
 

Heat conduction in a solid substrate with a 

spatially-variable solar radiation input: 

Carslaw-Jaeger solution revisited 

 

R.G. Kasimova
1
, Yu.V.Obnosov

2  

1
German University of Technology in Oman, Muscat, Sultanate of Oman  

2
Institute of Mathematics and Mechanics, Kazan Federal University, Kazan, Russia  

 

Abstract   
Temperature distributions recorded by thermocouples in 

a solid body (slab) subject to surface heating are used in 

a mathematical model of 2-D heat conduction. The 

corresponding Dirichlet problem for a holomorphic 

function (complex potential), involving temperature and 

heat stream function, is solved in a strip. The Zhukovskii 

function is reconstructed through singular integrals, 

involving an auxiliary complex variable. The complex 

potential is mapped by the Schwartz-Christoffel formula 

onto an auxiliary half-plane. The final heat conduction 

flow net (orthogonal isotherms and heat lines) is 

compared with the known Carslaw-Jaeger solution and 

shows a puzzling topology of energy fluxes for simple 

temperature-boundary conditions.  

 Key words: Laplace’s equation, topology of heat lines, 

complex potential, conformal mappings. 

 

1. Introduction  
Analytical solutions to  potential field problems, where 

the intricate topology of  2-D  flow nets (stream lines and 

constant potential lines) was controlled by heterogeneity 

of the flow domain,  but the boundary conditions were 

uniform (constant potentials on the inlet and outlet of a 

standard flow tube) were presented in [1], [2].  In this 

paper we study the effect of non-uniform boundary 

conditions, although assume that the medium, through 

which flow takes place, is homogeneous.  Analytical 

solutions for steady 2-D heat conduction in solid bodies 

are needed in different engineering designs involving heat 

transfer [3].  A powerful technique to solve these 

problems is based on the theory of boundary-value 

problems for holomorphic functions (e.g., [4], [5]).  In 

this paper we average the diurnal temperature swings, 

recorded by thermocouples on the surface of a concrete 

slab, and show that the corresponding explicit analytical 

solution gives a computer-algebra-visualized topology of 

heat lines, which is counterintuitive and puzzling.  

 

2. Mathematical Model 
We consider a vertical cross-section of the slab 

of a thickness b and thermal conductivity k, and a thermal 

barrier E1OE2 (practically, strip-type shading against 

solar radiation). Fig.1a depicts a vertical cross-section 

and Cartesian coordinates. Far from the barrier (the rays 

AE1 and E2B), the slab temperature is the same as the 

ambient air temperature, T0 =constant.  Along  AOB, we 

have experimental data of temperature obtained by 

thermocouples and we take the daily averages of these 

values. The x-distribution of this average temperature is a 

single-minimum function f(x). We assume that this 

function is symmetric f(-x)=f(x) and 0)( Txf    

at x  (this is confirmed by  experiments). We 

introduce F(x) as:  

 

f(x)=T0 –F(x),   at y=0 (1) 

 

where F(x) is a single-maximum (TM =T0 -Tm) function 

shown in Fig.1b. We assume that along the internal 

surface (DC in Fig.1a) temperature is constant, Tc: 

 

T=Tc,   at y=-b (2) 

 

 

 

 

 

 

 



 

Fig.1. Vertical cross-section of a slab with a thermal 

barrier (a), temperature boundary condition on the 

exterior surface – the kernel of the Cauchy integral (b), 

complex potential domain for small TM (c), auxiliary 

plain where the Dirichlet problem is solved (d). 

 

 

 

 

Fig.2. Heat line topology with four hinge points (a), the 

corresponding   knob-shape bounded complex potential 

domain (b).  



 

 

In case of no thermal barrier in Fig.1a, heat 

conduction in the slab of Fig.1a is   1-D.  With the 

barrier, the so-called “thermal resistor” models  (see, e.g., 

[6])  have been used. The resistor approximation assumes 

the AOB boundary condition to be a step-function 

(reflecting the barrier width) and the heat streamlines  are 

postulated to be straight and  perpendicular to the both 

slab boundaries,  i.e. heat flow is again 1-D.  Our 

objective is to assess analytically the spatial 

nonuniformity of temperature and heat lines  caused by 

the boundary condition (1).   

According to the Fourier law,   heat conduction 

in  the strip AOBCMD (we denote it Gz) of  Fig.1a is 

governed by  

),( yxTkJ   (3) 

where ),( yxJ  is the heat flux vector, which has a 

vertical component v and horizontal component u.  

