = h(ω)

yl ∈ [γl, δl]
⋂
Z, l ∈ Λ

y ≥ 0

(6)

where Λ ⊂ {1, 2, · · · , n2}, the second-stage decision vari-
able y ∈ Rn2 has some of its components yl (l ∈ Λ) with
integer values and bounded by γl, δl ∈ R, and

E[Q(x, ω)] :=

∫
Ω

Q(x, ω)P (dω).

Observe that the objective function of (5) can be written as
(see [1])

q1(x1, ω) = ||ū||2 + E[Q(x, ω)]− 1

4
cTC−1c,

where
ū = C

1/2x+
1

2
C−

1/2c.

Similarly, the objective function of (6) can be written as

q2(y, ω) = ||v̄||2 − 1

4
d(ω)TH(ω)−1d (ω)

where
v̄ = H(ω)

1/2y +
1

2
H(ω)−

1/2d(ω).

Thus, problem (5, 6) can be transformed into the SMISOCP:

min u0

s.t. ū− C1/2x = 1
2 C

−1/2c
Ax = b
xk ∈ [αk, βk]

⋂
Z, k ∈ Γ

(u0; ū) � 0
x ≥ 0

(7)

where Q(x, ω) is the minimum of the problem

min v0

s.t. v̄ −H(ω)
1/2y = 1

2 H(ω)−
1/2d(ω)

T (ω)x+W (ω)y = h(ω)
yl ∈ [γl, δl]

⋂
Z, l ∈ Λ

(u0; v̄) � 0
y ≥ 0

(8)

where
E[Q(x, ω)] :=

∫
Ω

Q(x, ω)P (dω).

Note that the SMIQP problem (5, 6) and the SMISOCP
problem (7, 8) will have the same minimization, but their
optimal objective values are equal up to constants. More
precisely, the difference between the optimal objective values
of (6, 8) would be − 1

2d(ω)TH(ω)−1 d(ω). Similarly, the
optimal objective values of (5, 6) and (7, 8) will differ by

−1

2
cTC−1c− 1

2

∫
Ω

(
d(ω)T H(ω)−1d(ω)

)
P (dω).

It is interesting to note that we can use the transformation
described in this part to formulate an SMISOCP model for
capital budgeting problems with a mean-variance objective
described in [2]. In [2] the authors ignored the financing
structure and considered a simple assumption that all given
projects have a fixed available budget, and then, in order to fit
their approach for deriving cutting planes, they transformed
the problem from its model in 0-1DQP into a 0-1DSOCP
model. But we believe that it is much closer to the reality
to assume that we have a random budget for the projects.
Consequently, it is more convenient to consider the stochas-
tic version of this problem and hence to transform it from
the resulting 0-1SQP model into a 0-1SSOCP model.

4. An application: Stochastic discrete
Euclidean facility location problems

In facility location problems (FLPs) we are interested in
choosing a location to build a new facility or locations to
build multiple new facilities so that an appropriate measure
of distance from the new facilities to existing facilities is
minimized. FLPs arise locating airports, regional campuses,
wireless communications towers, etc. The following are
some ways of classifying FLPs (see also [17]):
• We can classify FLPs based on the number of new

facilities in the following sense: if we add only one new
facility then we get a problem known as a single facility
location problem (SFLP), while if we add multiple new
facilities instead of adding only one, then we get more
a general problem known as a multiple facility location
problem (MFLP).

• Another way of classification is based on the distance
measure used in the model between the facilities. If
we use the Euclidean distance then these problems are
called Euclidean facility location problems (EFLPs), if
we use the rectilinear distance then these problems are
called rectilinear facility location problems (RFLPs).

• When the new facilities can be placed any place in so-
lution space, the problem is called a continuous facility
location problem (CFLP), but usually the investor needs
the new facilities to be placed within specific locations
(called nodes) and not in any place in the solution space.
In this case the problem is called a discrete facility
location problem (DFLP).

• In some applications, the locations of existing facilities
cannot be fully specified because the locations of some



of them depend on information not available at the
time when decision needs to be made but will only
be available at a later point in time. In this case, we are
interested in stochastic facility location problems. When
the locations of all old facilities are fully specified,
FLPs are called deterministic facility location problems.

FLPs have seen a great deal of recent research activity.
For further details, consult the book of Tompkins and et al.
[17]. In particular, deterministic Euclidean facility location
problems are often cited as an application of deterministic
second-order cone programs (see for example [19] and [11]).
In this subsection, we consider (both single and multi-
ple) stochastic discrete Euclidean facility location problems
when, in particular, some of the variables are restricted to
be integer variables.

4.1 Stochastic discrete Euclidean single facility
location problem

In deterministic Euclidean single facility location prob-
lems, we are interested in choosing a location to build a
new facility among existing facilities so that this location
minimizes the sum of a weighted distance to all existing
facilities.

Assume that we are given r existing facilities represented
by the fixed points a1,a2, · · · ,ar in Rn, and we plan to
place a new facility represented by x so that we minimize
the weighted sum of the distances between x and each of
the points a1,a2, · · · ,ar. This leads us to the problem

min
∑r

i=1 wi ||x− ai||

or, alternatively, to the problem

min
∑r

i=1 wi ti
s.t. (t1;x− a1; · · · ; tr;x− ar) �r 0

where wi is the weight associated with the ith existing
facility and the new facility for i = 1, 2, . . . , r.

Before we describe the stochastic version of this generic
application, we indicate a more concrete version of it.
Assume that we have a new city with many suburbs and
we want to build a hospital for treating the residents of this
city. Some people live in the city at the present time. As
the city expands, many houses in new suburbs need to be
built and the locations of these suburbs will be known in
the future in different sides of the city. Our goal is to find
the best location of this hospital so that it can serve the
current suburbs and the new ones. This location must be
determined at the current time and before information about
the locations of the new suburbs become available.

Generally speaking, let a1,a2, · · · ,ar1 be fixed points
in Rn representing the coordinates of r1 existing fixed
facilities and ã1(ω), ã2(ω), · · · , ãr2(ω) be random points
in Rn representing the coordinates of r2 random facilities
who realizations depends on an underlying outcome ω in an
event space Ω with a known probability function P.

Suppose that at present we do not know the realizations
of r2 random facilities, and that at some point in time in
future the realizations of these r2 random facilities become
known.

Our goal is to locate a new facility x that minimizes the
weighted sums of the distance between the new facility and
each one of the existing fixed facilities and also minimizes
the expected weighted sums of the distance between the
new facility and the realization of each one of the random
facilities. Note that this decision needs to be made before
the realizations of the r2 random facilities become available.
We consider the discrete version of the problem by assuming
that the new facility needs to be placed within specific
locations and not in any place in 2- or 3- (or higher)
dimensional space. Let the points v1,v2, · · · ,vk ∈ Rn

represent these specific locations. So, we add the constraint
x ∈ {v1,v2, · · · ,vk}. Clearly, the above constraint can be
replaced by the following linear and binary constraints:

x = v1 y1 + v2 y2 + · · ·+ vk yk,
y1 + y2 + · · ·+ yk = 1, and
(y1, y2, · · · , yk) ∈ {0, 1}k.

This leads us to the following 0-1SSOCP model:

min
∑r1

i=1 wi ti + E [Q(x;y, ω)]
s.t. (t1;x− a1; · · · ; tr1 ;x− ar1) �r1 0

x = v1 y1 + v2 y2 + · · ·+ vk yk
1T y = 1, y ∈ {0, 1}k

where Q(x;y, ω) is the minimum of the problem

min
∑r2

j=1 w̃j(ω) t̃j
s.t. (t̃1;x− ã1(ω); · · · ; t̃r2 ;x− ãr2(ω)) �r2 0

x = v1 y1 + v2 y2 + · · ·+ vk yk
1T y = 1, y ∈ {0, 1}k

and

E[Q(x;y, ω)] :=

∫
Ω

Q(x;y, ω)P (dω).

where wi is the weight associated with the ith existing
facility and the new facility for i = 1, 2, . . . , r1 and w̃j(ω)
is the weight associated with the jth random existing
facility and the new facility for j = 1, 2, . . . , r2.

Sometimes we may need the specific points have to attain
integer values. In most cities of the world that were planned,
streets are laid out on a grid plan, so that city is subdivided
into small numbered blocks that are square or rectangular.
Figure 2 shows the blocks of Chicago in 1857. In this case,
usually the investor needs the new facility to be placed on
of the corners of the city blocks. Thus, let us assume that
the variable x lies in the hyperrectangle Ξn := {x : ζ ≤
x ≤ η, ζ ∈ Rn,η ∈ Rn} and has to attain specific points



Fig. 1: The regular pattern of square or rectangular city
blocks is very common among American cities. This map
shows the blocks of Chicago in 1857.

in the grid Ξn
⋂
Zn. Then we simply solve the following

SMISOCP model:

min
∑r1

i=1 wi ti + E [Q(x, ω)]
s.t. (t1;x− a1; · · · ; tr1 ;x− ar1) �r1 0

x ∈ Ξn
⋂
Zn

where Q(x, ω) is the minimum of the problem

min
∑r2

j=1 w̃j(ω) t̃j
s.t. (t̃1;x− ã1(ω); · · · ; t̃r2 ;x− ãr2(ω)) �r2 0

x ∈ Ξn
⋂
Zn

and
E[Q(x, ω)] :=

∫
Ω

Q(x, ω)P (dω).