 We introduce a complex physical coordinate 

z=x+iy and a complex potential w= +i  where i is an 

imaginary unit, =-k(T-Tc) is the potential and is a 

stream function, which is related to   through the 

Cauchy-Riemann conditions: 
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Heat lines const allow a better visualization 

of heat transfer and an assessment of thermophysical 

efficiency [7].  

Both and are harmonic: 

0),(,0),(  yxyx   (5) 

and w(z) is a holomorphic function.  

 An integral solution of the boundary-value 

problem (1),(2) and (5) is given in [3] (Chapter V, 

Section 3, eqn.2.19).  Here we derive an alternative 

solution. Carslaw and Jaeger derived their solution by the 

Fourier transform method. The Laplace equation  was 

analytically solved in [8] in a stream tube Gz by 

separation of variables and  Fourier‟s  series expansions. 

The Fourier methods are limited to the domains Gz that 

are homeomorphic to a simple streamtube (two constant 

temperature - two adiabatic segments as boundaries 

coinciding with the level lines of a Cartesian, cylindrical, 

spherical, etc. coordinate system, where the Laplace 

equation separates). Our method does not have this 

limitation and is applicable to any Gz-polygon with 

arbitrary mixed (Dirichlet-Newman) boundary.  

Without any loss of generality we assume that 

along OM  =0 that follows from the symmetry of f(x). 

The isotherms (equipotential lines =const) are dashed in 

Fig.1a and heat streamlines (=const) are shown in bold 

with arrows indicating the direction of heat transfer. The 

domain Gz  is fixed but the domain corresponding to  Gz 

in the w-plane, Gw, depends on f(x) and is surprisingly 

complex even for simple functions f(x).  

If Tm is close to T0 and the slope of f(x) is small,  

then Gw is a strip with a slightly bulged side AOB 

(Fig.1c). The streamlines in Gz (Fig.1a)  are somewhat 

curved, most of all in the slab zones where the imposed 

f(x) has a relatively  high slope magnitude |df/dx| (see 

Fig.1a).  

 

Fig.3.   Heat line topology with two hinge points (a), the 

corresponding double-sheet Riemann surface as the 

complex potential domain (b). 

 

For a smaller Tm  (fixed T0  but higher TM) 

and/or stronger variation of the slope of f(x),    the heat 

flow topology is shown in Fig.2a. On AOB (we recall, 

f(x) is a single-minimum function) at four points H1,  H2,  

H3,  and H4,   the direction of the v-component of the 

thermal gradient changes from inside the slab to the 

exterior.  Indeed,  along AS2H1 and BS3H4 heat is 

conducted from the exterior surface into the slab. Along 

H1H2 and H4H3 heat is discharged back and along H2H3 

heat moves from the exterior surface to the interior. There 

are two separatrices (dividing streamlines shown in bold), 

S2H2E2  and S3H3E3, which demarcate five different 

topological zones in Gz. The corresponding domain Gw is 

shown in Fig.2b where the image of  AOB is a knob-

shaped curve.   

 

For even smaller Tm  and/or stronger slopes of 

f(x)  we may arrive at  topology depicted in Fig.3a.   Here 

we have two points H1 and  H2 where flow changes its 

orientation from the interior to the exterior of the slab. 

The only separatrix (bold-styled in Fig.3a) has a saddle 

point S3. Above  S1S3S2 heat is circulated from the air 



 

into concrete and back, without entering the interior. The 

domain Gw  shown in Fig.3b is a double-sheet Riemann 

surface. The second sheet S1H1OH2S2 is stitched to the 

first (main) sheet through the cut  S1S3S2 , which images 

the separatrix in Gz. In Fig.3b we purposely distorted the 

branch AS1 (of course,  this branch in Gw  is symmetrical 

to S2B with respect to the  axes) in order to illustrate the 

stitching of  the second sheet. Points S1 and S2 are  located 

on the opposite sides of the cut in Gw. If Tm<Tc<T0,  then  

still another heat conduction regime  is realized,  with 

heat flux from the interior (this regime may occur in cold 

countries and has not been experimentally observed in 

Oman).  

 We implement a mathematical technique, which 

can readily tackle any heat flow regime in Figs.1a-3a. 

The method is  based on a conformal mapping of one 

domain  (Gz  in our case) onto an auxiliary domain 

(circle, half-plane) and, next,  solving there a Dirichlet, 

mixed, Newton (Robin)  or refraction problem (with the 

first to fourth boundary conditions, correspondingly) and 

further reconstruction of  the second holomorphic 

function in the auxiliary domain ([1], [2]).  

  So, first, we map conformally Gz onto the upper 

half-plane Im  >0 of an auxiliary plane i shown 

in Fig.1d by the Schwartz-Christoffel formula: 
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In this plane points A and D, as well as C and B coincide.  

 Next, we introduce the Zhukovskii function (see 

[5])  as  Zh=w-i(T0–Tc)kz/b+k(T0–Tc)=R+i I. The real 

part of this function is R=Re[Zh]= k(T0–Tc)y/b+k(T0–

Tc) and the imaginary part  I=Im[Zh]= k(T0–Tc)x/b. 

Obviously, Zh(z) is also holomorphic.   In the half-plane 

Im  >0 the following boundary conditions hold for 

Zh(): 

 

R=0 at |R=kF[x()] at |  

 

where eqn.(6) gives x() as : 

 

 

 

 (8) 

 

 

Obviously (see Fig.1b), 0)( F  at .1  The 

function )(F can be easily interpolated from 

experimental (thermocouple) daily-averaged point-wise 

collected values. We used F[x]= TM exp[-ax
2
], where a is 

a fitting parameter, as an approximation for 

experimentally-measured temperature values. Any other 

function, e.g.,  F[x]= TM /[1+(bcx)
2
] (where bc is another 

fitting parameter), can be used in eqn.(7) as a boundary 

condition. Eqn.(8), obtained from the conformal 

mapping,  is fixed and does not depend on  interpolation 

of experimental data and the choice of F[x].  

 Along with the boundary conditions (7) for the 

real part of the Zhukovskii function R(), we note that at 

point M (where  ) the imaginary part of this 

complex function, I()=0. Then an integral solution to the 

stated Dirichlet boundary-value problem is (see [5]): 
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Passing to the Sokhotsky-Plemelj limit 1,    

from eqn.(9) we obtain  the stream function along AOB:
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We note that the integral in eqn.(10) is singular at 1  

(that corresponds to the line AOB in Fig.1a) and should 

be calculated in the sense of v.p. (principal value). 

Wolfram‟s Mathematica [9] has a routine 

CauchyPrincipalValue for this purpose, which we used in 

numerical integration. At 1  (line DMC in Fig.1a) 

the integral in eqn.(10) is regular and we used the   

routine NIntegrate from [9]. 

 It is convenient to expand the kernel in eqn.(10) 

in a series of Chebyshev‟s polynomials of the second 

kind as:  

 

where ]arccossin[)(  nUn  . For any smooth (e.g., 

belonging to the Holder class is sufficient) function F()  

this series is uniformly converging on the interval (-1,1). 

Then for the roof surface AB eqn. (10) is reduced  to  
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and for the ray MD  we have  
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where ]arccoscos[)(  nTn   are the Chebyshev 

polynomials of the first kind. For the ray MC )1(   

we have )()(   ,  i.e. eqn.(12) can be used.  
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Far from the insulation zone (large values of |x|) the 

horizontal component u of the gradient vanishes and  

b

TTk
vv c )( 0   . We introduce a dimensionless 

vertical component  vvvd / . On AOB,  

differentiation of eqns. (8) and (11) yields 

 

Then the hinge points (if they exist) in Figs.2a-3a are 

found from eqn.(14) as the roots of the equation 

1,0)(  dv . We solved this equation using the 

FindRoot routine [9]. 

 How much in terms of total energy saving we 

gain from thermal insulation? In order to answer this 

question we select two symmetrical points L1 and L2  on 

the interior surface, distance 2L apart. Without the barrier 

in Fig.1a,   the total heat entering the interior (per unit 

length  in the direction perpendicular to the plane  in 

Fig.1a) through a strip of a width 2L  is Q0 =2L k(T0-

Tc)/b. From the definition of the stream function the total 

heat flowing through the same area but in  2-D  

conduction with insulation is Q=-2L1, where L1  is 

directly expressed from eqns.(8) and (12) as: 
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We introduce a dimensionless energy saving through 

L1L2 as S(L)= ,/ 0QQ where Q 10 2 LaQ  and,  

with 1L  taken from eqn.(15),  we have: 
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 Fig.4. Energy saving factor S as a function of L
d
  

for r=0.25 and a
 d

=0.025, 0.1 and 0.4 (curves 1-3,  

correspondingly).   