4.2 Stochastic discrete Euclidean multiple fa-
cility location problem

If we consider the concrete model described in §4, and
suppose that we want to build three hospitals for this city,
or build a hospital, a university, and a fire station then
we get a multiple facility version of the model. Generally,
in order to be precise only the latest information of the
random facilities is used. This may require an increasing or
decreasing of the number of the new facilities after the latest
information about the random facilities become available.
For simplicity, let us assume that the number of new facilities
was previously known and fixed and we add m new facilities,
namely x1,x2, · · · ,xm ∈ Rn, instead of adding only one.
We also assume that the variables x1,x2, · · · ,xm need to

be placed within specific locations represented by the points
v1,v2, · · · ,vk ∈ Rn.

We have two cases depending whether or not there is
an interaction among the new facilities in the underlying
model. If there is no interaction between the new facilities,
we are just concerned in minimizing the weighted sums of
the distance between each one of the new facilities on one
hand and each one of the fixed facilities and the realization
of each one of the random facilities. In other words, we solve
the following 0-1SSOCP model:

min
∑m

j=1

∑r1
i=1 wij tij + E [Q(x1; · · · ;xm;y, ω)]

s.t. (t1j ;xj − a1; · · · ; tr1j ;xj − ar1) �r1 0
where j = 1, 2, · · · ,m
xj = v1 y1 + v2 y2 + · · ·+ vk yk
where j = 1, 2, · · · ,m
1T y = 1, y ∈ {0, 1}k,

where Q(x1; · · · ;xm;y, ω) is the minimum of the problem

min
∑m

j=1

∑r2
i=1 w̃ij(ω) t̃ij

s.t. (t̃1j ;xj − ã1(ω); · · · ; t̃r2j ;xj − ãr2(ω)) �r2 0
where j = 1, 2, · · · ,m
xj = v1 y1 + v2 y2 + · · ·+ vk yk
where j = 1, 2, · · · ,m
1T y = 1, y ∈ {0, 1}k,

and

E[Q(x1; · · · ;xm;y, ω)] :=

∫
Ω

Q(x1; · · · ;xm;y, ω)P (dω).

where wij is the weight associated with the ith existing
facility and the jth new facility for j = 1, 2, . . . ,m and
i = 1, 2, . . . , r1, and w̃ij(ω) is the weight associated with
the ith random existing facility and the jth new facility for
j = 1, 2, . . . ,m and i = 1, 2, . . . , r2.

If interaction exists among the new facilities, then, in
addition to the above requirements, we need to minimize
the sum of the Euclidean distances between each pair of the
new facilities. In this case, we are interested in a model of
the form:

min
∑m

j=1

∑r1
i=1 wijtij +

∑m
j=2

∑j−1
j′=1 ŵjj′ t̂jj′

+E [Q(x1; · · · ;xm;y, ω)]
s.t. (t1j ;xj − a1; · · · ; tr1j ;xj − ar1) �r1 0

where j = 1, 2, · · · ,m
(t̂j(j+1);xj − xj+1; · · · ; t̂jm;xj − xm) �(m−j) 0
where j = 1, 2, · · · ,m− 1
xj = v1 y1 + v2 y2 + · · ·+ vk yk
where j = 1, 2, · · · ,m
1T y = 1, y ∈ {0, 1}k,



where Q(x1; · · · ;xm;y, ω) is the minimum of the problem

min
∑m

j=1

∑r2
i=1 w̃ij(ω) t̃ij +

∑m
j=2

∑j−1
j′=1 ŵjj′ t̂jj′

s.t. (t̃1j ;xj − ã1(ω); · · · ; t̃r2j ;xj − ãr2(ω)) �r2 0
where j = 1, 2, · · · ,m
(t̂j(j+1);xj − xj+1; · · · ; t̂jm;xj − xm) �(m−j) 0
where j = 1, 2, · · · ,m− 1
xj = v1 y1 + v2 y2 + · · ·+ vk yk
where j = 1, 2, · · · ,m
1T y = 1, y ∈ {0, 1}k,

and

E[Q(x1; · · · ;xm;y, ω)] :=

∫
Ω

Q(x1; · · · ;xm;y, ω)P (dω).

where ŵjj′ is the weight associated with the new facilities
j′ and j for j′ = 1, 2, . . . , j − 1 and j = 2, 3, . . . ,m.

If we need some specific points have to attain integer
values, then for each k ∈ ∆ ⊂ {1, 2, · · · ,m}, we assume
that the variable xk lies in the hyperrectangle Ξn

k ≡ {xk :
ζk ≤ xk ≤ ηk, ζk ∈ Rn,ηk ∈ Rn} and has to be integer-
valued, i.e. xk must be in the grid Ξn

k

⋂
Zn.

Thus, if there is no interaction between the new facilities,
we solve the following SMISOCP model:

min
∑m

j=1

∑r1
i=1 wij tij + E [Q(x1; · · · ;xr1 , ω)]

s.t. (t1j ;xj − a1; · · · ; tr1j ;xj − ar1) �r1 0
where j = 1, 2, · · · ,m
xk ∈ Ξn

k

⋂
Zn, k ∈ ∆,

where Q(x1; · · · ;xm, ω) is the minimum of the problem

min
∑m

j=1

∑r2
i=1 w̃ij(ω) t̃ij

s.t. (t̃1j ;xj − ã1(ω); · · · ; t̃r2j ;xj − ãr2(ω)) �r2 0
where j = 1, 2, · · · ,m
xk ∈ Ξn

k

⋂
Zn, k ∈ ∆,

and

E[Q(x1; · · · ;xm, ω)] :=

∫
Ω

Q(x1; · · · ;xm, ω)P (dω).

If interaction exists among the new facilities, then we are
interested in a model of the form:

min
∑m

j=1

∑r1
i=1 wijtij +

∑m
j=2

∑j−1
j′=1 ŵjj′ t̂jj′

+E [Q(x1; · · · ;xr1 , ω)]
s.t. (t1j ;xj − a1; · · · ; tr1j ;xj − ar1) �r1 0

where j = 1, 2, · · · ,m
(t̂j(j+1);xj − xj+1; · · · ; t̂jm;xj − xm) �(m−j) 0
where j = 1, 2, · · · ,m− 1
xk ∈ Ξn

k

⋂
Zn, k ∈ ∆,

where Q(x1; · · · ;xm, ω) is the minimum of the problem

min
∑m

j=1

∑r2
i=1 w̃ij(ω) t̃ij

+
∑m

j=2

∑j−1
j′=1 ŵjj′ t̂jj′

s.t. (t̃1j ;xj − ã1(ω); · · · ; t̃r2j ;xj − ãr2(ω)) �r2 0
where j = 1, 2, · · · ,m
(t̂j(j+1);xj − xj+1; · · · ; t̂jm;xj − xm) �(m−j) 0
where j = 1, 2, · · · ,m− 1
xk ∈ Ξn

k

⋂
Zn, k ∈ ∆,

and

E[Q(x1; · · · ;xm, ω)] :=

∫
Ω

Q(x1; · · · ;xm, ω)P (dω).

5. Future research directions
In this paper we introduced a new class of problems for

stochastic mixed integer programming that may be referred
as stochastic mixed integer second-order cone programs
with recourse. Stochastic mixed integer second-order cone
programs generalize both stochastic mixed integer linear pro-
grams and stochastic mixed integer quadratic programs. Our
development is indeed significant in value, because it gives
us a new methodology to cover those applications that cannot
be captured by stochastic mixed integer linear and quadratic
programs. In terms of modeling, beyond the application
described in §4, it would be interesting to investigate other
applications of this new class of optimization problems. For
example, in [8] Fampa and Maculan proposed a deterministic
mixed integer second-order cone programming formulation
of the Euclidean Steiner tree problem (in which the set
of nodes in the connection is fixed over time). Based on
this formulation, we can describe a stochastic mixed integer
second-order cone programming formulation of a related
problem called dynamic Euclidean Steiner tree problem
(where the set of nodes in the connection changes over time)
proposed by Imase and Waxman in [9] and motivated by
multipoint routing in communication networks.

It is useful to develop algorithm for SMISOCPs. A forth-
coming paper will focus on developing a decomposition-
based branch-and-bound algorithm for solving this new class
of problems by extending the work of Sherali and Zhu [15]
(see also [14]).
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