 

As we have pointed out,  the selected F(x) is TM exp[- a 

x
2
].  Fig.4 shows S as a function of a dimensionless width 

L
d
=L/b for r=0.25 and a

d
=0.025, 0.1 and 0.4 (curves 1-3,  

correspondingly, where a
 d

=a b
2
), calculated by eqn.(16).  

In Fig.5  
dv is shown as a function of dimensionless 

abscissa x
d
 =x/b along AOD for r=0.5 and a

 d
=1, 2 and 4 

(curves 1-3,  correspondingly), calculated by eqn.(14). As 

we can see from Fig.5, for the selected F(x) we have the 

flow topology of Fig.1a (no hinge points) for the first two 

curves and the two-hinge-points regime for the third 

curve. All three curves have two blips (maxima) which 

indicate that in the near-blip zone of the exterior  plane 

the intensity of conduction into the slab is even higher 

than in the case of no thermal insulation, i.e. near the 

edges E1 and E2 in Fig.1a the barrier “sucks” energy.   
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Fig.5. Vertical component of thermal gradient   
dv  as a 

function of  x
d
  along AOD for r=0.5 and a

 d
=1, 2 and 4 

(curves 1-3,  correspondingly). 

 

 Without any series expansions we can bluntly 

use eqns. (6) and (9)  in the following form: 

 

  

(17) 

 

 

 

where dimensionless variables are introduced as 

bzzTTkww d

c

d /),(/( 0  . 

By the help of the routines Re and Im [9] we 

separated the real and imaginary parts in eqn.(17). Then 

we used the ContourPlot routine [9] to plot the flow nets. 

Fig.6 shows the flow net for F=exp[-a
d
(x

 d
)

2
]  with  r=0.9,  

and a
d
=15 (two hinge points regime of Fig.3a). In Fig.6, 

in order to avoid cluttering, only three equipotential 

contours are presented: 
d
=-0.1 (curve 1, single branch, 

see the Riemann surface in Fig.3b), 
d
 =-0.3 (two 

branches, labeled  2) and 
d
 =-0.4 (two branches,  labeled  

3). For the sake of comparisons we also plotted the 

equipotentials according to the mentioned solution [3], 

denoted here as (CJ-2.19),  which in our notations and 

dimensionless variables  reads: 

  (CJ-2.19) 

Our eqn.(17) and eqn. (CJ-2.19) give identical contours.  
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Fig.6. Flow net (isotherms and heat lines) for F=exp[-a
 d

 

(x
 d
)

2
], r=0.9, a

d
=15 

 

It is clear that S3 in Fig.3a is indeed a saddle 

point, i.e. if we approach this point from the left and 

right, then  temperature decreases towards this point,  but 

if we move from S3 upward and downward, then 

temperature decreases
1
. S3 (in Fig.6 corresponds to the 

contour-plotting lacuna) is a genuine critical point 

because the thermal gradient there is zero while H1 and 

H2  are not really critical points (only v there vanishes but 

the horizontal component u of J  does not). Mathematica 

contour-plotting computations confirmed what we 

conceptualized as flow topologies in Figs.1a, 2a, 3a.  

 

3. Conclusions 
Our mathematical model and the final solution, 

eqn.(17),   gives temperature and heat flux field in the 

slab as an output of the ContourPlot routine of a standard 

computer algebra package (Mathematica). The solution is 

simple, versatile and provides analytical expressions for 

isotherms, heat lines, and thermal gradient (magnitudes 

and directions).  Our solution gives the same results as  

the known solution from [3] (obtained by a different 

method and not analyzed by them). The flow topology in 

Figs.1-3 is indeed counterintuitive and,  to the best of our 

knowledge, has never been reported before. Our 

mathematical approach to solve the corresponding 

boundary-value problem of heat conduction can be easily 

extended to more complex geometries of  conducting 

elements than in the presented case (strip), e.g. a 

rectangle or other polygons can be studied (this would 

require a more general Schwartz-Christoffel mapping 

than eqn.(6)).  

 

                                                 
1
 We recall that the maximum principle (valid for any 

elliptic equation and the Laplace equation used in this 

paper, in particular) prohibits global maxima and minima 

of temperature inside Gz. 
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